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Pesticides are an essential feature of modern-day agriculture that adds to the list

of factors that increase cancer risk. Our study aims to comprehensively

evaluate this relationship through a population-based approach that

considers confounding variables such as county-specific rates of smoking,

socioeconomic vulnerability, and agricultural land. We achieved our goal with

the implementation of latent-class pesticide use patterns, which were further

modeled among covariates to evaluate their associations with cancer risk. Our

findings demonstrated an association between pesticide use and increased

incidence of leukemia; non-Hodgkin’s lymphoma; bladder, colon, lung, and

pancreatic cancer; and all cancers combined that are comparable to smoking for

some cancer types. Through our comprehensive analysis and unique approach,

our study emphasizes the importance of a holistic assessment of the risks of

pesticide use for communities, which may be used to impact future policies

regarding pesticides.

KEYWORDS

herbicides, fungicides, insecticides, SVI, LCA

Introduction

Pesticides are chemicals designed to eliminate and control animal and plant life that

can adversely affect agriculture or domestic life (1). Few innovations are as significant in

agriculture as the development and use of pesticides. Herbicides, fungicides, insecticides,

and other types of pesticides have been shown to improve crop yields and food security

(2). In contrast, organic farms that do not use pesticides often have 15%−50% lower yields

compared to conventional farms (3–7). Pesticide use is ubiquitous in the United States,

and it is essential for maintaining productivity, with herbicides applied to 96% of the

93.4 million acres of corn planted in 2021 alone (8). Without the use of pesticides, fruit,

vegetable, and cereal production is estimated to decrease by 32%−78% (9, 10). Achieving

food security is a priority for all countries; with a population prediction of 9.7 billion

people by 2100 (11), pesticides will likely continue to play an important role in ensuring

food security for a developing world. Despite the importance of pesticides in modern

agriculture, exposure to pesticides has been associated with numerous harmful health

effects, including neurological disorders such as Parkinson’s disease (12), increased risk

for various cancers (13), and altered immune function (14, 15).

One of the primary concerns about pesticides, and the focus of this study, is the

link between pesticides and cancer incidence. Pesticides have been linked to colorectal

cancer (16), lung cancer (17), childhood (17, 18) and adult leukemias (19), lymphomas
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(20, 21), and pancreatic cancer (22), among others. Glyphosate,

marketed as Roundup R©, is a common herbicide with an average

of 280 million pounds applied to 298 crop acres yearly (23). Some

studies have shown a correlation between exposure to glyphosate

and an increased risk of lymphoma (24–26). The International

Agency for Research on Cancer even classified glyphosate as a

probable carcinogen in humans in 2015 (27). This has resulted in

US$11 billion paid to plaintiffs in lawsuits due to its potential health

risks (28) despite the Agricultural Health Study (AHS) of 89,000

farmers and their spouses (29) showing no increased risk between

glyphosate and lymphoid malignancies. Many other pesticides,

including parathion, malathion, diazinon, and tetrachlorvinphos,

all have some evidence of carcinogenicity, especially in animal

models (30). Overall, 12 of the 30 pesticides tracked in the AHS

have been shown to be linked to prostate, lung, pancreas, and colon

cancer; multiple myeloma; and leukemia (22).

While the link between pesticides and cancers has been

extensively studied, many studies focus on subsets of a population

with known exposures. For example, the AHS looked at 89,000

farmers and their spouses but not the community. One study

evaluated the association between pesticide exposure and non-

Hodgkin’s lymphoma from a population point of view (21) but was

limited to only one type of cancer. Another study (31) compared

pesticide use across 11 western U.S. states on a county basis but

only considered two cancer metrics (pediatric and total cancer).

Overall, a comprehensive assessment of cancer risk from a public

and a population health perspective in the United States is non-

existent. Our study aims to fill in that gap. The study we present

further elucidates the relationship between pesticides and cancer

using a state-of-the-art approach that defines patterns of pesticide

use through latent class analysis (LCA) and then models these

patterns along additional confounder variables. Although this is a

populational study using aggregated data that does not allow for

causal inference and individual outcome assessments, it is the first

comprehensive evaluation of cancer risk from a population-based

perspective at the national level.

Methods

Strategy

The main strategy of our study was to use county-wide

agricultural pesticide data, along with cancer incidence and

covariate data [smoking, the Social Vulnerability Index (SVI),

agricultural land use, and total population] to determine the effect

of use pattern profiles on cancer incidence. To achieve this, we first

matched all databases using county Federal Information Processing

Standard (FIPS) codes. Then we developed agricultural pesticide

use pattern profiles using an LCA approach to pesticide use alone.

After that, we performed a comprehensive analysis to determine

the effect of agricultural pesticide use patterns and covariates on

cancer incidence. An outline of our study strategy is presented in

Figure 1. As with any large-scale epidemiological analysis, not all

confounders can be accounted for. To avoid an ecological fallacy,

we emphasize that the models are designed to demonstrate regional

trends between pesticide use patterns and the incidence of certain

cancers; however, we do not go as far as to allocate direct risk

values to individuals or make causal inferences. Our approach

assumes that “more pesticide use leads to higher cancer incidence”

as the opposite idea is not supported by evidence. However, one

could argue that smaller amounts of pesticides applied to more

densely populated regions allow each kilogram of pesticide to have

a larger impact, as there is a greater likelihood that a person will

encounter it.

Pesticide data

Agricultural pesticide use data and crop acres were obtained

from the United States Geological Survey (USGS) (32). These data

are the most extensive national pesticide data available. These files

contained aggregated data by pesticides that were organized by

compound, year, state FIPS code, county FIPS code, and amount

in kilograms. The list has been adjusted through the years to record

the chemicals determined to be of interest to the USGS, resulting

in the 69 chemicals collected for 2019 and released in 2021. A

list of the 63 pesticides used is presented in Table 1. The USGS

generated these data from proprietary surveys of farm operations

located within the U.S. Department of Agriculture Crop Reporting

Districts composed of contiguous counties within each state. These

surveys were used in conjunction with the U.S. Department of

Agriculture and Censuses of Agriculture, the County Agricultural

Production Survey, and the U.S. Department of Agriculture–

National Agricultural Statistics Service to calculate use rates per

harvested-crop acre, or an ‘estimated pesticide use’ rate, for each

crop by year. County-use estimates were then obtained bymodeling

analyses to generate low-bound and high-bound estimates. In this

study, we used low bound estimates for being the most conservative

estimate. The state of California presents only one estimate.

Cancer incidence and sociodemographic
confounder data

Cancer incidence rates per county were acquired from the

National Institutes of Health (NIH) and Centers for Disease

Control (CDC) State Cancer Profiles database over the 2015–2019

period. The data were pre-organized by county FIPS codes. Data

points retrieved included cancer incidence, smoking rates, and SVI

data. This NIH/CDC cancer incidence data is comprised of cancer

registry data from the CDC’s National Program of Cancer Registries

and the National Cancer Institute’s Surveillance, Epidemiology, and

End Results Program. It also includes mortality data from CDC’s

National Center for Health Statistics. We collected incidences

per 100,000 people for all cancers, bladder cancer, colon cancer,

leukemia, lung cancer, non-Hodgkin’s lymphoma, and pancreatic

cancer. Missing cancer incidence data for one or more cancer

types were observed in counties censored due to low counts.

Censoring for low counts is a mandatory requirement under federal

regulations to protect the identity of individuals. The SVI was used

to address sociodemographic disparity differences among counties.

The SVI was developed through a joint Department of Health and

Human Services and CDC initiative to identify communities at

risk for adverse health outcomes during health emergencies (33).
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FIGURE 1

Study design and strategy flow chart. USGS, U.S. Geological Survey; NIH, National Institutes of Health; CDC, Centers for Disease Control; GLM,

generalized linear model; USDA, U.S. Department of Agriculture.

Agricultural land use data were gathered from the U.S. Department

of Agriculture. Total population data were gathered from the

2019 American Community Survey by the U.S. Census Bureau

(8) to match our data. Total population was used as a proxy

to define urban areas that can be associated with other types of

risk not related to agricultural activities. The reporting data of

these different populations may also diminish our results. Urban

areas with modern medical infrastructure may disproportionately

contribute to the cancer databases while rural cancer incidence may

be underreported.

LCA agricultural pesticide pattern profiles

LCA modeling was used to define agricultural use patterns.

This was done on the USGS agricultural pesticide data alone.

For these models, we used low-bound estimated for being the

most conservative use estimate. The LCA was performed using

PROC LCA v.1.3.2 for SAS v.9.4 (SAS Institute Inc., Cary,

NC); PROC LCA is a package developed and supported by The

Methodology Center (34) at Penn State University published

in 2015. We developed models using a 2-class through 8-class

approach. To run these models, we converted the individual

pesticide use data to quartiles on a national scale. Using these

quartile data, we estimated individual pesticide profile estimates

that when joined together defined each county’s pattern profile.

The most influential pesticides that differentiate the profiles can

be determined from the estimated data. In addition, we collected

model performance data to evaluate model fit, a summary of these

metrics (log-likelihood, Akaike’s information criterion, Bayesian

information criterion, consistent Akaike’s information criterion,

and adjusted Bayesian information criterion) are presented in

Table 2. Performance metrics did not bottom out for any of

the evaluated criteria. Because defining the optimal number of

agricultural profile patterns was not the goal of the study and given

that the interpretation of individual patterns was for simplification

of the narrative, the process was stopped at eight classes. This

was also motivated when considering computing time as further

addition of classes raises the time exponentially but provides

little contextual benefit to the narrative presented. The LCA

procedure defines profile patterns based on their correlation but

does not rank these patterns in a particular way; defining the

relevance of each pattern in the narrative was achieved with further

modeling steps.

Generalized linear model e�ect estimation
of pesticide profile patterns and covariates

To determine the effect of the agricultural use profiles we used

a generalized linear model approach. We developed individual

models for each cancer incidence type (all cancers, bladder cancer,
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TABLE 1 List of the 69 pesticides of agricultural interest that are

monitored by the U.S. Department of Agriculture and are reported by

county that were included in this study.

• 2,4-D

• Acephate

• Acetamiprid

• Acetochlor

• Atrazine

• Azoxystrobin

• Bentazone

• Benzovindiflupyr

• Boscalid

• Bromacil

• Bromoxynil

• Carbaryl

• Chlorantraniliprole

• Chlorimuron

• Chlorpyrifos

• Clothianidin

• Cyantraniliprole

• Cyprodinil

• Diazinon

• Dicamba

• Dicrotophos

• Diflubenzuron

• Dimethenamid

• Dimethenamid & Dimethenamid-P

• Dimethenamid-P

• Dimethoate

• Dimethomorph

• Dinotefuran

• Diuron

• Ethoprophos

• Etoxazole

• Fipronil

• Fluometuron

• Fluopicolide

• Glyphosate

• Halosulfuron

• Haxazinone

• Imazethapyr

• Imidacloprid

• Linuron

(Continued)

TABLE 1 (Continued)

• Malathion

• Metalaxyl

• Metconazole

• Methomyl

• Methoxyfenozide

• Metolachlor

• Metolachlor & Metolachlor-S

• Metolachlor-S

• Metribuzin

• Myclobutanil

• Oryzalin

• Permethrin

• Piperonil Butoxide

• Propazine

• Propiconazole

• Pyraclostrobin

• Pyrimethanil

• Simazine

• Sulfentrazone

• Sulfoxaflor

• Tebuconazole

• Tebupirimphos

• Tebuthiuron

• Terbufos

• Tetraconazole

• Thiamethoxam

• Thiobencarb

• Triclopyr

• Trifloxystrobin

colon cancer, leukemia, lung cancer, non-Hodgkin’s lymphoma,

and pancreatic cancer). Incidence was defined as the dependent

variable while SVI, smoking prevalence, agricultural land use, total

county population, and the LCA-derived agricultural pesticide use

patterns (categorical variable) were used as independent variables.

Gaussian distributions for residuals were used and evaluated

through graphical methods, where no deviations were seen for

any instance. These models provided us with association estimates

for each agricultural pesticide use pattern that allowed us to

define the regions with the highest and lowest added risk for

cancer. Within these comparisons of the highest and lowest, we

calculated the number of added persons affected per year by

these cancers that can be attributed to differences in agricultural

pesticide use. Because cancer incidence use was recorded as

the rate per 100,000 people, model estimates for the difference

between the highest and lowest risk use patterns were adjusted
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by the total population of the United States (331,449,281 people

at the end of 2019). Similarly, smoking-attributed additional

cases were calculated using the national per-county percentiles

of smoking rates; this allows for a fair comparison to pesticide

use region. These values isolate the added effect of pesticides on

cancer incidence in the context of smoking. All modeling was

performed using PROC GLIMMIX in SAS v.9.4 (SAS Institute

Inc., Cary, NC). In all our models, significant associations are

declared on a Bonferroni multiple testing corrected p-value

of 0.05.

Results

Countywide agricultural pesticide data, along with covariate

data, were used to determine the comprehensive effect of national

agricultural pesticide use pattern profiles on cancer incidence.

This was done by defining agricultural pesticide use profile

patterns using LCA followed by a comprehensive modeling analysis

(Figure 1). Data from 3,143 counties was included in our analysis.

The 69 USGS-monitored pesticides of agricultural interest included

in the study are listed in Table 1. The pesticide use data are provided

by the USGS as low-bound and high-bound estimates of use. Our

studies used low-bound estimates to be on the most conservative

side. County reporting for each chemical is variable, with some

chemicals being reported in more than 3,000 counties while, for

others, reported use is fewer than 100 counties. This discrepancy

reflects differences in use patterns across the United States. For

our approach, pesticide use data were converted to quartiles to

accommodate the way data are reported and the demands of the

LCA approach for categorical data. Our rationale assumes that

“more pesticide use leads to higher cancer incidence” because no

evidence has ever been reported of pesticides reducing cancer rates.

LCA agricultural pesticide use patterns and
pesticides most associated

Our LCA approach grouped agricultural pesticide use by use

patterns that are not necessarily tied to a specific geographical area.

These patterns highly represent crop types and types of agricultural

industry in the county (e.g., differencing corn production for

ethanol biofuel from that for livestock and human consumption).

Usage patterns are also influenced by local agricultural chemical

usage regulations and product popularity, which can be different

across states and regions of the United States. Therefore, these

patterns are often a larger representation of community interests.

We selected and based our findings on 8-class LCA model

estimates. This was done for convenience as models showed trivial

improvement in fit with an increased number of classes (see Table 2

for the fit metrics of 2-class through 8-class models) and demanded

extensive computation time. The 8-class model provides enough

resolution (as seen in the maps we present) to define the highest

and lowest added-risk use patterns.

Based on LCA model estimates and under the assumption that

higher pesticide exposure will lead to higher cancer incidence,

we defined the top pesticides that are most representative of the

counties that have use patterns associated with the highest cancer

incidence. The comparison of the use pattern with the highest

added risk of cancer vs. the use pattern with the lowest added risk

of cancer is presented in Figure 2. These lists of top contributors

show specific associations between specific pesticides and cancer

types. These lists often display directional shifts in the list of heavier

use, with some cases being the use pattern with the lowest added

risk displaying a heavier use of a top pesticide. This phenomenon

is directly associated with crop-type and agricultural industry–

type differences that contrast regions. Overall, the list includes

many different pesticides across the different cancer types, with

some being at the top of the list across cancer types. Atrazine

was consistently a top contributor in regions with high added risk

for all cancers and colon cancers. Boscalid was a top contributor

in not only high-added-risk regions for leukemia, non-Hodgkin’s

lymphoma, and pancreatic cancer but also for low-added-risk

regions of lung cancer. Dimethomorph was representative of not

only regions with a high added risk of leukemia and non-Hodgkin’s

lymphoma but also regions with a low added risk of colon cancer.

Dicamba was consistently at the top of the list in regions with a high

added risk of colon cancer and pancreatic cancer. Dimethenamid

was seen in regions with a low added risk of bladder cancer, but

in combination with dimethenamid-P, it was observed in regions

with a high added risk of pancreatic cancer. Dinotefuran was at the

top in regions with high leukemia and non-Hodgkin’s lymphoma

on the opposite end for colon cancer. Glyphosate was consistently

seen at the top in regions with a high added risk of all cancers, colon

cancer, and pancreatic cancer. Imazethapyr had a similar presence

in all cancers, colon cancer, and lung cancer. Finally, metolachlor,

metolachlor-S, and the combination of both were consistently top

contributors for regions with higher added risk of all cancers, colon

cancer, and pancreatic cancer. These findings suggest that added

cancer risk is dependent on cancer type with common pesticides

associated with several cancer types.

Pesticides have a significant effect on increasing cancer risk

for all the cancer types evaluated (Figure 3A), however, in a way

that is only matched by smoking prevalence. Sociodemographic

factors addressed using the SVI were only associated with bladder

cancer, leukemia, and non-Hodgkin’s lymphoma. Land use was

only significant for all cancers and lung cancer. Total population

was not associated with any cancer type. Our use pattern–specific

estimates (Figure 3B) show that no single pattern consistently

displays the highest or lowest added cancer risk. This highlights

the specificity of use that is defined by crop type and agricultural

industry type that will affect specific cancer types.

Regional variation of agricultural e�ects on
cancer incidence

Agricultural use patterns do not necessarily fit jurisdictionally

defined geographical regions. These land-use commonalities are

defined by crop types and agricultural industry types that are

predominant in each county. To present how our patterns

are distributed geographically, we produced national maps that

represent the contrast of regions with the pesticide use associated

with higher added cancer risk using the lowest region as a reference.

In these maps, we highlight shocking estimates of additional cancer

Frontiers inCancerControl and Society 05 frontiersin.org

https://doi.org/10.3389/fcacs.2024.1368086
https://www.frontiersin.org/journals/cancer-control-and-society
https://www.frontiersin.org


Gerken et al. 10.3389/fcacs.2024.1368086

TABLE 2 Latent class analysis fit metrics for the pesticides of agricultural interests in this study.

Number of latent classes Log-likelihood
estimate

Akaike’s
information
criterion (AIC)

Bayesian
information
criterion (BIC)

Consistent AIC Adjusted BIC

2 −122,434.6 163.43 245,431 233,168 −490,317

3 −118,306.3 163.36 237,175 225,324 −473,804

4 −116,068.3 163.32 232,698 221,072 −464,852

5 −114,143.0 163.29 228,848 217,414 −457,151

6 −112,432.2 163.26 225,426 214,163 −450,308

7 −111,379.1 163.24 223,320 212,162 −446,095

8 −110,193.8 163.22 220,949 209,910 −441,354

FIGURE 2

Top pesticides contributing to latent class analysis (LCA) use patterns. The list of pesticides presented includes those with the highest use di�erence

between regions with the highest and lowest added risk of cancer. These largest di�erences highlight the most relevant pesticides that define these

contrasting regions; however, these di�erences may not be the only causative element. These estimates are based on the 8-class LCA classification

model.

cases per year adjusted to the total population of the United States.

For all cancers (Figure 4), we observe the regions most affected

by pesticide use are concentrated primarily in the Midwest but

are spread out through the country with few areas spared. For

all cancers, the Great Plains in the center of the country is the

region with the lowest added risk and was used as the reference;
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FIGURE 3

Association testing for pesticide use patterns and for covariates. (A) Association testing by cancer type. Highlighted cells indicate significance at a

Bonferroni-adjusted threshold (35 tests). (B) Agricultural pesticide use pattern e�ect estimates by cancer type. Shading indicates the magnitude

range from lowest added risk (blue) to highest added risk (red). Den DF, Denominator Degrees of Freedom; LCA, latent class analysis; NH Lymphoma,

non-Hodgkin’s lymphoma; SE, standard error.

this is a region with less intense agricultural activity in terms of

total production. The difference between the reference and the

highest-added-risk region is 154,541 (95% confidence interval (CI)

[154,529, 154,552]) additional cancer cases a year. As a reference,

the median rate per 100,000 people reported by the CDC for 2013–

2017 for all cancers was 442.4 (35), while the estimate from our data

was 449.0 (95% CI [435.7, 462.3]).

When looking at the same type of display for individual cancer

types (Figure 5), we observe that colon and pancreatic cancers

display similar patterns, with 20,927 (95% CI [20,925, 20,929]) and

3,835 (95% CI [3,834, 3,836]) additional cases per year, respectively.

Being these cancers most associated with use patterns in the

Great Plains, the Midwest, and the Mississippi River Basin regions.

Hematopoietic cancers (leukemia and non-Hodgkin’s lymphoma)

display similar patterns, being most associated with use patterns

in the Midwest and the West Coast with 4,595 (95% CI [4,594,

4,596]) and 7,608 (95% CI [7,607, 7,609]) additional cases per

year, respectively, in the regions with the highest added risk. For

cancers with increased cases related to smoking, pancreatic cancer

had 3.4% more cases compared to pesticides, followed by colon

cancer, with a 73% larger effect, and lung cancer, with a 324.8%

increase in cases, with 8,095 (95%CI [8,093, 8,097]) additional cases

per year. Lung cancer displayed a concentrated added risk in the

Midwest region, with 24,362 (95% CI [24,359, 24,365]) additional

cases. Consistently, the most affected region across all cancers and

by individual cancer types is the Midwest, a region characterized

by heavy corn production. States such as Iowa, Illinois, Nebraska,

Missouri, Indiana, and Ohio consistently appear in regions with

the highest added risk. Also, Florida, which is characterized by

heavy agricultural production, unsurprisingly displays additional

cancer risk. For context, the additional risk regarding smoking risk

was estimated in the same models, and the percentage difference

was calculated. The largest effect difference was for non-Hodgkin’s

lymphoma, with 154.1% more cases caused by pesticides compared

to smoking; all cancers, bladder cancer, and leukemia displayed

more modest increases of 18.7%, 19.3%, and 21.0%, respectively,

in the case rates for pesticides. For cancers with a predominant

association with smoking, pancreatic cancer displayed a modest

3.4% more cases compared to pesticides, followed by colon cancer

with a 73% larger effect and lung cancer with the largest proportion

of 324.8% more cases.

In summary, agricultural pesticide use has a significant impact

on all the cancer types evaluated in this study (all cancers,

bladder cancer, colon cancer, leukemia, lung cancer, non-Hodgkin’s

lymphoma, and pancreatic cancer), and these associations are more

evident in regions with heavy agricultural productivity. Pesticide-

associated cancers appear to be on par with several smoking-

associated cancer types. This is the first study that presents

comprehensive estimates for cases that are exclusively attributable

to agricultural pesticide use.

Discussion

The focused view vs. the big picture

The main aim of our study was to comprehensively evaluate

the effect of agricultural pesticide use and cancer incidence

across the United States from a population-based perspective.

While other studies focused on individual pesticides, our study
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FIGURE 4

Additional cancer cases in a single year that can be attributed to di�erences in agricultural pesticide use patterns. These patterns of use were defined

by latent class analysis; estimates were derived from generalized linear models adjusted for agricultural land use, total population, the Social

Vulnerability Index, and smoking rates. This plot contrasts the counties that have the least risky use of agricultural pesticides with the counties that

have the riskiest use of agricultural pesticides.

evaluates simultaneously the pesticide use patterns across the

entire United States. Outside of specific individual exposures,

most individuals in these communities are not only exposed to

a single pesticide but also a cocktail of chemicals specific to the

land use and type of crop produced in their area of residence.

Acute exposure cases have been linked to off-target pesticide

drift exposures (36) that can cover whole communities (37). In

comparison, communities affected by more covariates are also

associated with cancer risk. These factors are often tied together and

are difficult to impossible to isolate; therefore, developing analytical

approaches that accommodate the complexity of a community is

imperative for developing improved outcomes.

Our study provides one of the first comprehensive population-

based analyses of pesticide use and cancer rates while controlling

and adjusting for potentially confounding variables. Pesticide use

effects were more persistent than the socioeconomic disparity

factors addressed through the SVI in our study. The SVI

accounts for many of the confounders that are associated with

socioeconomic and racial status (33) and has been shown to be

a reliable metric for addressing disparities (38–40). Accounting

for these as potential confounders was essential to ensure the

validity of our approach. For example, Black populations (41) in the

United States have a significantly higher cancer mortality rate when

compared to other ethnic groups, while White populations have a

slightly higher rate of new cancer diagnosis (42), which suggests

disparities in cancer screening. Our findings help us understand

that overall exposures to pesticides are just as relevant as the effects

of sociodemographic disparities and may aid in the development

and prioritization of public health efforts, a narrative often missed

in non-comprehensive approaches.

A curious effect in addition to known covariates is publication

bias. This bias may also be playing a role in our big-picture

assessment of the issue. The association of cancer risk with

pesticides is a popular topic of research that often leads to

headlines in the popular media (28). These headlines focused

on specific pesticides that can cause a feedback effect on the

extent of research efforts. A PubMed search for “Glyphosate”

and “cancer” as keywords yields 238 hits, of which 171 are

from the last 5 years: “Atrazine” and “cancer” yields 165, with

46 from the last 5 years. In contrast, metolachlor, a chemical

detected in our study, yields 24 results, with 7 studies in

the last 5 years. A comprehensive evaluation of agricultural

pesticides such as the one we present can reveal targets

despite publication bias. We cannot assume that less published

associations for a particular pesticide and cancer imply these do

not exist.
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FIGURE 5

Additional cancer cases per cancer type in a single year that can be attributed to di�erences in agricultural pesticide pattern use. These patterns of

use were defined by latent class analysis; estimates were derived from generalized linear models adjusted for agricultural land use, total population,

the Social Vulnerability Index, and smoking rates. This plot contrasts the counties that have the least risky use of agricultural pesticides with the

counties that have the riskiest use of agricultural pesticides. NH Lymphoma, Non-Hodgkin’s lymphoma.

Cancer-type associations to agricultural
pesticide use put in context against
smoking

Overall, our study showed that elevated risk pesticide use is

associated with an increased risk of all the cancers evaluated. It

offers a different view for further investigation as the effects of

pesticide use remained significant on par with smoking even when

adjusting the models for agricultural land use, total population, and

social vulnerability index. Non-Hodgkin’s lymphoma and leukemia

are potentially two of the most vigorously discussed cancers out

of the cancers evaluated in this study. Evidence about the linkage

between pesticide exposure and non-Hodgkin’s lymphoma and

bladder cancer has been mixed. Some studies show no consistent

association (21, 43–47), w n a positive association (20, 48, 49). Our

study showed the strongest association between certain patterns of

pesticide use and non-Hodgkin’s lymphoma, in which associations

with bladder cancer and leukemia were more modest among all

the cancers we evaluated. The effects of pesticides on these cancer

types were more significant than the effects of smoking. Smoking

is an important risk factor for pancreatic cancer, with cigarette

smokers having an 80% increased risk (50). Our study not only
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detected the harmful effect of smoking but also put it in context

against the effect of agricultural pesticide use. Previous reports

have shown associations between pesticides and pancreatic cancer

(22, 51), with other studies disputing those findings (52, 53). While

the exact link between pancreatic cancer and pesticides is not yet

fully understood, our study suggests that, from an epidemiological

standpoint, pesticides could potentially hold a role remarkably

similar to smoking. Colon cancer showed a similar pattern to

pancreatic cancer, with smoking and pesticide exposure being the

most significant associated factors. Pesticides have been linked to an

increased risk of colon cancer (45, 54–56), which concurs with the

results we present. Our findings demonstrate an effect of pesticides

that is not on par with smoking but is not negligible either and

provides epidemiological evidence for their relationship. Finally,

lung cancer and pesticide exposure (17, 57) have previously been

linked; our study agrees with the existing literature presenting a

non-negligible effect but acknowledges that smoking is by far the

primary concern.

Regional aspects must be considered when
evaluating the big picture

The effects of agricultural pesticides are unsurprisingly seen

most often in areas with increased agricultural activity like the

Midwest, with states such as Iowa, Illinois, Ohio, Nebraska, and

Missouri (58) leading in corn production (59). This finding suggests

that specific cancer risk is likely to be associated with the types

of crops grown in each region. Certain areas of the western

states also had increased cancer risk for all cancers, bladder

cancer, leukemia, and non-Hodgkin’s lymphoma but with distinct

agricultural use patterns. The western states have higher vegetable

and fruit production compared to the Midwest. California, for

example, is the top vegetable-producing state in the country with

more than 1.2 million acres of vegetables harvested in 2017 (60). A

similar pattern is seen in Florida, with several additional cases of

bladder cancer, leukemia, and non-Hodgkin’s lymphoma, as well.

Many citrus fruits are grown in Florida each year as Florida ranks

second to only California in orange production (61).

How can this big picture help us and what
are its limitations

While significant use and a lack of understanding regarding the

complex interactions of these chemicals is an obvious health and

public safety risk, little has been done to illustrate the consequences

on a broader scale. We identify several areas of investigation that

our analysis provides a path for: First, areas of priority for screening

and preventive care have been highlighted by illustrating how

particular combinations of pesticides may have a higher association

with cancer incidence rates. This should be an important directive

of health and human services and public health departments to

act on the side of caution in protecting public safety. Second,

considering that property values are decided by many factors

(access to health care, school quality, goods and services, and career

opportunities, among others) related to health and overall well-

being adding with more emphasis a scoring system for proximity

to pesticide use is also worth consideration. If, when buying a new

property, purchasers were notified that the land is in proximity

to particularly elevated levels of pesticides or the use of certain

pesticides that may be especially harmful, then public awareness of

this issue would rise, garnering the attention that this issue calls

for. Third, the safety of these chemicals needs to be approached

with more skepticism. Healthcare officials in these regions should

exercise a level of skepticism of the safety of the chemicals used. In

regions such as the Midwest, scrutinizing the public health data in

relation to cancer incidence in these areas may highlight potential

overlooked exposures.

While our study provided many key findings further that

expand on the impact of pesticide use and cancer rates in the

United States, our study is not without limitations. Some of

these limitations are data-wise; the availability and uniformity of

the data bring some limitations, with some counties having data

censored due to small populations and cancer rates. Exposure

cannot be linked to individual outcomes as this is an aggregate

dataset. Methodologically, the heterogeneity in county size and

population is one of the limitations of the study that can

shift the leverage of certain counties or affect their reporting.

Conceptually, the transient nature of certain populations thatmight

have high exposure to pesticides, such as seasonal and migrant

farmworkers (62), is not considered in our study. Our study does

not include melanoma, a truly relevant cancer type; this was

because melanoma has associations with relatively unique factors,

such as ultraviolet exposure (sun exposure) and skin pigmentation

levels (63), that are more complicated to model. The findings

presented lack validation from additional independent sources,

and data to perform this task are not yet publicly available. We

hope this study will motivate future applications that can further

confirm our findings. Finally, our study proposes a new vision by

using a strategy that is different from standard epidemiological

methods, which can complicate interested groups’ interpretations.

All these limitations bring caveats to our findings but converge with

earlier findings.

Conclusion

We performed a comprehensive analysis of the relationship

between overall pesticide use and the incidence of cancer

across the United States using a population and community-

based approach. Our population-based approach provides a more

holistic understanding of the community effects of the overall

pesticide exposure. This comprehensive analysis accounted for

potential confounders, such as socioeconomic status, smoking

rates, and agricultural land use. Our findings show that the

impact of pesticide use on cancer incidence may rival that of

smoking. Geographic trends showed that counties with higher

agricultural productivity, such as the leading corn-producing states

of the Midwest, also have increased cancer risk due to pesticide

exposure. Our results highlight the relevance of comprehensive

assessments for the development of policy considerations and

the implementation of preventive measures to mitigate the

risks for vulnerable communities. Our study pioneers and lays
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a holistic vision foundation for future pesticide-related cancer

risk assessments.
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