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Inverse association between
ovarian cancer and the estimated
glucose disposal rate in NHANES
1999–2018

Jing Zhang, Xianying Chen and Yongjun Wang*

Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University,
Beijing, China

Objective: Insulin resistance, a central feature of metabolic dysregulation,
has been implicated in the pathogenesis of various cancers. However, the
understanding of its role in ovarian cancer remains incomplete. This study
explored the association between the estimated glucose disposal rate (eGDR),
a robust indicator of insulin sensitivity, and ovarian cancer using data from the
National Health and Nutrition Examination Survey (NHANES).

Methods: We analyzed data from 34,698 participants in the NHANES database,
including 87 ovarian cancer patients and 34,611 controls. Propensity score
matching (PSM) and multivariable logistic regression analysis were used to
adjust for key confounders, such as race, education, poverty–income ratio,
marital status, alcohol consumption, coronary artery disease diagnosis, heart
failure diagnosis, triglycerides, total cholesterol, lymphocytes, and red blood
cells. eGDR levels were evaluated as both continuous and categorical variables
(quartiles), and restricted cubic splines (RCS) were utilized to assess the potential
non-linear associations.

Results: The eGDR level was significantly lower in ovarian cancer patients
compared to the controls (6.94 ± 2.71 vs. 8.29 ± 2.52, P < 0.05). Multivariable
logistic regression analysis demonstrated that the eGDR is a significant protective
factor against ovarian cancer (OR: 0.826, 95% CI: 0.71–0.952, P < 0.05).
Quartile analysis revealed a dose-dependent reduction in the prevalence
of ovarian cancer with increasing eGDR (Q4 vs. Q1, OR: 0.283, 95% CI:
0.097–0.792, P < 0.05). RCS analysis confirmed there was a non-linear inverse
relationship between the eGDR and the prevalence of ovarian cancer (P_non-
linear = 0.005). Subgroup analysis further indicated that the subject’s education
level, marital status, and alcohol consumption significantly influenced the
association between eGDR and ovarian cancer.

Conclusion: A significant inverse relationship was found between the eGDR and
the prevalence of ovarian cancer, suggesting that a higher eGDR was a potential
protective factor against ovarian cancer. These findings provide new insights into
the mechanisms of ovarian cancer and highlight the potential of using the eGDR
as a tool for early risk assessment and intervention.
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1 Introduction

Ovarian cancer is one of the most lethal malignancies for

females, posing a severe threat to women’s health. Due to its

deep pelvic location, the early symptoms of ovarian cancer are

often subtle and non-specific, and consequently, most patients are

diagnosed at advanced stages, leading to a poor prognosis (1).

Therefore, identifying the risk and protective factors for ovarian

cancer would be of critical importance for the early screening and

prevention of ovarian cancer.

Emerging studies are highlighting metabolic dysregulation as

a critical factor in oncogenesis. In particular, metabolic syndrome

(MetS), characterized by obesity, hypertension, hyperglycemia,

and dyslipidemia, exhibits a robust association with elevated

cancer occurrence (2). Impaired insulin sensitivity, a defining

feature of MetS, has been linked to malignancies including breast,

colorectal, and endometrial carcinomas (3). At the molecular

level, insulin resistance accelerates cellular proliferation, suppresses

apoptosis, and fosters angiogenesis through hyperinsulinemia

and activation of the insulin-like growth factor-1 (IGF-1) axis,

propelling neoplastic advancement (4). Notably, a systematic

review identified markedly elevated IGFBP-2 and IGFBP-1

concentrations in ovarian cancer cohorts, reinforcing insulin

dysregulation’s role in disease etiology (5). These findings indicate

that insulin resistance may contribute to the pathogenesis of

ovarian cancer.

However, the current tools used for the assessment of

insulin resistance(IR) all have certain limitations. For instance,

the hyperinsulinemic-euglycemic clamp, while precise, is labor-

intensive, costly, and impractical for use in large population

studies (6), while other markers, like HOMA-IR and fasting

insulin, lack consistency due to confounding variables (e.g., fasting,

medications) and undefined diagnostic thresholds (7, 8). Therefore,

a rapid, affordable clinical indicator is still urgently needed.

The Estimated Glucose Disposal Rate (eGDR), an integrated

metric derived from anthropometric and biochemical parameters

(e.g., waist circumference, hypertension, and HbA1c), can quantify

insulin sensitivity andmetabolic efficiency (9). Unlike conventional

techniques, such as the hyperinsulinemic-euglycemic clamp, the

eGDR combines cost-effectiveness with user-friendliness while

retaining a strong predictive validity for diabetes-related outcomes

(10, 11). However, despite its utility, scant evidence exists regarding

eGDR’s role in ovarian cancer screening and prevention.

Leveraging the National Health and Nutrition Examination

Survey (NHANES) data, this study examined the interplay

between the eGDR and the risk of ovarian cancer, while

assessing heterogeneity among different demographic and

clinical subgroups. By harnessing such an extensive, nationally

representative dataset, we sought to elucidate novel mechanistic

insights into the etiology of ovarian cancer and establish a

framework for its early detection and for making preventive

interventions. Our study identified a strong inverse relationship

between the eGDR and the risk of ovarian cancer within a

nationally representative cohort, revealing new subgroup-

specific differences and proving that eGDR could be used

as a potential biomarker for the early identification of

ovarian cancer.

2 Materials and methods

2.1 eGDR

In recent years, an effective scoring system based on readily

available clinical factors such as waist circumference, hypertension,

and hemoglobin A1c (HbA1c) has been developed to estimate the

glucose disposal rate (eGDR) in patients with type 1 and type

2 diabetes. Compared to the euglycemic hyperinsulinemic clamp

method, this scoring system has demonstrated high accuracy in

predicting insulin resistance (12, 13). Prior investigations of eGDR’s

utility have revealed it has robust associations with various clinical

endpoints, including subclinical carotid atherosclerosis in type 1

(T1D) and type 2 diabetes (T2D) patients (12), coronary artery

disease (14), stroke (10), and mortality (11). Population-based

studies have further suggested that the use of the eGDR can enhance

the detection of prevalent ischemic heart disease in rural Chinese

cohorts (15).

The formula for calculating eGDR was as follows: eGDR

(mg/kg/min) = 21.158 – (0.09 × WC) – (3.407 × hypertension) –

(0.551 × HbA1c) [WC (cm), hypertension (yes = 1/no = 0), and

HbA1c (%)] (9).

2.2 Data and preprocessing

NHANES represents a continuous nationally representative

cross-sectional survey administered by the US CDC’s National

Center for Health Statistics (NCHS) to evaluate health and

nutritional status among non-institutionalized US civilians. Data

are collected biennially via a multi-stage probability sampling

design, incorporating in-home interviews, physical examinations

at mobile examination centers (MECs), and biospecimen collection

(blood/urine). The NCHS Research Ethics Review Board oversees

protocol approval, and all participants provide informed consent.

For this study, we analyzed 10 NHANES cycles (1999–2018)

containing ovarian cancer-related variables. From an initial pool of

101,316 participants, we excluded the following: (1) recordsmissing

ovarian cancer diagnoses (N = 13,402), (2) incomplete eGDR data

(N= 38,619), and (3) insufficient baseline covariates (N= 14,597).

The final analytical sample included 34,698 participants (87 ovarian

cancer patients and 34,611 controls) (Figure 1).

2.3 Covariates

The covariates comprised age, race, education, poverty–

income ratio, marital status, alcohol intake, hypertension diagnosis,

diabetes diagnosis, coronary artery disease diagnosis, heart failure

diagnosis, triglycerides, high-density lipoprotein (HDL), total

cholesterol, white blood cells, neutrophils, leukocytes, red blood cell

distribution width, platelet count, hemoglobin, albumin, glycated

hemoglobin, and creatinine. The demographic characteristics

(gender, age, race, education, poverty–income ratio, and marital

status) were derived from NHANES demographic modules.

Race/ethnicity classifications encompassed: Mexican American,

non-Hispanic Black, non-Hispanic White, other Hispanic, and
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FIGURE 1

Flowchart illustrating the investigation workflow and participant inclusion in the study.

mixed/other racial backgrounds. Education was classified into three

categories: ≤high school, some college, and college degree or

higher. Marital status was dichotomized (married/non-married).

Alcohol consumption was categorized as ≥12 alcoholic

beverages/year, self-reported via the Alcohol Use Questionnaire

(ALQ), a standardized tool for assessing alcohol consumption

patterns. Participants who reported consuming ≥12 alcoholic

beverages/year were categorized as alcohol consumers.

Hypertension diagnosis, diabetes diagnosis, coronary artery disease

diagnosis, and heart failure diagnosis were ascertained from

medical condition modules (MCQ). For example, the hypertension

status was established by participant confirmation of the question:

“Have you ever been informed by a doctor or healthcare

professional that you have elevated blood pressure?” Biological

assays were acquired from NHANES biochemical records.

2.4 Propensity score matching

Propensity score matching (PSM), first proposed by

Rosenbaum and Rubin (16) and Liang et al. (17), addresses

the issue of confounding in observational studies by balancing the

baseline characteristics between groups. We set a caliper= 0.2, and

only observations with a bias score difference within this threshold

will be matched. To minimize bias, we performed a 1:1 PSM on

race, education, poverty–income ratio, marital status, and alcohol

use, ensuring comparable distributions between the ovarian cancer

cases and controls. Post-matching analyses verified the robustness

of this approach.

2.5 Weighted logistic regression analysis

Survey-weighted binary logistic regression was performed to

evaluate the association between estimated glucose disposal rate

(eGDR) and the risk of ovarian cancer. eGDR was included

in the models as both a continuous variable and a categorical

variable, stratified into quartiles based on interquartile ranges. The

quartiles, ranging from lowest (Q1) to highest (Q4) were treated

as categorical variables, with Q1 serving as the reference group

for comparison. Three models were constructed to progressively

adjust for confounding factors. Model 1 was unadjusted; Model

2 adjusted for race, education, poverty–income ratio, marital

status, alcohol consumption, coronary artery disease, and heart

failure; Model 3 further adjusted for laboratory variables including

triglycerides, total cholesterol, lymphocyte count, and red blood

cell count. All regression analyses incorporated NHANES survey

weights to account for the complex sampling design. Continuous

variables that were not normally distributed were transformed into

weighted quartiles for analysis. Interaction terms were included to

examine effect modification across subgroups, and P-values were

adjusted using the false discovery rate (FDR) method to control for

multiple comparisons.

2.6 Restricted cubic spline

RCS is used in statistics to model continuous variables. It

divides data into intervals and fits each with a cubic polynomial,

creating a smooth curve. This method can capture non-linear

relationships in regression analysis while preventing overfitting. It

is a key concept in statistics that is commonly used in regression

analysis and curve fitting.

For knot selection and positioning, based on Harrell’s

recommendations, we specified 3 knots to balance model flexibility

and overfitting risks. Knots were positioned at the 10th, 50th, and

90th percentiles of the exposure distribution, ensuring sufficient

coverage of both tails and the central range. We evaluated

alternative knot configurations (4–5 knots) and confirmed that

the 3-knot model yielded the lowest Akaike Information Criterion

(AIC: 321.4 vs. 323.1 for 4 knots) and Bayesian Information

Criterion (BIC).

Regarding model specification and validation, the RCS model

was fitted using natural cubic splines (via the rms package in R,

v6.2-0) to enforce linearity beyond boundary knots, mitigating

extrapolation artifacts. Non-linearity was formally assessed via
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a likelihood ratio test comparing the RCS model to a linear

model. All spline models were adjusted for key covariates

(Race, education, poverty income ratio, marital status, alcohol

consumption, diagnosis of coronary heart disease, diagnosis of

heart failure, triglycerides, total cholesterol, lymphocytes, and red

blood cells) to account for potential confounding.

For sensitivity and robustness checks, we performed 1,000

bootstrap resamples to derive 95% confidence intervals for the

spline curve, confirming stability of the non-linear pattern. Results

remained consistent when knots were placed at empirically

derived locations.

2.7 Statistical analysis

Statistical analyses were executed using R (v4.1.1). Continuous

measures were expressed as medians with interquartile ranges

(IQRs); categorical variables were presented as sample counts and

weighted percentages. Between-quartile disparities in the eGDR

were assessed via the Wilcoxon–Mann–Whitney test (for non-

Gaussian continuous variables) and the Rao–Scott χ² test (for

categorical outcomes, adjusted for survey-weighted frequencies).

Statistical thresholds were established at a two-tailed P < 0.05.

3 Results

3.1 Baseline characteristics of the sample

A total of 34,698 participants were included in the final study,

with comparisons made between ovarian cancer patients and

controls based on their baseline characteristics, such as age, race,

and education (Table 1). Before propensity score matching (PSM),

notable differences were observed between ovarian cancer and

control groups in terms of education level (P < 0.05) and alcohol

consumption (P < 0.05). However, after PSM, these differences

were no longer evident (P > 0.99 for education and P = 0.35 for

alcohol consumption).

Other baseline characteristics, including diabetes diagnosis (P

< 0.05 before PSM, P < 0.05 after PSM), triglycerides (P < 0.05

before PSM, P < 0.05 after PSM), total cholesterol (P < 0.05 before

PSM, P < 0.05 after PSM), lymphocytes (P < 0.05 before PSM, P

< 0.05 after PSM), and hemoglobin (P < 0.05 before PSM, P <

0.05 after PSM), showed significant differences between the ovarian

cancer and control groups, both before and after PSM.

However, some baseline variables, such as race, poverty–

income ratio, marital status, coronary artery disease diagnosis, and

heart failure diagnosis, did not show significant differences before

or after PSM. This indicates that these baseline characteristics

were well-balanced between the ovarian cancer and control groups

and that the potential confounding factors associated with these

variables were at a minimum during the comparison.

3.2 Association between eGDR and ovarian
cancer

Multivariable logistic regression models were used to examine

the association between eGDR and ovarian cancer (Table 2). Model

1, which included no covariates, showed a negative correlation

between the eGDR and ovarian cancer (OR: 0.821, 95% CI: 0.726–

0.923, P < 0.05). In the quartile comparisons, Q4 had an OR

of 0.267 (95% CI: 0.108–0.634, P < 0.05, P for trend = 0.0028)

compared to Q1, indicating that a higher eGDRwas associated with

a lower probability of ovarian cancer.

Model 2, which adjusted for race, education, poverty–

income ratio, marital status, alcohol consumption, coronary artery

disease diagnosis, and heart failure diagnosis, showed a similar

relationship between eGDR and ovarian cancer. Model 3, based

on Model 2, further adjusted for triglycerides, total cholesterol,

lymphocytes, and red blood cells. Both models confirmed the

negative association, with Model 2 (OR: 0.79, 95% CI: 0.686–0.9,

P < 0.05) and Model 3 (OR: 0.826, 95% CI: 0.71–0.952, P < 0.05)

showing consistent results.

When stratified by quartiles, the OR for Q4 compared to Q1

was progressively lower in both Model 2 and Model 3. In Model 2,

the OR was 0.217 (95% CI: 0.079–0.561, P < 0.05), and in Model 3,

the OR was 0.283 (95% CI: 0.097–0.792, P < 0.05). This indicates

that higher eGDR levels were associated with a lower probability of

ovarian cancer in both models with covariate adjustments.

3.3 Non-linear relationship between the
eGDR and ovarian cancer prevalence and
subgroup RCS curves

RCS analysis was used to examine the relationship between

the eGDR and ovarian cancer across three different definitions

of the eGDR, adjusting for all relevant covariates. A statistically

notable non-linear relationship between the total eGDR and

ovarian cancer prevalence was observed (P_non-linear = 0.005,

Figure 2A).

Subgroup analysis based on education status revealed a

significant non-linear relationship between the eGDR and ovarian

cancer prevalence in the associates (AA) education group (P_non-

linear = 0.004, Figure 2B). However, no significant non-linear

relationships were found among those who completed only grades

9–11, the college group, the high school group, and those with fewer

than 9 years of education (Figures 2C–F).

3.4 Association between the eGDR and
ovarian cancer across various subgroups of
baseline characteristics

Figure 3 illustrates the association between the eGDR and

ovarian cancer analyzed through fully adjusted multivariable

logistic regression across various subgroups stratified by education

level, marital status, age, and poverty–income ratio. In the

education subgroup, the AA education group appeared more

sensitive to changes in the eGDR (Q4 vs. Q1, OR: 0.02, 95%

CI: 0–0.29, P < 0.05). In the marital status subgroup, unmarried

individuals showed higher sensitivity to changes in the eGDR

(Q4 vs. Q1, OR: 0.09, 95% CI: 0.02–0.42, P < 0.05). Regarding

alcohol consumption, non-drinkers exhibited greater sensitivity

to changes in the eGDR (Q4 vs. Q1, OR: 0.15, 95% CI: 0.03–

0.79, P < 0.05). However, in the age and poverty–income
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TABLE 1 Baseline characteristics of the study participants.

Variable N Before PS p-

valueb
N After PS p-

valueb
Overall Control Ovarian Overall Control Ovarian

N =
34,698a

N =
34,611a

N = 87a N = 174a N = 87a N = 87a

Age (years) 34,698 49 (18) 49 (18) 59 (16) <0.001 174 54 (19) 50 (20) 59 (16) 0.004

Race 34,698 0.42 174 0.91

Mexican American 6,121 (18%) 6,104 (18%) 17 (20%) 33 (19%) 16 (18%) 17 (20%)

Other Hispanic 2,675 (7.7%) 2,666 (7.7%) 9 (10%) 16 (9.2%) 7 (8.0%) 9 (10%)

Non-Hispanic

White

16,646 (48%) 16,601 (48%) 45 (52%) 88 (51%) 43 (49%) 45 (52%)

Non-Hispanic

Black

6,689 (19%) 6,676 (19%) 13 (15%) 30 (17%) 17 (20%) 13 (15%)

Others 2,567 (7.4%) 2,564 (7.4%) 3 (3.4%) 7 (4.0%) 4 (4.6%) 3 (3.4%)

Education 34,698 0.015 174 >0.99

<9thGrade 3,835 (11%) 3,817 (11%) 18 (21%) 36 (21%) 18 (21%) 18 (21%)

9–11th Grade 5,098 (15%) 5,087 (15%) 11 (13%) 22 (13%) 11 (13%) 11 (13%)

High School 8,011 (23%) 7,990 (23%) 21 (24%) 42 (24%) 21 (24%) 21 (24%)

AA Degree 9,991 (29%) 9,964 (29%) 27 (31%) 54 (31%) 27 (31%) 27 (31%)

College Graduate 7,763 (22%) 7,753 (22%) 10 (11%) 20 (11%) 10 (11%) 10 (11%)

PIR 34,698 2.58 (1.63) 2.59 (1.63) 2.27 (1.58) 0.071 174 2.32 (1.62) 2.36 (1.66) 2.27 (1.58) 0.8

Marry (yes) 34,698 18,805 (54%) 18,761 (54%) 44 (51%) 0.5 174 85 (49%) 41 (47%) 44 (51%) 0.65

Drink (yes) 34,698 24,711 (71%) 24,660 (71%) 51 (59%) 0.009 174 108 (62%) 57 (66%) 51 (59%) 0.35

Diabetes 34,698 0.002 174 0.021

Diabetes 3,978 (11%) 3,959 (11%) 19 (22%) 27 (16%) 8 (9.2%) 19 (22%)

Health 30,720 (89%) 30,652 (89%) 68 (78%) 147 (84%) 79 (91%) 68 (78%)

CHD 34,698 0.11 174 0.72

CHD 1,003 (2.9%) 998 (2.9%) 5 (5.7%) 8 (4.6%) 3 (3.4%) 5 (5.7%)

Health 33,695 (97%) 33,613 (97%) 82 (94%) 166 (95%) 84 (97%) 82 (94%)

Heart failure 34,698 0.78 174 >0.99

Heart failure 1,396 (4.0%) 1,392 (4.0%) 4 (4.6%) 9 (5.2%) 5 (5.7%) 4 (4.6%)

Health 33,302 (96%) 33,219 (96%) 83 (95%) 165 (95%) 82 (94%) 83 (95%)

TG(mg/dL) 34,698 197 (42) 197 (42) 210 (42) 0.004 174 202 (44) 194 (45) 210 (42) 0.019

HDL-C (mg/dL) 34,698 53 (16) 53 (16) 57 (18) 0.021 174 57 (18) 56 (18) 57 (18) 0.61

TC(mg/dL) 34,698 197 (42) 197 (42) 208 (43) 0.012 174 201 (44) 194 (44) 208 (43) 0.042

WBC (%) 34,698 7.28 (2.53) 7.28 (2.53) 7.67 (2.31) 0.071 174 7.34 (2.08) 7.01 (1.78) 7.67 (2.31) 0.073

Neutrophils (%) 34,698 4.32 (1.81) 4.32 (1.81) 4.44 (1.65) 0.32 174 4.29 (1.62) 4.13 (1.58) 4.44 (1.65) 0.19

Lymphocytes (%) 34,698 2.15 (1.35) 2.15 (1.35) 2.40 (0.81) <0.001 174 2.25 (0.73) 2.10 (0.62) 2.40 (0.81) 0.018

RDW (%) 34,698 13.07 (1.29) 13.07 (1.29) 13.52 (1.42) <0.001 174 13.33 (1.38) 13.13 (1.32) 13.52 (1.42) 0.082

PLT (%) 34,698 254 (68) 254 (68) 270 (77) 0.1 174 264 (80) 258 (82) 270 (77) 0.16

Hb (g/dL) 34,698 14.17 (1.54) 14.17 (1.54) 13.52 (1.32) <0.001 174 13.78 (1.46) 14.03 (1.55) 13.52 (1.32) 0.016

Alb (g/L) 34,698 4.25 (0.36) 4.25 (0.36) 4.19 (0.32) 0.03 174 4.16 (0.40) 4.13 (0.46) 4.19 (0.32) 0.83

Cr (mg/dL) 34,698 0.89 (0.43) 0.89 (0.43) 0.91 (0.63) 0.037 174 0.89 (0.49) 0.87 (0.29) 0.91 (0.63) 0.27

eGDR 34,698 8.00 (2.66) 8.01 (2.66) 6.94 (2.71) <0.001 174 7.61 (2.70) 8.29 (2.52) 6.94 (2.71) <0.001

aMean (sd) or Frequency (%). bWilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test. PSM, Propensity score matching; Caliper = 0.2. PIR, poverty-to-income ratio; CHD,

coronary heart disease; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; Alb, albumin; Cr, creatinine; WBC, white blood cell count; Hb, hemoglobin; PLT,

platelet count; RDW, Red cell distribution width; eGDR, Estimated Glucose Disposal Rate.
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ratio subgroups, the effect of changes in the eGDR on the

prevalence of ovarian cancer seemed to be less pronounced (P

> 0.05 for both subgroups), indicating no significant association

(Figure 3).

4 Discussion

Drawing on data from the NHANES, this investigation

evaluated the relationship between the eGDR and the risk

of ovarian cancer. Notably, individuals with ovarian cancer

displayed significantly lower eGDR levels compared to controls.

Even after adjusting for potential confounders such as race,

education, marital status, the inverse association remained

robust (OR: 0.826, 95% CI: 0.71–0.952, P < 0.05), suggesting

that a lower eGDR may be associated with an increased risk

of ovarian cancer. Moreover RCS modeling further showed

a non-linear dose-response pattern existed, wherein ovarian

cancer prevalence declined incrementally with a rising eGDR,

plateauing at higher thresholds. These observations provide

new mechanistic insights into ovarian cancer pathogenesis and

underscore the potential utility of the eGDR in refining early

detection protocols and preventive measures. Furthermore,

subgroup analyses revealed some variation in the association

between eGDR and ovarian cancer, particularly across education

levels. The first is the potential confounding effect of education

level. Higher education populations may have greater health

awareness, manifested by more regular check-ups and earlier

disease interventions, which may offset some of the effects of

high-risk factors. Moreover, education level is closely related

to socioeconomic status, and the latter may independently

affect disease risk through access to medical resources, lifestyle

and other ways. Second, potential confounding effects may

result from data stratification limitations. These include the

possibility that the classification of education level (such

as “below high school/university/postgraduate”) may not

adequately capture differences in education quality, leading to

intra-group heterogeneity, and the insufficient sample size of

some subgroups (such as “<5% graduate degree”) may reduce

statistical effectiveness.

eGDR serves as a quantitative measure of insulin resistance

and systemic glucose metabolism, thereby establishing a link

between metabolic dysfunction and the risk of ovarian cancer,

and its reduction indicates impaired glucose metabolism and

compensatory hyperinsulinemia. Epidemiological studies

have demonstrated that diabetes mellitus, characterized by

hyperinsulinemia and activation of the insulin-like growth

factor (IGF) pathway, is associated with a 17%−20% increase

in ovarian cancer risk (18). Elevated insulin levels can stimulate

the insulin-like growth factor-1 (IGF-1) axis, which plays a

critical role in cell proliferation, survival, and tumor progression.

IGF-1 and its receptor (IGF-1R) activate downstream oncogenic

signaling pathways, including PI3K/AKT and MAPK/ERK, which

have been implicated in the development and progression of

ovarian cancer. These pathways promote cellular proliferation,

inhibit apoptosis, and contribute to angiogenesis and metastatic

potential in ovarian epithelial cells (4, 18). In addition, insulin

resistance is associated with chronic low-grade inflammation
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FIGURE 2

RCS curves illustrating the non-linear relationship between eGDR and the prevalence of ovarian cancer for di�erent populations respectively: (A) is
the Overall Population; (B) is the AA Degree Population; (C) is the 9th–11th Grade Education Population; (D) is the College Graduate Population; (E)
is the High School Graduate Population; and (F) is the Less Than 9th Grade Education Population. Covariates adjusted in the model: race, education,
poverty-income ratio, marital status, alcohol consumption, coronary artery disease, heart failure, triglycerides, total cholesterol, lymphocytes, and
red blood cells.

and altered adipokine profiles, which may further support

a tumor-promoting microenvironment (19). Thus, lower

eGDR may reflect a broader metabolic state that fosters

ovarian tumorigenesis.

Compared with traditional insulin resistance measures like

the hyperinsulinemic-euglycemic clamp and HOMA-IR, the

estimated glucose disposal rate (eGDR) offers notable advantages

in feasibility, consistency, and clinical applicability. HOMA-IR,

though widely used for its simplicity, is influenced by fasting

state, assay variability, and medications affecting glucose or

insulin levels, and its accuracy declines in patients with advanced

metabolic disorders (20, 21). eGDR, by contrast, is derived

from routinely collected clinical indicators—waist circumference,

HbA1c, and hypertension status—and does not require insulin

measurements or fasting, making it more practical for large-

scale screening and retrospective analyses (9). Unlike HOMA-

IR, which reflects short-term insulin-glucose interactions, eGDR

provides a more stable estimate of long-term insulin resistance,

enhancing its utility in both clinical and epidemiological contexts.

While newer dynamic measures of HOMA-IR during OGTT or

meal tolerance tests offer detailed insights into insulin sensitivity,

they are labor-intensive and less suited to routine practice.

eGDR, in contrast, enables efficient, low-cost identification of

individuals at elevated metabolic, and cancer risk. Its simplicity and

scalability support its potential use in early detection and preventive

strategies, especially where laboratory-based insulin assessments

are impractical.

Given that it is derived from commonly measured clinical

parameters—waist circumference, HbA1c, and hypertension

status—eGDR is both feasible and cost-effective for routine use in

primary care or community health settings. While a universally

accepted clinical threshold has not yet been established, our

findings suggest that individuals with lower eGDR values—

particularly those in the lowest quartile—may warrant closer

metabolic monitoring and risk assessment. Future research

should aim to define optimal cut-off points for eGDR to guide

clinical decision-making and stratify cancer risk more precisely.

Importantly, timely interventions such as lifestyle modifications

(e.g., diet, exercise, weight management) or insulin-sensitizing

therapies may improve metabolic health and reduce ovarian
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FIGURE 3

Association between eGDR and the risk of ovarian cancer stratified by di�erent baseline subgroups. Age subgroups were defined as “Young” (≤65
years old) and “Old” (>65 years old). Covariates adjusted in the model: triglycerides, total cholesterol, lymphocytes, and red blood cells.
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cancer risk, especially in high-risk groups identified by low eGDR

values. These groups may include women with limited education,

unmarried status, or non-drinking habits, who showed increased

sensitivity in subgroup analyses. Integrating eGDR screening into

preventive care could enhance early identification and enable

targeted interventions, contributing to more personalized and

effective cancer prevention strategies.

Despite the strengths of utilizing a nationally representative

dataset and conducting rigorous statistical analyses, this study has

several limitations. First, the relatively small sample size (n = 87)

may reduce the statistical power to detect clinically meaningful

differences, particularly in subgroup analyses. Although our

findings showed statistical significance for primary outcomes, the

possibility of type II errors (false negatives) cannot be ruled out.

Second, the single-center design and strict inclusion criteria may

limit the generalizability of our results to broader populations,

such as patients with different treatment histories or from diverse

healthcare settings. Finally, while we performed multivariate

adjustments for known confounders, residual confounding due

to unmeasured variables may still exist. Future large-scale,

multicenter studies with prospective designs are warranted to

validate our findings.

The cross-sectional nature of this study inherently limits causal

interpretation of the observed associations between eGDR and

ovarian cancer. While our findings provide important preliminary

evidence, the temporal relationship cannot be established due

to the fundamental design constraints. This limitation is further

compounded by potential residual confounding from unmeasured

variables. Future prospective cohort studies with repeated eGDR

measurements are needed to elucidate the potential causal

pathways. Intervention studies may also help determine whether

modulating eGDR influences ovarian cancer risk.

Athough propensity score matching (PSM) and multivariate

adjustment were used in this study to control for measurable

confounders, unmeasured variables such as genetic susceptibility

(such as BRCA1/2 gene mutations), family history of ovarian

cancer, and environmental exposures (such as endocrine-

disrupting chemicals or occupational risks) were unavailable

in the NHANES dataset due to limitations of the publicly

available database. Inclusion of these variables may reduce the

effective sample size due to missing data, thus affecting statistical

efficacy. Therefore, this study ultimately did not include some

of the important factors after weighing the statistical validity

against the comprehensiveness of the variables. In the future,

we will further validate the current results by constructing

longitudinal cohort data and incorporate key variables such

as genetic factors and environmental exposures to more

comprehensively explore their relationship with the risk of

ovarian cancer.

5 Conclusion

This study identified a robust inverse association between

the eGDR and ovarian cancer, positioning the eGDR as a

potential protective biomarker for ovarian cancer screening.

These findings deepen the etiological understanding and

advocate for eGDR-integrated screening and prevention

paradigms. Future research is needed to clarify causality,

unravel the molecular mechanisms, and translate the eGDR into

clinical utility.
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