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Carbon-based nanomaterials have drawn significant interest as desirable
nanomaterials and composites for the adsorptive removal of various classes of
pollutants from water owing to their versatile physicochemical properties. The
underlying sorption mechanisms serve as the bedrock for the development of
carbonaceous adsorbents for various target pollutants. Microwave-assisted
synthesis can be regarded as a recent and well-advanced technique for the
development of carbon-based nanomaterials, and the use of biobased
materials/wastes/residues conforms with the concept of green and sustainable
chemistry. For advancements in carbon-based functional nanomaterials and their
industrial/field applications, it is essential to fully comprehend the sorption
performance and the selective/non-selective interaction processes between
the contaminants and sorbents. In this regard, research on the development of
carbon-based nanomaterials for the adsorption of chemical contaminants, both
organic and inorganic, in water has made considerable strides as discussed in this
review. However, there are still several fundamental hurdles associated with
microwave-assisted chemical synthesis and commercial/industrial scale-up
applications in nano-remediation. The challenges, benefits, and prospects for
further research and development of carbon-based nanomaterials/
nanocomposites for the purification of water are also discussed.
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1 Introduction

Over 20 years ago, the concept of “green chemistry” emerged as a result of a shift in
emphasis on material research with the move towards the use of waste materials and waste-
reduction strategies. The chemical industry as a whole and scientists are directed to follow
and promote sustainable and environmentally friendly pathways governed by the twelve
principles of green chemistry (DeVierno Kreuder et al., 2017). The seventh principle
buttresses the need for designing synthetic procedures with minimal negative impacts on
the environment and without the use of hazardous reagents (Kharissova et al., 2019; Forbes,
2021). Thus, using renewable feedstocks and biodegradable raw or waste materials that are
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typically rich in carbon, and are available from natural or biological
sources, is a more acceptable approach for the environmentally
friendly preparation of carbon-based materials from the bulk to the
nanoscale.

The synthesis of carbon-based nanomaterials has been
facilitated by enabling technologies such as hydrothermal,
solvothermal, chemical vapor deposition, microwave-assisted
synthesis, and other top-down/bottom-up techniques (Yan et al.,
2016; Macairan et al., 2019; Adeola and Forbes, 2021a; Gulati et al.,
2023). In comparison to other conventional methods, microwave-
assisted synthesis of carbon-based nanomaterials is a non-invasive,
easy, quick, clean, and eco-friendly process (Oladipo et al., 2018;
Dutta et al., 2022a). The reaction is facilitated and accelerated by the
microwave, frequently increasing relative yields. According to
reports, microwave-assisted synthesis can circumvent synthesis-
related challenges through energy efficiency, simplicity of
experimental setup, adjustable process conditions, speedy
reactions, and uniform heating/thermal processing. Microwave-
assisted synthesis of carbon-based nanomaterials requires low
growth temperatures and offers high surface areas, adsorption
capacities, and purity while providing energy savings. As such, it
presents a promising approach to addressing the challenges for
industrial and municipal water treatment (Schwenke et al., 2015;
Baghel et al., 2022).

Environmental pollution is unquestionably one of the major
challenges facing civilization today. Every day, thousands of tons of
dangerous chemicals are released into water bodies (Nassar et al.,
2015; Dutta et al., 2019; Tong et al., 2022). Some dangerous
contaminants that can be found in the aquatic environment
include heavy metals, textile dyes, herbicides, surfactants,
microplastics, hydrocarbons, pharmaceuticals, and personal care
products, to name a few. To get rid of the contaminants in
polluted water, new methods are constantly being researched.
While developing carbon-based nanomaterials for environmental
remediation, some major factors for consideration include target-
specific identification, simplicity of design, affordable production,
the toxicity of nanomaterial, biocompatibility, reusability, and the
capacity for regeneration after usage. Therefore, new technologies
are particularly intriguing because they may hold the key to
addressing these challenges. As a result, numerous studies have
concentrated on applying green chemistry concepts with the
physicochemical surface modification of carbon-based
nanomaterials to produce nanomaterials that can mitigate
challenges faced during contaminant cleanup (Das et al., 2020;
Dutta et al., 2022b; Mohapatra et al., 2023; Osterberg et al., 2023).

Scopus search revealed that over 62% of published data on
carbon-based materials in the last decade have focused on design
and application in water treatment, and well over 10,000 articles have
been published on the subject (Dutta et al., 2022a). Thus, there is a
need to constantly review the advances in this field of research,
particularly the recent integration of microwave-assisted synthesis
in carbon nanomaterials development. The current review assesses the
development of advanced carbon nanomaterials (graphene, carbon
nanotubes, and carbon dots) for water pollution remediation using
microwave-assisted synthesis. The significant aspect of the review
includes green nano-synthesis from waste/biobased resources using
the microwave method and applications in water treatment,
highlighting the merits, challenges, and future prospects.

2 Conventional synthesis techniques of
carbon-based materials from biobased
resources

Carbon-based nanomaterials have become an essential
component of modern technology, with applications in fields
such as electronics, environment, catalysis, energy storage, and
drug delivery due to their unique qualities, such as high surface
area, exceptional mechanical strength, and electrical conductivity
(Fathy et al., 2020; Zakaria et al., 2022). Numerous methods are
utilized to synthesize these nanomaterials, which can be classified
into top-down and bottom-up approaches. The top-down approach
consists in breaking down large carbon structures such as graphite,
into smaller carbon nanostructures, while in the bottom-up
approach, the carbon nanostructures are formed from atoms and
molecules (Supplementary Figure S1–S3) (Baig et al., 2021; Abid
et al., 2022). Depending on the nature of the precursor and process
conditions, some conventional and microwave-assisted techniques
can carry out bottom-up/top-down synthesis of carbon
nanomaterials.

Arc discharge and laser ablation are among the most used top-
down approaches for the synthesis of carbon nanomaterials. These
were the earliest methods used for synthesizing fullerenes and
carbon nanotubes (CNTs) (Kroto et al., 1985; Iijima, 1991; Arora
and Sharma, 2014) In the arc discharge method, a high-voltage
electric current is applied between two graphite electrodes in an inert
environment/system. An electric arc is formed, generating a high
temperature that is responsible for vaporizing the graphite
electrodes. Then, the vapor condenses into CNTs or fullerenes
(Arora and Sharma, 2014; Deng et al., 2016). On the other hand,
the laser ablation technique utilizes a high-power laser to vaporize
graphite under an inert atmosphere. The vapor is then carried by the
inert gas and condensed into carbon nanomaterials (Deng et al.,
2016; Aravind Kumar et al., 2020). Nonetheless, these techniques
show several drawbacks including low yield for laser ablation,
presence of impurities such as amorphous carbon and residual
catalyst, limited control over size and shape, requirement of high
temperatures, and consequently high energy consumption, in
addition to costly setups. Thus, bottom-up approaches, including
chemical vapor deposition (CVD), hydro/solvothermal, and
microwave-assisted techniques are considered more promising
for the production of carbon nanomaterials on a large scale due
to their low cost, high control over size and shape as well as high
material yields (Saputri et al., 2020; El-Khawaga et al., 2023).

CVD has been one of the conventional methods most explored
for synthesizing different carbon nanomaterials owing to its
simplicity and ability to produce high-quality materials (Wang
et al., 2018; Fathy et al., 2020; Zakaria et al., 2022). It consists of
the thermal decomposition of a carbon source under an inert
atmosphere at a high temperature, in the presence of a metallic
catalyst. As the carbon source decomposes, the carbon atoms deposit
on the catalyst surface, and due to its low solubility in these metallic
particles at high temperatures, precipitates are obtained and then
carbon nanomaterials are formed (Deng et al., 2016). Although this
conventional method is indeed capable of producing high-quality
carbon-based nanomaterials, it relies mainly on carbon sources
derived from fossil fuels for synthesizing these materials, such as
ethylene, acetylene, benzene, methane, ethane, toluene, and xylene
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(Goswami et al., 2021; Shi et al., 2023a). In this regard, there has been
a rise in interest in a more sustainable and greener synthesis of
carbon nanomaterials that focuses on the development of
environmentally friendly and sustainable alternatives (Deng et al.,
2016; Vivekanandhan et al., 2017; Fathy et al., 2020; Shi et al., 2023a).
These alternatives focus on the use of non-toxic, renewable,
biodegradable, and abundant precursors, such as honey
(Mandani et al., 2017) and juices (Wang et al., 2022), biomass
(Zhao et al., 2020), vegetable and animal oils (Duarte et al., 2022),
industrial residues (Hu et al., 2019), and agricultural waste
(Somanathan et al., 2015). Supplementary Table S1 provides a
summary of biobased resources that have been utilized in the
synthesis of carbon nanomaterials through conventional techniques.

Owing to its high yield, high purity, and the possibility of
morphological and structural control, researchers have focused
on developing a more sustainable CVD process. Thus, greener
solvents and more environmentally friendly solid carbon sources
have been employed as precursors to the synthesis of these
nanomaterials (Manawi et al., 2018; Fathy et al., 2020). However,
the evolution of toxic gaseous by-products during CVD remains a
drawback (Manawi et al., 2018; Ijaz et al., 2020). In this way,
pyrolysis, hydro/solvothermal and microwave-assisted techniques
have attracted attention due to the non-necessity of the presence of a
substrate for the growth of the nanomaterial, in addition to the
possibility of using different carbon sources derived from biomass
sources, renewable materials, and wastes. As a result, these
approaches have been widely utilized in many parts of the world,
including developing countries (Wang et al., 2018; Wang et al.,
2020a; Devi et al., 2021).

The pyrolysis method consists of the thermal decomposition of a
carbon source at a high temperature under an inert atmosphere and
has been used extensively for synthesizing carbon dots (CDs) and
graphene-based materials (Devi et al., 2021; Asif and Saha, 2023). In
the hydro/solvothermal methods, the carbon source is converted
into nanostructured carbon materials under high pressure and mild
temperatures (<350°C) in a sealed vessel (Byrappa and Adschiri,
2007; Heidari et al., 2019; Gong et al., 2023). In the hydrothermal
method, the reaction occurs in an aqueous medium, while in the
solvothermal approach, different solvents such as ethanol, acetone,
and DMF, are used as the reaction medium. Both methods can
produce carbon-based nanomaterials with controlled size and
morphology, depending on the synthesis parameters, such as
temperature, time, and concentration of the carbon source and
solvent (Wang et al., 2020a; Huo et al., 2023).

These methods with the inclusion of microwave technology have
proven to be excellent to obtain carbon nanomaterials from
renewable and natural sources and residues, rendering this
process more sustainable, green, and economically viable. In
addition, they provide an alternative to recycling and reusing
some residues, not only transforming them into value-added
products but also addressing some environmental issues
associated with the disposal of these materials. More information
about various top-down and bottom-up synthesis approaches for
carbon-based nanomaterials, including their merits and demerits are
available in recent reviews by Abid et al. (Abid et al., 2022), El-
Khawaga et al. (El-Khawaga et al., 2023), Gong et al. (Gong et al.,
2023) and Huo et al. (Huo et al., 2023). According to these reports,
these methods present some limitations such as the requirements for

high temperatures and pressures, long reaction times, and difficulty
in measuring, understanding, and controlling the synthesis/growth
process of the nanomaterials (Abid et al., 2022; Huo et al., 2023).
Hence, researchers have sought the development of microwave-
assisted synthesis methods to address these shortcomings while
achieving faster results through better-controlled reactions and
product formation (Omoriyekomwan et al., 2019;
Omoriyekomwan et al., 2021; Vignesh et al., 2022).

3 Microwave irradiation

Gedye et al., in 1986, andMingos and Baghurst in 1991, reported
an unprecedentedly quick organic reaction under microwave
irradiation (Gedye et al., 1986; Mingos and Baghurst, 1991).
These were two of the earliest reports on the use of microwaves
in chemical synthesis. Prior to these reports, Randall and Booth
invented the magnetron, a device that generated fixed microwave
frequencies, ushering in the era of microwave-assisted chemical
processes (Cole and Cole, 1941; Kaul, 1989). As soon as scientists
realized the magnetron’s amazing capacity for rapidly heating water,
they began to investigate the mechanism at play, and subsequently,
its potential for domestic, laboratory, and commercial applications
(de Medeiros et al., 2019; Singh et al., 2019).

Domestic microwaves were used during the development phase
of microwave-assisted chemical synthesis in research laboratories
and unfortunately are still in use in developing countries across the
globe (Monte-Filho et al., 2019). Although advanced microwave
reactors currently exist (Figure 1), the use of more affordable kitchen
microwaves for research has not been completely phased out. Some
prestigious publishers reject manuscripts that include household
ovens as heating sources. The reason why more advanced
microwave equipment has been developed includes safety
features offered by modern microwave reactors for chemical
synthesis. Furthermore, the main benefit of using microwaves for
chemical synthesis is superheating in an air-tight reaction vessel that
can withstand high temperatures and pressures, since the Arrhenius
rule allows for significantly faster reaction times.

Advanced microwave reactors function as highly practical
autoclaves that can swiftly and effectively heat reaction mixtures
to 300°C and 80 bar while allowing the reaction medium to stay
sealed throughout the duration of the reaction. In contrast, domestic
microwave ovens do not offer reaction parameter control and it is
almost impossible to monitor the temperature and pressure of the
reaction in real-time, with IR sensors for reaction temperature
control, pressure sensors to keep track of the reaction pressure in
the closed vessels, and a magnetic stirrer to facilitate agitation
(Figure 2). Electromagnetic radiation between 0.3 and 300 GHz is
referred to as microwaves. To prevent interference with
telecommunications equipment, most typical microwave
equipment emits electromagnetic radiation at 2.45 GHz.

The type of material being heated by microwaves and the
amount of interaction between the sample and the radiation are
key determining factors in how a reaction proceeds since
conductors, dielectric materials, and insulators all have different
characteristics. Following exposure of a material to microwave
radiation, three different types of mechanisms have been
described in the literature (Mishra and Sharma, 2016; Kahraman
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et al., 2020), namely reflection, absorption, and transmittance.
Metals and other electrical conductors act as microwave radiation
reflectors (Rafael Zamorano et al., 2019) while PTFE and quartz are
two substances that permit microwave radiation transmission.
Because insulators do not absorb microwave radiation, they are
unable to be heated via this technology (Motasemi and Ani, 2012).
In what concerns the reaction medium, or the solvent, for these
reactions, polar liquids are excellent at absorbing microwaves. As
such, they heat up quickly following microwave irradiation because
of dipolar interactions and ionic conduction (Hu et al., 2021).

Polar molecules’ capacity to absorb microwave radiation and
transform it into heat through a process known as dielectric heating
is the key to the effectiveness and success of microwave-assisted
chemical reactions (de Medeiros et al., 2019). When exposed to
microwave radiation, polar molecules with electrical dipole
moments rotate continuously in an effort to align themselves
with the electric field. This phenomenon is caused by dielectric
polarization and conduction loss. Through dielectric loss and
molecular friction, the molecules reverse direction when the field
alternates, thereby generating heat. The loss factor (tan δ) is a
measure of a solvent’s capacity to transform electromagnetic
energy from microwaves into heat. According to Table 1,
solvents are frequently categorized as strong, medium, or weak
microwave absorbers. A solvent’s microwave heating process is
quicker and more effective with a higher value of tan δ. A low
tan δ value, on the other hand, suggests ineffective and slow heating
operation under microwave irradiation (de Medeiros et al., 2019).

Figure 3A demonstrates how microwave heating differs from
traditional heating in that the center of the material is heated to a
greater temperature than the medium allowing for a quick and

efficient reaction. In contrast, under conventional heating, the vessel
must be heated first followed by heating of the medium and
eventually the heating of the sample. Under microwave heating,
the molecules’ dipoles attempt to align with the applied electric field
during irradiation in microwave-assisted synthesis (Figure 3B).
Higher frequency field oscillations cause the dipoles to
continually realign with the alternating electric field, which
generates heat through molecular friction and dielectric loss. No
heating occurs if the dipole doesn’t have time to realign (at much
higher frequencies), or if it reorients too quickly (during low-
frequency irradiation) (Sun et al., 2016; Jiang et al., 2023). Ionic
conduction can also contribute to the heating mechanism. Under
the influence of the microwave energy field, charged particles that
are dissolved into the sample, in ionic form, bounce back and forth
and subsequently produce heat by interacting with nearby molecules
or atoms (Gabriel et al., 1998; Singh et al., 2019). This technique have
been used to prepare different types of nanomaterials including
metallic nanoparticles (Zhu and Chen, 2014; Tsuji, 2017),
semiconductor quantum dots (Xuan et al., 2015), metal-organic
nanomaterials (Thi Dang et al., 2020), polymeric nanomaterials (An
et al., 2006), carbon-based nanomaterials (de Medeiros et al., 2019;
Thakur et al., 2023), and many others.

4 Microwave-assisted synthesis of
carbon-based nanomaterials

Attention has been drawn to the synthesis of next-generation
nano-carbon materials, including heterostructures and
nanocomposites with improved performance and

FIGURE 1
CDs synthesis using domestic microwave (A) and commercial microwave (B) with biobased materials (Yang et al., 2018a; Monte-Filho et al., 2019).
Open access.
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multifunctionality (Speranza, 2021). To determine the feasibility of
prolonged utilization of microwave technology for developing
advanced carbon-based nanomaterials like CDs, CNTs, and
graphene-based materials (GBMs), the availability of carbon
sources is crucial. These nanomaterials have so far been
produced using carbon sources including citric acid, acetylene,
benzene, methane, toluene, xylene, and other natural
hydrocarbon resources (Liu et al., 2011; de Medeiros et al., 2019;
Macairan et al., 2019; Sajid et al., 2022; Gulati et al., 2023; Liu et al.,
2023). These hydrocarbons contribute to the release of CO2 which
may leak into the atmosphere, leading to global warming. Methane
and other volatile hydrocarbons are greenhouse gases that act as
more powerful heat-traps than CO2 and contribute more to climate
change than CO2, which they release following complete
combustion. Furthermore, these hydrocarbons are fast depleting
and valuable carbon-based nanomaterials may experience a shortage
issue in the future due to their reliance on these non-renewable
resources. Hence, a more practical, affordable, and environmentally
benign method and resources are required to sustainably prepare
advanced carbon-based nanomaterials.

Microwave irradiation, which causes polymerization and
carbonization, has been used to prepare carbon-based
nanomaterials (Alarfaj et al., 2018). Carbon-based nanomaterials
absorb electromagnetic energy during the microwave irradiation
process and transform it into heat energy (Yang et al., 2018a). The
molecular rotation of polar solvent molecules, caused by the
interaction of electrical dipole moment with microwave energy,
produces thermal energy. During microwave-assisted heating,
electromagnetic radiation transfers thermal energy to the carbon
precursor (Singh et al., 2019).

The preparation of carbon-based nanomaterials from biobased
resources is essentially a top-down approach, which involves the
break down of large carbonaceous materials, such as agricultural
wastes, into nano-sized carbon structures (de Medeiros et al., 2019;
Thakur et al., 2023). The microwave-assisted synthesis is effective
for producing carbon nanomaterials and has the added benefits of
rapid volumetric heating, high reaction rates, precise control over
size and shape of nanomaterials by reaction parameter adjustment,
and energy efficiency. Additionally, the homogeneous nucleation
and growth conditions created by the homogenous heating of the

FIGURE 2
Microwave reactors with cutting-edge design features include the following: CEM Discover SP with a single-mode cavity (top left). Microwave
Research and Applications BP-210 processing MW with reaction temperatures up to 1800°C (top right). CEM Liberty Blue with a critical reagent delivery
system (bottom left). CEM MARS6 with a high throughput capacity and a fiber-optic temperature sensor (Bottom right). Adapted from (Chin et al., 2021).
Open access.
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precursors during microwave synthesis reduce thermal gradients
and result in the development of nanomaterials with a uniform size
distribution (Bacon et al., 2014).

4.1 CNTs and doped CNTs

In recent years, multiple studies have targeted the production of
CNTs from waste materials to counter the more expensive and time-
consuming synthesis procedures that were typically used (Liu et al.,
2019). CNTs (1D nanocarbon) may now be easily grown using
microwave radiation, opening up a new method for their versatile
and economical synthesis. Both domestic and commercial
microwave ovens have been utilized as practical plasma reactors
for the quick, easy, energy-efficient, and solvent-free growth of

CNTs (Jašek et al., 2006; Baghel et al., 2022). In addition to
enabling the rapid growth of high-density CNTs in a matter of
seconds, the unique heating mechanism of microwaves also
eliminates the requirement for an expensive boiler and a source
of combustible gaseous carbon (Liu et al., 2019). Under microwave
irradiation, very localized heating, close to the catalyst nanoparticles,
can be observed (Chin et al., 2021).

It has been reported that rice husk was successfully used to
synthesize CNTs using microwave-induced plasma irradiation with
a 600 W and 2.45 GHz power and frequency, respectively (Asnawi
et al., 2018). The procedure was carried out at a 750°C temperature
for 40 min. The pressure in the reaction tube decreased from 3 to
1 mbar as CNTs grew. The biosynthesized CNTs revealed a twisted
and web-like network structure and Raman spectra showed that the
ID/IG ratio was 1.013. The high ID/IG ratio between the D and G
band intensities is an indication of the lower quality of the sp2

hybridized carbon nanomaterial (Figure 4). The lower quality may
be due to structural defects and the amorphous nature of the carbon-
based nanomaterial. This experiment demonstrates the possible use
of waste biomass as a precursor for microwave-based CNTs
synthesis. In addition to turning waste biomass into valuable
carbon nanostructures, this would help address the
environmental problems brought on by the vast amount of
agricultural biomass.

Similarly, Hidalgo-Oporto et al. reported the use of biochar
derived from wheat straw, oats hull, rapeseed cake, and hazelnut
for the preparation of CNTs (Hidalgo et al., 2019). A carbon-rich
porous material is produced when biomass is subjected to a
thermochemical process and can serve as a precursor for
CNTs synthesis (Figure 5). A combination of biochar derived
from agricultural waste and ferrocene was heated with a
microwave to create CNTs at 400°C and 600°C. The findings
showed that the biomass pyrolysis temperature had an impact on
the physicochemical characteristics of CNTs. Higher CNTs
concentration and lower hydrodynamic diameter were
obtained by 600°C biochar. Moreover, CNTs prepared from
biochar derived from wheat straw and hazelnut hulls had a
higher degree of wall graphitization, indicating superior CNTs
quality.

In a more recent study, Omoriyekomwan et al. reported the use
of palm kernel shells to synthesize CNTs using the microwave
pyrolysis process at a low temperature of 600°C
(Omoriyekomwan et al., 2019). They employed the palm kernel
shell (PKS) and used two isolation procedures, namely alkaline-acid
and formic acid/acetic acid, to separate the components of PKS,
cellulose, and lignin. They claimed that the recovery of
monosaccharides in the cellulose’s pyrolysis volatiles, which
served as a substantial carbon source, promoted CNTs growth.
Moreover, the functional group, organic matrix, flaws, and
structural quality were all improved. The mechanism of CNTs
growth has been postulated to involve the self-extrusion of
monosaccharides- and hydrocarbons-rich volatiles during
cellulose pyrolysis proceeded by condensation and re-
solidification of volatiles on the softened cellulose particles at
high temperatures (Figure 6). Although a high ash content in
biobased materials or agricultural wastes can operate as a catalyst
to accelerate the formation of CNTs, high-purity precursors are still
necessary for CNTs synthesis.

TABLE 1 Various solvents and their loss factor value (tan δ) were determined at
293 K (de Medeiros et al., 2019).

Solvents tan δ

Low (tan δ less than 0.1)

Hexane 0.020

Toluene 0.040

Dichloromethane 0.042

Tetrahydrofuran 0.047

Acetone 0.054

Ethyl acetate 0.059

Acetonitrile 0.062

Chloroform 0.091

Medium (tan δ range between 0.1 and 0.5)

Chlorobenzene 0.101

Water 0.123

1,2-Dichloroethane 0.127

dimethylformamide 0.191

acetic acid 0.174

N-Methyl-2-pyrrolidone 0.275

Dichlorobenzene 0.280

2-Butanol 0.447

High (tan δ greater than 0.5)

1-Butanol 0.571

Nitrobenzene 0.589

Methanol 0.659

formic acid 0.722

2-Propanol 0.799

dimethyl sulfoxide 0.825

ethanol 0.941

Ethylene glycol 1.350
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It is noteworthy to mention that while most synthesis protocols
for CNTs required hours, the microwave-assisted technique
generates CNTs in minutes and seconds. Interestingly, Zhan
et al. revealed that in 20–40 s, CNTs can be synthesized using a
domestic microwave, howbeit from iron, copper, molybdenum,
steel wires, and fibers were used as precursors and not biobased
materials. The as-synthesized CNTs had a diameter range of
10–120 nm (Zhan et al., 2017). CNT-based composites have
been synthesized in 150 s with the aid of a microwave; they
include palladium-graphene oxide-based CNTs (Kumar et al.,
2017), nitrogen-iron doped CNTs (Kang et al., 2017) (Figure 7),
ruthenium-based single-walled carbon nanotubes (SWCNTs-Ru)
(Hemraj-Benny et al., 2020), CNTs/Fe3O4 (Li et al., 2023a), etc.
Other precursors have been reported in Literature, such as graphite
(Algadri et al., 2017; Guo et al., 2017), carbon fiber (Bajpai and

Wagner, 2015), Mxene aerogel (Zheng et al., 2019), graphite and
cobalt acetate powder (Ortega-Cervantez et al., 2016), as well as
poly lactic-co-glycolic acid (PLGA) coated with polypyrrole (PPy)
(Xie et al., 2014).

The affinity of carbon-based nanomaterials for specific types of
contaminants in aqueous media is impacted by the different
functionalities/moieties on their surface, or their hybridization/
combination with other nanomaterials/molecules, which also
improves their adsorption efficiency. A few chemical
modification techniques and their benefits are summarized in
Table 2. Functional moieties may contain oxygen-, nitrogen-, and
sulfur-containing groups depending on the type of heteroatom that
binds to the carbon in the nanomaterial. Through selective design
with appropriate functional groups, the adsorption selectivity of
contaminants may improve (Sajid et al., 2022). Typically, related

FIGURE 3
(A) Comparison of conventional heating and microwave heating (B) Mechanisms of microwave energy transfers are dipole polarization (top) and
ionic conduction (down). Adapted with minor amendments and permission from Wiley (Kappe et al., 2012).
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functional groups are introduced to carbon compounds by
oxidation, nitrogenation, and sulfonation.

4.1.1 CNTs-based materials as adsorbents for
pollution remediation

Adsorbents composed of CNTs are commonly used to remove
chemical pollutants from water and wastewater (Gupta and Saleh,
2013; Yu et al., 2016; Gusain et al., 2020). Due to their large specific
surface areas, tunable surface characteristics, porosities,
hydrophobicity, hollow and layered architectures, many internal
and external binding sites, π-conjugation, as well as simplicity of
chemical activation and functionalization, CNTs exhibit excellent
adsorption capabilities (Barrejón and Prato, 2022; Pyrzynska, 2023).
CNTs-based adsorbents can interact with inorganic and organic
pollutants through a variety of mechanisms, including
complexation, ion exchange, electrostatic interaction, covalent
bonding, precipitation, and van der Waal’s interaction, among
others (Figure 8) (Adeola and Forbes, 2021a; Sajid et al., 2022).
Chemical bonds between organic compounds and CNTs have
occasionally been described as a mode of interaction
(Indrawirawan et al., 2015; Duarte et al., 2022).

The removal of PFAS and other persistent and endocrine-
disrupting pollutants with CNTs-based materials has been reported
(Vu and Wu, 2022). As the C-F chain length increased, more
perfluorinated compounds (PFCs) with the same functional group
were able to bind to MWCNTs. The removal efficiency of the CNTs
with hydroxyl and carboxyl groups was significantly lower than that of
the pristine CNTs (Deng et al., 2012a). Hydrophobic interactions
dominated the mechanism of adsorption. With an Langmuir
maximum adsorption capacity of 46.2 mg/g, magnetic MWCNTs
coated with chitosan were utilized to treat water containing
Bisphenol A (BPA), another endocrine-disrupting substance
(Mohammadi et al., 2020). The residual BPA concentration was
determined using high-performance liquid chromatography (HPLC).

Pharmaceuticals present in different aquatic systems can cause
serious health problems in people, including inflammation,
vomiting, headaches, dizziness, and other minor and major

systemic dysfunction. The main problem is that these pollutants
cannot be fully removed or degraded by traditional wastewater
treatment facilities (Adeola and Forbes, 2021b; Ihsanullah et al.,
2022). A nanocomposite of CNTs and alumina was employed to
adsorb carbamazepine and sodium diclofenac from water. The
residues of diclofenac and carbamazepine were analyzed using
UV–vis spectrophotometer. The CNTs were used for adsorption
while the alumina improved the hybrid’s physicochemical properties
and regenerability (Wei et al., 2013). In several additional instances,
SWCNTs and MWCNTs were used to remove amoxicillin and
SWCNTs displayed much better adsorption capacity for the
selected pharmaceutical drug (Mohammadi et al., 2015; Balarak
et al., 2016). Residual amoxicillin was analysed using HPLC. In a
related investigation, batch experiments were used to examine the
ciprofloxacin’s adsorption behavior from an aqueous solution onto
MWCNTs/Al2O3 (Balarak and McKay, 2021). The spontaneity and
endothermic nature of the sorption process were shown by
thermodynamic studies. According to the Dubinin-Radushkevich
isotherm model, the estimated mean free energy, which ranged
between 0.316 and 0.707 kJ/mol, supports a physisorption process. It
was established that MWCNTs/Al2O3 are potentially useful for the
elimination of antibiotics from contaminated water.

Metals are a major part of the group of contaminants that have
been researched extensively in CNTs-based adsorption, as they
cause numerous health problems in people (such as lead
poisoning), animals, and aquatic life (Sajid et al., 2018;
Ihsanullah et al., 2020; Sulaiman et al., 2020). The causes of
metal contamination are numerous and include both
anthropogenic and natural processes and must be removed from
the water to pre-determined acceptable limits (Feng et al., 2018; Ore
and Adeola, 2021; Adeola et al., 2022a). Mercury was eliminated
using MWCNTs that were loaded with CuS. Because of the high
surface area of MWCNTs, the amount of CuS dispersed on the
surface of MWCNTs increased. CuS addition to the adsorbent was
intended to improve mercury affinity. Moreover, the copper can
amalgamate with Hg (Wang et al., 2020b). Thus, the CuS/MWCNTs
surface purportedly adsorbed mercury as stable HgS, and the

FIGURE 4
(A) The transformation of rick husk’s soot-like material onto the surface of aluminum and Fe-SEM image showing both spherical and tubular forms
on a microscale (1 µm) and nanoscale (100 nm), respectively (B) Raman spectrum of the CNTs biosynthesized sample. Adapted with slight modifications
from (Asnawi et al., 2018). Open access.
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sorption process was controlled or facilitated via chemisorption (Liu
et al., 2022a). The continuous mercury analyzer (VM3000 Mercury
Vapor Monitor) was used to analyze mercury. Recently, a
mechanical method (ultra-sonification) and a chemical method
(surfactant inclusion) were coupled to stabilize CNTs. The
elimination of Cu(II), Ni(II), Pb(II), and Zn(II) ions was
accomplished using these CNTs, and residual metal ions were
analyzed using Atomic Absorption Spectrometer (AAS) Perkin
Elmer 3,300. It was discovered that electronegativity and atomic
radius played roles in competitive adsorption. Compared to Ni(II)
and Zn(II) ions, a higher percentage of Pb(II) and Cu(II) ions were
eliminated (Oliveira et al., 2021). The lead ion is the most
electronegative metal with the highest atomic radii among the
other cations, which favors its adsorption onto the MWCNTs
structure via attractive and hydrodynamic forces.

Table 3 presents a list of CNTs-based nanomaterials that have been
used to sorb organic and inorganic compounds from polluted aqueous
media. It is noteworthy to mention that various forms of CNTs-based
materials have been reported to have Langmuir adsorption capacities as
high as 416 mg/g (Cu) for metals, 679.6 mg/g (Rhodamine B) for dyes,
227.3 mg/g (Chipton) for pesticides, 221.2 mg/g (Meloxicam) for
pharmaceuticals, and 46.2 mg/g (Bisphenol A) for other compounds,
which affirms the affinity of CNTs and their composites for these
various classes of compounds.

4.2 Graphene and graphene-basedmaterials

Graphene-based materials (GBMs) have attracted much
scientific curiosity in the last decade due to their exceptional

FIGURE 5
Illustration of microwave irradiation as a tool to develop CNTs from a biochar/ferrocene combination (top). TEM images of CNTs prepared from
biochar derived from oat hull, wheat straw, hazelnut hull, and rapeseed cake, respectively (bottom). Adapted with minor modifications and permission
from Elsevier (Hidalgo et al., 2019).
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electronic, mechanical, and optical properties which have made
them adaptable in several fields of scientific innovations (Sang et al.,
2019; Adeola and Forbes, 2021a). Graphene (2D nanocarbon) and
its derivatives can be functionalized for use in a wide range of fields,
including environmental remediation, medicine, and electronics
(Khenfouch et al., 2016; Liu et al., 2020; Papi, 2021; Hashmi
et al., 2022). Figure 9 reflects the most common types/forms of
graphenic materials, they are graphite, CNTs, reduced graphene
oxide, and fullerenes, among others. Because of their unique
features, all these graphene-based materials are very different in
comparison to one another. Biomass and agricultural waste are
useful carbon sources that have been used to produce graphite,
which in turn serves as precursor for graphene-based materials
(Vivekanandhan et al., 2017; Shi et al., 2023a).

To incorporate hydroxyl, carboxyl, and carbonyl groups on the
surface of graphite, harsh chemicals like sulfuric, nitric, and
phosphoric acids are typically used in chemical reactions to
produce graphene-based materials. When pre-treated graphite is
exposed to high temperatures, gases evolve and form graphitic layers
(Hernandez et al., 2008). The acidic precursors can intercalate
between the graphitic layers because they have two hydroxyl
groups on either side. In addition to the emission of toxic gases,
the separation of the graphitic layers is frequently haphazard and

ineffective. The microwave-assisted synthesis may address these
challenges via rapid heating and better control of the reduction
and exfoliation of graphitic layers. The microwave-assisted synthesis
of GBMs can be achieved under three categories: 1) chemical
reduction of graphite with the aid of a microwave; 2) thermal
reduction of graphite with a microwave; 3) simultaneous thermal
exfoliation and thermal reduction of graphite with a microwave (Al-
Hazmi et al., 2015; Xie et al., 2019).

Microwave-assisted chemical reduction of graphite involves the
use of a reducing agent such as hydrazine hydrate under microwave
irradiation to expedite the process (Hassan et al., 2009). Hassan et al.
examined the reduction process using Raman spectroscopy and
observed an ID/IG ratio between 0.1 and 0.12 following microwave
treatment for 60 s, demonstrating a high reduction degree even after
such a brief treatment time. The enhanced thermal stability showed
no appreciable mass loss up to 750 °C Another study by Kumar et al.
reported that a 4-h microwave exposure was comparable to a 48-h
conventional reaction technique used for the synthesis of GBMs
(Kumar et al., 2015). The traditional heating method led to the
formation of defects in the graphene basal plane as a result of the
evolution of the oxygen functional groups during reduction (Li et al.,
2010). This can be addressed by the microwave-assisted thermal
reduction approach either with a commercial microwave or a

FIGURE 6
The mechanism of CNTs formation during microwave-induced pyrolysis of cellulose. Adapted with minor modifications and permission from
Elsevier (Omoriyekomwan et al., 2019).
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microwave-plasma reactor (Figure 10). Without using any reducing
agents or solvents, microwave irradiation’s superior thermal action
may quickly convert GO into graphene (Voiry et al., 2016; Jiang
et al., 2018; Wan et al., 2018). This method offers a viable
opportunity to produce graphene on a huge scale. To clarify the
underlying process of GBMmicrowave reduction, more research on
the dielectric characteristics of GBMs at various microwave
frequencies is necessary.

Due to its poor microwave absorption capacity, graphite oxide
itself may not be heated to a temperature that will effectively cause its
exfoliation and reduction under microwave irradiation. It is not
possible to produce rGO with the same level of purity by
simultaneous exfoliation and reduction as it is through the
thermal reduction of graphene oxides (Zhu et al., 2010a; Zhu
et al., 2010b; Pokharel et al., 2014). However, the reduction
degree could be significantly increased when paired with a
reducing environment (i.e., H2) or pretreatment with powerful
reducing reagents (NaBH4).

Microwave treatment has been used to synthesize a graphene-
basedmaterial from used spent tea leaves (Abbas et al., 2020). Due to
their distinctive optical characteristics, size, and quantum
confinement, graphene quantum dots (GQDs) are zero-
dimensional fluorescent materials that have garnered considerable
attention. However, one of the associated challenges is their low
reaction yields, which contribute to high production costs and
restrict their large-scale applications. Using microwave treatment,
spent tea was used as a low-cost, environmentally friendly, and
renewable biomass resource for the high-yield synthesis of GQDs.
The synthesis method uses oxidative cutting and pyrolysis under
microwave irradiation to generate GQDs, with an over 84% yield
recorded. The size distribution of GQDs was extremely narrow, with
an average size of 1.6 ± 0.55 nm. The energy band gap and
luminescence emission in the high-energy area increased as a
result of the reduced size (Abbas et al., 2020). Similarly,
microwave plasma irradiation was used to prepare graphene-
based materials from rice husks (Wang et al., 2015a). Plasma and

FIGURE 7
(A) Hierarchical palladium-CNTs-reduced graphene oxide composite produced with microwave (B) 3D nitrogen-incorporated reduced graphene
oxide (NG)/iron oxide (CNTs/NG-Fe) CNTs nanocomposite. Adapted with permission from Elsevier (Kang et al., 2017; Kumar et al., 2017).
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microwave heating was used to irradiate the powdered rice husks to
a temperature of approximately 200 °C while biogas/pyrolysis gas
(often CH4 or C2H4) was present (Figures 10, 11). The pressure and
temperature utilized in the microwave setup had a significant impact
on the dissociation of rice husks and the production of graphitic
carbons (Worasuwannarak et al., 2007; Wang et al., 2011; Chen
et al., 2014).

4.2.1 Graphene-based materials as adsorbents for
pollution remediation

Chemical pollutants are produced by industrial processes,
agricultural technology, and synthetic substances like
pharmaceuticals and personal care items. Among the main
pollutants released by numerous industries are hazardous heavy
metals (e.g., Cd, Cu, Hg, Ni, Pb), toxic gases, and organics (e.g., dyes,
pesticides, pharmaceuticals) (Alengebawy et al., 2021; Mitra et al.,
2022). Industrial growth has a considerable detrimental impact on
water resources due to the excessive use of these chemical
compounds, which are exceedingly dangerous.

When fossil fuels, coal, and biomass are burnt, polycyclic
hydrocarbons are produced that are classified as PAHs (Adeola
et al., 2022b). These chemicals are extremely hazardous because they
affect human organs leading to tumors, cancer, and chronic
cardiovascular problems (Hussain et al., 2018; Song et al., 2021).
In addition to PAHs, dyes, surfactants, industrial additives, and
pesticides are also worrisome because they interfere with the
endocrine system and nerve cells. Another category of organic
pollutants, including phenols, bisphenol A, biphenyls, and
phenyls, threatens aquatic flora and fauna and poses a health
threat to humans (Mohammadi et al., 2020; Tavengwa et al.,
2021). Even at very low concentrations (e.g., part per million and
part per billion), these organic contaminants are recalcitrant and
persistent in the environment. Therefore, it is crucial to remove both
organic and inorganic pollutants before the release of wastewater
into the environment. Hence the need to develop efficient materials
for their removal from aqueous matrices.

There has been extensive research into using graphene and its
composites to treat water that contains organic and inorganic
contaminants, as indicated in Table 4. To address the United
Nations’ sustainable development goals (SDG six in particular)
and the shortcomings of existing wastewater systems, graphene,

TABLE 2 Several approaches for modifying carbon nanomaterials in microwave-assisted synthesis.

Modification Methods Merits/Effects

Oxidation Acid treatment; treatment oxidizing agents (KMnO4); reacting
with a combination of acids and other oxidizing agents

Incorporates alcoholic, carboxylic, and ketonic functional
groups

Improved adsorption performance, particularly for metals

Metal impurities in the nanomaterial are also removed

Allows for further functionalization and enhances
hydrophilicity for aqueous dispersion

Doping with MOFs, cyclodextrin Formation of nanocomposite; sol-gel; solvothermal Carbon nanostructure acts as a support for other adsorbents

Synergistic effect on decontamination of polluted water

Activation Treatment with bases, acids, or a mixture of bases or acids Removal of anionic and cationic contaminants

Magnetic nanomaterials CVD; sol-gel; pyrolysis; solvothermal/hydrothermal Easy recovery and regeneration of carbon nanomaterials after
adsorption

Quick dispersion in solution

Doping with polymers In-situ polymerization; mixing in solution; melt blending Improved affinity for organics

Enhanced chemical and thermal stability

Surface functionalization Nitrogenation; sulfonation Enhanced selectivity with desired moieties such as thiols for
mercury or amines for metals

FIGURE 8
Various adsorption mechanisms of interaction between CNTs
and chemical pollutants in aqueous matrices.
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TABLE 3 CNTs-based sorbents for removal of organic and inorganic pollutants in water.

Sorbent Sorbate Langmuir
adsorption

capacity (mg/g)

Kinetics/isotherm Optimum process
parameters [pH;

time]

References

Elaeis guineensis/polyvinyl
alcohol/CNTs

Dyes: Malachite blue - Pseudo-second order (PSO)/
Langmuir (monolayer

adsorption)

11; 300 min Zulfiqar et al. (2022)

PANI-MWCNTs Malachite orange 149 PSO/Langmuir and
Freundlich models

7; 90 min Pete et al. (2021)

4-Aminosalicylic Acid
Functionalized MWCNTs

Crystal Violet Dye 440 PSO 5.5; 1 min Saxena et al. (2021a)

Amine functionalized
MWCNTs- porphyrin

conjugate

Malachite blue - PSO/Freundlich (multilayer
adsorption)

5–7; 70 min Saleh et al. (2021)

Single wall carbon
nanotubes (SWCNTs)

Reactive yellow dye 15 and
Reactive yellow dye 42

179.9 and 156.1 PSO/Langmuir and
Freundlich models

3; 5 and 42 min Naghizadeh et al.
(2022)

SWCNTs Acid Blue 92 86.91 Pseudo-second order (PSO)/
Langmuir

3; 75 min Balarak et al. (2021)

Sulfonic acid-
functionalized-CNTs

Malachite blue 236.5 PSO/Freundlich (multilayer
adsorption)

pH 12 Lei et al. (2021)

Hydrogel nanocomposite Malachite blue 647 PSO/Linear Redlich-
Peterson

11; 40 min Mallakpour and
Tabesh (2021)

Multiwall carbon
nanotubes (MWCNTs)

Violet 2 R 76.92 PSO/multiple models 4; 120 min Abualnaja et al.
(2021a)

CNTs/MgO/CuFe2O4 Methyl violet dye (MVD)
and Nile blue dye (NBD)

>35 PSO/Freundlich (MVD),
Langmuir (NBD)

8; 50 min Foroutan et al.
(2021)

Poly (Acrylonitrile-co-
Styrene)/MWCNTs

Methyl orange 121.95 PSO/multiple models 3; 120 min Abualnaja et al.
(2021b)

WS2/Fe3O4/CNTs-
nanocomposite

Amaranth and brilliant blue 174.8 and 166.7 PSO/Langmuir models 3; 5 min Arabkhani et al.
(2021)

Nano-cobalt wrapped by
nitrogen-doped CNTs

Rhodamine B 679.56 PSO/Langmuir models 4; 60 min Yang et al. (2021)

Asparagine functionalized
MWCNTs

Malachite green and blue 637 and 500 PSO/Langmuir models 4 and 6; 3 and 5 min s Saxena et al. (2021b)

Alginate/f-CNTs-CD
MFA hydrogel composite

beads

Malachite blue 10.26 PSO/Langmuir models 10; 48 h Mallakpour et al.
(2021)

MWCNTs and Ox-
MWCNTs

Herbicide/Pesticides: Diuron 39.59 and 48.60 PSO/Freundlich, Langmuir
and Polanyi–Manes

Basic and Neutral; 60 min Deng et al. (2012b)

MWCNTs from plastic
waste

Diuron 40.375 PSO/Temkin, Hill, and
Koble–Corrigan

240 min Deokar et al. (2017)

UiO66-NH2@MPCA Chipton 227.3 PSO/Langmuir models pH 4 Liang et al. (2021)

ZIF-8 and magnetic
MWCNTs

Eight Organophosphorus
pesticides

2.18–3.89 - 4; 15 min Liu et al. (2018)

MWCNTs Malathion - - 7/30 min Dehghani et al.
(2017)

Carbon dot modified-
magnetic CNTs

Pharmaceuticals:
Carbamazepine

65 - pH 7 Deng et al. (2019)

Polyanilline/MWCNTs Meloxicam 221.2 PSO/Elovich and Langmuir-
Freundlich

2/6 min Dutra et al. (2018)

Granular CNTs/Alumina Diclofenac and
Carbamazepine

106.5 and 157.4 μmol/g Langmuir 4/72 h Wei et al. (2013)

Acid modified-MWCNTs Diclofenac 24 PSO/Freundlich 7/60 min Hu and Cheng
(2015)

(Continued on following page)
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and its derivatives can be combined with a variety of metallic or non-
metallic components to create innovative composites that increase
the efficiency of removing pollutants in water or wastewater. To
effectively treat wastewater, graphene, and its composites may be
modified by eliminating, or adding functional groups and facilitating
the formation of polymeric membranes or nanocomposites (Wu
et al., 2011; Verma et al., 2022a). The process of doping and/or
functionalizing/passivation can reportedly amplify the inherent
graphene features and add additional stability for enhanced
performance or multifunctional activity (Adeola et al., 2021a;
Singh et al., 2022). It is noteworthy to highlight that adsorption
capacities as high as 1,119 mg/g (Pb) for metals, 2000.1 mg/g (MB)
for dyes, 1,667 mg/g (Malathion) for pesticides, 796.8 mg/g
(Doxycycline) for pharmaceuticals and 766.58 mg/g (Naph) for
aromatic compounds have been reported for various forms of
carbon-based materials (Table 4). The removal performance of
graphene-based materials is often influenced by the
physicochemical properties of the sorbent and sorbate, as well as
the solution chemistry encompassing pH, temperature
(thermodynamics), salinity, and other process parameters. The
adsorption capacities reported for graphene-based materials for
different classes of pollutants were generally higher than many of
those obtained for CNTs (Tables 3, 4), suggesting that structure and

atomic configurations may also play a role in the binding
mechanism and capacity of various carbon-based nanomaterials/
nanocomposites.

4.3 CDs and nanocomposites

CDs are zero-dimensional carbon nanomaterials with diameters
smaller than 10 nm and have been touted to have minimal toxicity and
excellent photostability (de Medeiros et al., 2019; Behi et al., 2022). The
majority of CDs include sp2 and sp3 hybridization, which are often
similar to those in crystalline graphite but lack structural identity
(Georgakilas et al., 2015). CDs be prepared as hydrophilic,
hydrophobic, and amphiphilic, based on the intended applications
(de Medeiros et al., 2019). However, for the adsorption of chemical
pollutants in aqueousmatrices, hydrophobic CDswith high surface area
and porosity are most desirable. Thus, the utilization of relatively water-
insoluble carbon, nitrogen, and oxygen precursors is necessary for the
preparation of hydrophobic CDs. In addition, CDs and other carbon-
based nanomaterials must be recoverable, regenerable, and reusable
from a green and sustainable chemistry point of view.

Regarding hydrophobic carbon dot-based nanomaterials for
water treatment applications, researchers have reported several

TABLE 3 (Continued) CNTs-based sorbents for removal of organic and inorganic pollutants in water.

Sorbent Sorbate Langmuir
adsorption

capacity (mg/g)

Kinetics/isotherm Optimum process
parameters [pH;

time]

References

MWCNTs Amoxicillin 22.9 Langmuir 4.6/40 min Mohammadi et al.
(2015)

SWCNTs Amoxicillin 122.8 PSO/Langmuir 7/45 min

Acid treated MWCNTs Other organics:
trihalomethanes

0.92–2.41 Freundlich-Langmuir 3–7/150–180 min Lu et al. (2005)

MWCNTs CHCl3, CHCl2Br, CHClBr2,
CHBr3

10.98, 6.85, 6.57, 5.95 PSO/Sips 5–7/45 min Dehghani et al.
(2016)

Magnetic MWCNTs/
SiO2/CS

BPA 46.2 PSO/Langmuir 6.2/76 min Mohammadi et al.
(2020)

MWCNTs-KOH@NiNPs Metals: Pb(II), As(V), Cd(II) 81.0, 440.9 and 415.8 PSO/Langmuir 5.5/30 min Egbosiuba et al.
(2022)

As-MWCNTs; OX-
MWCNTs

Cu(II) and Zn(II) 364 and 347; 416 and 411 PSO/Langmuir 6/30 min Egbosiuba and
Abdulkareem

(2021)

β-CD@Fe3O4/MWCNTs Ni(II) 103 PSO/Langmuir 6/50 min Lin et al. (2021)

CS/MWCNTs/Fe Cr(VI) 119 PSO/Langmuir pH 4 Aslam et al. (2021)

MWCNTs Pb(II) and Ni(II) 215 and 230 PSO/Langmuir 5.8/60min Egbosiuba et al.
(2021)

Waste cooking palm oil
(WCPO)-CNTs

Cu(II) 29.22 Langmuir pH 7 Abu Bakar et al.
(2021)

PAAm/FMWCNTs Cu(II) 320–385 PSO/Langmuir 5/90 min Abo-Zahra et al.
(2022)

Polyvinyl formaldehyde/
MWCNTs foam

Pb(II) 3.4 PSO/Langmuir 5/60 min yosef et al. (2020)

MWCNTs-HAP Pb(II), Cd(II), Cu(II) - PSO/Langmuir 4–6/120 min Li et al. (2021)
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pristine CDs and composites, i.e., CDs (Yahaya Pudza et al., 2020),
CD-modified magnetic nanotubes (Deng et al., 2019), hydrophobic
nitrogen-doped CDs (Shi et al., 2023b), carbon quantum dots
(Tohamy et al., 2023), and hexadecylamine-functionalized GQDs
(Kubheka et al., 2022), among others. CDs and carbon quantum dots
have been synthesized using green and sustainable precursors such
as agricultural wastes and carbohydrates including cellulose (Yahaya
Pudza et al., 2020; da Silva Souza et al., 2018), biowaste lignin (Shi
et al., 2019), lemon and onion (Monte-Filho et al., 2019), wood soot
(Zhong et al., 2018), dried leaf (Joshi et al., 2018), grass (Sabet and
Mahdavi, 2019), broccoli (Arumugam and Kim, 2018), pomelo fruit
(Ramar et al., 2018), denature milk (Athika et al., 2019), to name a
few. CDs have been used as adsorbents for the removal of both
organic and inorganic pollutants in water as summarized in Table 5.
For instance, they have been used to monitor dangerous substances
in effluents discharged from various chemical industries and
adsorbed uranium, cadmium, and benzopyrene from real water
samples (Li et al., 2018; Rahmanian et al., 2018; Huang et al., 2019c).
Doping carbon quantum dots with nitrogen reportedly enhanced
the adsorption of metal ions from wastewater due to their high
specific surface area (Tohamy et al., 2023). In comparison to CNTs
and graphene-based materials, CDs have not been as widely applied
as adsorbents, however functionalized hydrophobic CD-based
composites can equally be used as adsorbents and in the
fabrication of membranes.

Periodic mesoporous organosilica embedded with CDs has been
developed for the elimination of 2,4-dichlorophenol and heavy

metal ions Hg(II), Cu(II), and Pb(II) by Wang et al. (Wang
et al., 2015b). The material has a bilayer of CDs, 2D hexagonal
mesostructure, high specific surface area, and pore size (~468.46 m2/
g and ~5.50 nm). The n–π electron donor–acceptor interaction
between O- and N-containing moieties in mesoporous
organosilica and the benzene ring in 2,4-dichlorophenol
facilitated enhanced adsorption of 2,4-dichlorophenol, while the
electrostatic interaction and complex formation between metal ions
and amide groups help to increase the efficiency of metal ions
removal from contaminated water (Wang et al., 2015b).

Perumal et al. reported the synthesis of nitrogen-doped CDs
(N-CDs) and hybrid-spherical-shaped hydrogel particles
(CGCDs) from Red Malus floribunda fruits (Perumal et al.,
2022). The synthesized CGCDs were utilized as sorbents for the
removal of heavy metals from water. The sizes of the CD-based
materials ranged from 20 to 300 μm. Approximately ~72% and
99% of Hg(II) was sorbed by CGCDs in single metal ion and
multiple metal ion systems. Furthermore, Hg(II), Cd(II), Pb(II),
and Cr(III) recorded over 70% removal efficiency in multiple
systems by CGCDs (Perumal et al., 2022). This suggests that
CD-based materials may serve as a suitable tool for the
simultaneous removal of heavy metals from industrial
wastewater. In comparison to CNTs and graphene-based
materials, CDs have not been as widely applied as adsorbents,
however, functionalized hydrophobic CD-based composite can be
equally used as adsorbent materials and in the fabrication of
membranes.

FIGURE 9
Various forms of graphene-based materials.
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FIGURE 10
Microwave-plasma reactor including reactants supplies and metering. Adapted from (Fortugno et al., 2022). Open access.

FIGURE 11
A plausible microwave plasma irradiation growth model for graphene, CNTs, and g-CNTs from rice husks Adapted with permission from Elsevier
(Wang et al., 2015a).
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TABLE 4 Graphene-based sorbents for removal of organic and inorganic pollutants in water.

Adsorbent Target pollutant Langmuir adsorption
capacity (mg/g)

References

Graphene oxide/ZrO(OH)2 Metals: Arsenic (III and V) 84.89; 95.15 Luo et al. (2013a)

Graphene oxide/ferric hydroxide Arsenic (V) 23.78 Zhang et al. (2010)

Graphene oxide/TiO2 Cadmium (III) 65.6 Lee and Yang (2012)

Graphene/c-MWCNTs Mercury (II) 93.3 Sui et al. (2012)

Graphene oxide/poly (amidoamine) Zinc (II) 0.2023 mmol/g Yuan et al. (2013)

Graphene oxide Copper (II) 117.5 Wu et al. (2012)

Graphene nanoshell/Fe3O4 Chromium (VI); Lead (II); Mercury (II);
Cadmium (II); Nickel (II)

17.29; 27.95; 23.03; 27.83; 22.07 Guo et al. (2014)

Graphene oxide encapsulated polyvinyl alcohol/
sodium alginate

Copper (II); Uranium (II) 247.16; 403.78 Yi et al. (2018)

Graphene oxide passivated with ethylenediamine Lead 479.0 Madadrang et al. (2012)

Graphene/SiO2 Lead (II) 113.6 Hao et al. (2012)

Graphene oxide/magnetic chitosan Lead (II) 76.94 Fan et al. (2013)

Graphene oxide Iron (III) 133.3 Han et al. (2010)

Graphene oxide Gold (III); Palladium (II); Platinium (IV) 108.342; 80.775; 71.378 Liu et al. (2013)

Graphene oxide/Magnetic fungal hyphal Nickel (II); Cobalt (II) 97.44; 104.34 Chen et al. (2021)

Graphene oxide/MOF/polymer Arsenic(V) 180.0 Kong et al. (2022)

Graphene oxide Copper (II); Zinc (II); Cadmium (II); Lead (II) 294.0; 345.0; 530.0; 1,119.0 Sitko et al. (2013)

Graphene oxide/magnetic chitosan Lead (II) 112.35 Samuel et al. (2018)

Graphene oxide/Nanoscale Zero-Valent Iron
(nZVI)-magnetic Fe3O4

Chromium (VI) 101.0 Lv et al. (2014)

Reduced graphene oxide/Nanoscale Zero-Valent
Iron (nZVI)

Arsenic (III and VI) 35.83; 29.04 Wang et al. (2014)

Graphene/Fe3O4 Arsenic (III and VI) 0.452; 0.385 Guo et al. (2015)

Graphene Europium (III) Thorium (IV) 150.0; 220.0 Huang et al. (2019a)

Graphene oxide/chitosan Gold (III); Lead (II) 1,076.6; 216.92 Liu et al. (2012)

Graphene oxide/polyaniline nanofibers Zinc (II) 297.62 Ramezanzadeh et al. (2018)

Graphene oxide Uranium (VI) 299.0 Li et al. (2012)

Reduced graphene oxide/Magnetic
dithiocarbamate

Copper (II); Cadmium (II); Lead (II);
Mercury (II)

113.64; 116.28; 147.06; 181.82 Fu and Huang (2018)

Graphene/Fe3O4 Selenium (IV and VI) 45.57; 27.12 Fu et al. (2014)

Graphene/Iron-chitosan Chromium (VI) 83.8 Shan et al. (2021)

Graphene sheets Arsenic (III and VI); Sodium 121.97; 141.92; 138.79 Mishra and Ramaprabhu
(2011)

Graphene oxide/ZnO Arsenic (III) 8.17 Singh et al. (2022)

Graphene oxide/thiol-Fe-Mn composite Mercury (II) 233.17 Huang et al. (2019b)

Graphene oxide/manganese ferrite Arsenic(V) 102.0 Shahrin et al. (2018)

Graphene oxide/PVC/p-Phenylenediamine Lead (II) 44.8 Khan et al. (2021)

Graphene oxide biopolymer Lead (II) 504.0 Bloor et al. (2021)

Graphene oxide/ultrathin carbon layer
encapsulated magnetite nanoparticles

Silver(I); Lead (II); Chromium (VI);
Aluminum (III)

62.9; 125.8; 158.2; 173.9 Wang et al. (2021)

(Continued on following page)
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TABLE 4 (Continued) Graphene-based sorbents for removal of organic and inorganic pollutants in water.

Adsorbent Target pollutant Langmuir adsorption
capacity (mg/g)

References

Reduced graphene oxide/Polyacrylonitrile Mercury (II) 325.732 Awad et al. (2021)

Graphene oxide/poly-cyanoguanidine Mercury (II) 174.7 Lin et al. (2022a)

graphene oxide/EDTA/chitosan Mercury (II); Copper (II) 324.0; 130.0 Verma et al. (2022b)

Graphene oxide-dicationic ionic liquid composite Chromium (VI) 271.08 Shang et al. (2021)

Reduced graphene oxide/Fe–Al layered double
hydroxide/sodium alginate

Arsenic(V) 190.84 Nithya Priya et al. (2021)

Graphene/MOF Copper (II) 343.49 Eltaweil et al. (2021)

Graphene oxide/PVC Strontium (II) 20.07 Huo et al. (2021a)

Graphene oxide/PVA/MnO2 Cobalt (II); Strontium (II) 60.3; 26.8 Huo et al. (2021b)

Modified magnetic graphene oxide Dyes: Acid red 524.2 Tang et al. (2018)

Reduced graphene oxide Malachite green 476.2 Gupta and Khatri (2017)

Graphene oxide/PD Methylene blue 2000.1 Dong et al. (2014)

Graphene oxide/ionic liquid-modified Methylene blue 448.0 Gupta et al. (2022)

Graphene oxide/hollow mesoporous silica Methylene blue; Methylene orange 476.19; 279.27 Sari Yilmaz (2022)

Graphene oxide/4 A molecular sieve Rhodamine B 62.81 Liu et al. (2022b)

Graphene oxide/Amine-amide functionalized Basic blue 41; Methyl orange 199.5; 64.0 Verma et al. (2022a)

Magnetic Nitrogen-doped graphene oxide Reactive orange 12 333.33 Alsaiari et al. (2022)

Amino-magnetite@graphene oxide@amino-
MnO2

Congo red 54.95 Mahmoud et al. (2022)

Mesoporous zeolite-A/reduced graphene oxide
nanocomposite

Methylene blue 638.0 Farghali et al. (2021)

Metal ferrite-enabled graphene oxide
nanocomposites

Methylene blue 25.81–76.34 Bayantong et al. (2021)

Polymeric graphene oxide nanocomposites Antacid Orange RL 21.43–44.76 Noreen et al. (2021)

Graphene oxide/Konjac glucomannan Methyl blue; Methyl orange 133.67; 93.50 Gan et al. (2015)

Graphene oxide/Bismuth oxide Rhodamine B 320.0 Das et al. (2018)

Graphene oxide/magnetic silica nanocomposite Pesticides: Chlorpyrifos, Parathion, Malathion 25.6; 135; 61.9 Wanjeri et al. (2018)

Graphene nanoplatelets Chlorpyrifos 140.0 Lazarević-Pašti et al. (2018)

Reduced graphene oxide/silver nanocomposite Lindane 827.00 Sen Gupta et al. (2015)

Graphene oxide/Fe3O4 Endrin; dieldrin 99.0; 1.0 Shrivas et al. (2017)

Graphene oxide/β-CD-Fe3O4 Thiacloprid; thiamethoxam; imidacloprid 3.11; 0.66; 1.42 Liu et al. (2017)

Reduced graphene oxide/biochar Atrazine 67.55 Zhang et al. (2018)

Graphene oxide Chlorpyrifos, Malathion 98; 1,667 Yadav et al. (2019)

Graphene wool Other aromatic compounds: Phenanthrene;
Pyrene

5; 20 Adeola and Forbes (2019)

Graphene oxide p-nitrotoluene 238.8 Chen and Chen (2015)

Reduced graphene oxide Pyrene; Anthracene; Naphthalene 198.0; 80.91; 766.58 Sun et al. (2013)

Graphene oxide/Fe3O4 1-Napthol; 1-Napthlamine 389.25; 408.09 Yang et al. (2013)

Graphene coated materials Phenanthrene 1.74 Yang et al. (2015)

Graphene nanosheets Phenanthrene 138–151 Apul et al. (2013)

(Continued on following page)
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TABLE 4 (Continued) Graphene-based sorbents for removal of organic and inorganic pollutants in water.

Adsorbent Target pollutant Langmuir adsorption
capacity (mg/g)

References

Graphene oxide/Fe3O4 Aniline 170.4 Zhang et al. (2022)

Graphene/Fe3O4 aniline and p-chloroaniline 375.94; 43.86 Chang et al. (2012)

Graphene Bisphenol A 182.0 Xu et al. (2012)

Graphene nanosheets Bisphenol A 181.82 Apul et al. (2013)

Graphene oxide/chitosan/organoclay Bisphenol A/17α-ethynylestradiol/Triclosan 20; 30; 40 de Almeida et al. (2022)

Graphene oxide/Amine-amide functionalized 4-Nitrophenol 54.1 Verma et al. (2022a)

Graphene nanosheet/biochar Phthalic acid esters 25.43–45.65 Abdul et al. (2017)

Graphene wool Pharmaceuticals: Efavirenz; Nevirapine 4.41; 48.31 Adeola et al. (2021b)

Graphene oxide passivated with ethylenediamine Ibuprofen 240.0 Cai et al. (2016)

Graphene nanoplatelets/Fe3O4 Amoxicillin 14.10 Kerkez-Kuyumcu et al.
(2016)

Graphene oxide Tetracycline; oxytetracycline 39.1; 130.4 El Hadki et al. (2021)

Graphene oxide/hydrogel Doxycycline 15.9 Abdulsahib et al. (2020)

Graphene oxide/cyclodextrin/iron
nanocomposite

Oxytetracycline 26.8 Lin et al. (2022b)

Graphene oxide/magnetite Ciprofloxacin; Norfloxacin 18.22; 22.20 Tang et al. (2013)

Graphene oxide/biochar Doxycycline 796.8 Xiong et al. (2022)

TABLE 5 CDs and derivatives as adsorbents for removal of organic and inorganic pollutants in water.

Adsorbent Target pollutant Langmuir adsorption
capacity

References

Carbon dots-modified magnetic nanocomposites Benzo [a]pyrene 76.23 ng/mg Yang et al. (2019)

Carbon dot-modified magnetic carbon nanotubes Carbamazepine 23.78 mg/g Deng et al. (2019)

Hexadecylamine functionalized graphene quantum dots Phenanthrene 1,377 mg/g Kubheka et al. (2022)

Ultrathin BiOCl/nitrogen-doped graphene quantum dots
composites

Ciprofloxacin - Mou et al. (2019)

Nitrogen-doped carbon quantum dots/magnetite
nanocomposites

Methylene blue 24.88 mg/g Tadesse et al. (2018)

Carbon dots modified mesoporous organosilica 2, 4-dichlorophenol 99.70 mg/g Wang et al. (2015b)

Nitrogen-doped carbon quantum dots Cadmium (II), Lead (II) - Sabet and Mahdavi
(2019)

N-doped carbon quantum dot conjugated with Fe3O4 Lead (II) 303.03 Mashkani et al. (2018)

Carbon dots-doped hydrogel particles Lead II), Cadmium (II), Mercury (II), and
Chromium (III)

90.0, 70.2 62.0, 25.0 Perumal et al. (2022)

Fluorescent carbon quantum dots Lead (II) 10.70–12.77 mg/g Tohamy et al. (2023)

Magnetic CQDs modified MnFe2O4 nanocomposite Uranium (VI) 194.2 mg/g Huang et al. (2019c)

Carbon quantum dots/layered double hydroxide hybrid Cadmium (II) 14.71 mg/g Rahmanian et al.
(2018)

S,N-codoped carbon quantum dots modified chitosan
membranes

Cadmium (II) 112.4 mg/g Jlassi et al. (2020)

Carbon quantum dots Cadmium (II) 66.68 mg/g Yang et al. (2018b)
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In general, carbon-based nanomaterials interact with organic and
inorganic compounds via one or several adsorption mechanisms.
Electrostatic interaction: adsorption of charged organic and inorganic
pollutants onto the charged surface of carbon-based nanomaterials
(Isaeva et al., 2021). Electric potential is created on the adsorbent by
the presence of positive and negative charges on the carbon adsorbents as
a result of deviation from the pH point of zero charge. Under varying
solution pH, organic pollutants become charged as a result of protonation
and deprotonation. These electrostatic charges cause adsorption due to
electrostatic interactions on both the surface of the organic pollutant and
the surface of the carbon-based nanomaterial. When functional groups
are protonated or deprotonated, the strength of these interactions also
varies (Deline et al., 2020; Isaeva et al., 2021). π-complexation interactions
involve electron sharing between contaminants and carbon-based
nanomaterials, resulting in the creation of inner-sphere surface
complexes. The overlap of π electrons between sorbate and carbon
materials also leads to π-complexation or π-π interactions (Maitlo
et al., 2019). Hydrogen bonding occurs mostly in compounds
containing hydroxyl and carboxyl groups, and their adsorption by
carbon nanomaterials is facilitated via this mechanism in aqueous
medium (Speranza, 2021). Electron donors with an atom more
electronegative than hydrogen and an acceptor atom with an
unshared lone pair of electrons combine to produce a hydrogen bond
between carbon nanomaterials and pollutants (Ahmed et al., 2022).
Hydrophobic interactions: hydrophobic contaminants maybe driven to
the surface and pores of hydrophobic carbon nanomaterials (Saji, 2021).
The octanol-water partition coefficient (LogKow) of the pollutants reflects
its hydrophobicity, and a partitioning mechanism often drives
hydrophobic solutes in an aqueous medium onto the surface of
carbon-based nanomaterials (Adeola and Forbes, 2019; Qian et al.,
2020). Covalent bonding between adsorbate and adsorbent is often
responsible for chemical adsorption (chemisorption). Covalent
interaction between sorbates and carbon particles involves electron
sharing for bond formation (Sabzehmeidani et al., 2021). On the
hand, physisorption (physical adsorption) is driven by weak forces of
interactions such as van der Waals interactions (Ion et al., 2021).
Physisorption is often reversible and non-specific interaction between
carbon nanomaterials and contaminants. It is controlled by competitive
adsorption that occurs at varying rates at the heterogeneous surfaces of
adsorbents (Agboola and Benson, 2021).

5 Merits and challenges of microwave-
assisted synthesis of carbon-based
nanomaterials

Significant advancements in microwave instrumentation have
aided in the synthesis of materials with improved reaction
conditions control, producing materials with more desirable
physicochemical characteristics. Commercial microwave reactors
are now equipped with fiber-optic probes, magnetic stirrers, and
sensors for more precise monitoring of the synthesis conditions,
resulting in an enhanced reaction yield with higher reproducibility
(Favretto, 2003; Ferguson, 2003; Luo et al., 2013b; Dudley et al.,
2015), lower energy requirements, and shorter reaction times,
among others (Figure 12). However, pressure sensitivity and
thresholds (typically lower than 400 psi), and penetration depth
limitations are one of the main drawbacks of microwave-assisted

synthesis (Antonio De La et al., 2011; de Medeiros et al., 2019). The
volume needed for commercial scale-up is also a challenge as
conventional microwave reactors cannot accommodate large-scale
synthesis to this day. There are also some restrictions on the size of
the reaction sample for the microwave-assisted synthesis of carbon
nanomaterials due to the short penetration depth in particular
materials. In-situ measurements of the reaction conditions,
particularly with metallic substrates, are the other major
restriction of microwave-assisted synthesis. Metallic substrates
can’t be used for material synthesis or processing since they
interfere with the electromagnetic field (Bilecka and
Niederberger, 2010; Schwenke et al., 2015).

The use of microwave reactors for chemical synthesis and
industrial scale-up applications still faces several fundamental
difficulties and there are knowledge gaps. Important features like
heating homogeneity and rate may change during scale-up, and may
significantly impact operating efficiency and product yield, yet these
characteristic changes may occur via vaguely understood
mechanisms (Sturm et al., 2014; Buttress et al., 2017). Some
theoretical tools and predictive models have been developed to
model large-scale applications of microwaves; however, the
intricacy of the electromagnetic field distribution inside
microwave reactors supports only qualitative results from these
models (Robinson et al., 2010a; Robinson et al., 2010b; Li et al.,
2023b). Despite all of this, these models provide valuable insights in
addition to experimental results. A promising method of creating
quantitative numerical models is now available thanks to recent
developments in commercial software and computational resources
(Yang and Chen, 2021). These models can guide the design of
advanced reactors by predicting their performance and validating
those predictions with experiments and clarifying scale-up behavior

FIGURE 12
Merits of microwave-assisted synthesis of carbon-based
nanomaterials. Adapted with permission from Elsevier (Singh et al.,
2019).
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to increase industrial capacity. Techno-economic analysis such as a
bottom-up or top-down cost method, can be used to estimate the
budget for industrial scale-up, in terms of plant set-up, workers,
electricity, waste generation, etc., to assess the technological and
economic viability of carbon-based nanomaterials for water
treatment (Ghosh et al., 2022; Mpongwana and Rathilal, 2022).

Carbon-based nanomaterials have demonstrated extremely high
efficacy in water treatment, particularly when it comes to the
elimination of both organic and inorganic pollutants. However,
some carbon nanomaterials may not be the most appropriate
choice for water treatment, if intended for direct use in
membranes (Cao et al., 2022; Guo et al., 2022). Due to the
presence of negatively charged groups, most carbon-based
nanomaterials rapidly disperse in water, requiring high-speed
centrifugation for their recovery (Almanassra et al., 2021;
Abboud et al., 2022; Ge et al., 2023; Singh et al., 2023).
Membrane fouling remains the main issue in the water treatment
industry that can be reduced by utilizing carbon-based
nanomaterials (Adeola and Forbes, 2021a; Singh et al., 2023).
There is little techno-economic research on nanomaterials made
of carbon and thus, challenging to determine the full potential of this
class of nanomaterials in water treatment procedures, relying solely
on adsorption performance.

In summary, microwave radiation has proven to be a very efficient
heating source. It has the following benefits: 1) an effective heating source
(superheating) that increases reaction rates and facilitates faster synthesis,
2) the ability to readily adjust instrumental or reaction parameters, 3) size
and form control, 4) selective heating based on the idea that various
materials react tomicrowaves differently, 5) due to homogeneous heating
and improved process parameter control, chemical reactions are more
reproducible undermicrowave heating than under traditional heating, 6)
microwave chemistry may be combined with other established
techniques, such as solvothermal and sonochemical techniques. On
the other hand, the drawbacks of microwave-assisted synthesis
include its lack of scalability (batch sizes are normally limited to a
few grams), restricted applications (tomaterials that absorbmicrowaves),
safety and health risks associated with the use of microwave-heating
apparatus and cost of purchase of advanced microwave apparatus. Prior
to industrial-scale utilization of advanced carbon nanomaterials
synthesized with microwaves, commercial readiness, manufacturing
scalability, availability at an economically viable cost, and post-
treatment toxicity assessments are required. Furthermore, it will be
useful to compare laboratory-scale and industrial site findings that
will facilitate the development of carbon-based prototype filters and/
or membranes for long-term wastewater treatment.

6 Concluding remarks

Advanced carbon-based nanomaterials, such as CNTs, CDs,
graphene, and their composites along with other carbonaceous and
non-carbonaceous materials, have been widely researched for the
adsorptive removal of organic and inorganic pollutants in water.
The development of effective methods for the separation and
recycling of these contaminants is vital from environmental safety
and process sustainability points of view. However, to facilitate the
future design of carbon-based nanomaterials from bioresources via
microwave technology and other techniques, it is important to have a

thorough understanding of the bonding behaviors and intermolecular
interactions using spectroscopic and microscopic characterization. The
need for the techno-economic feasibility study for field-based/
industrial-scaled applications of microwave-synthesized carbon
nanomaterials from biobased materials cannot be over-emphasized.

The compendium in this comprehensive review (Tables 1–5),
reveals that numerous carbon-based nanomaterials have been
modified using functional groups, containing fluorine, nitrogen,
oxygen, and sulfur, and via composite formation with other
nanoparticles such as polymers, chitosan, magnetite, and biobased
materials. These modifications create binding sites, large surface
areas, and/or magnetic properties for optimal pollutant removal. In
the mechanistic study of interactions between contaminants and
carbon-based nanomaterials, a variety of approaches have been used,
including zeta potential measurement, spectroscopic characterization,
imaging techniques, theoretical calculations, and computational
modeling. Electrostatics, complexation, π-π interactions, hydrogen
bonds, hydrophobic interactions, covalent chemisorption, and van
der Waals interactions are a few examples of potential sorbate-
sorbent interaction processes that may occur. Future research can
focus on several areas to address some lingering challenges or gray
areas. The selective adsorption of chemical contaminants in aqueous
matrices has not been thoroughly studied, and the principles underlying
the selectivity are still not entirely understood.

In conclusion, due to the myriad of functional groups on the
nanomaterials/nanocomposite, multifunctional carbon-based
sorbents can be used to remove multiple contaminants
simultaneously. It is possible to regenerate carbon-based
nanomaterials depending on the nature of the sorbates, either by
washing with suitable solvents, photodegrading, mechanical
discharge, and/or combusting at appropriate temperatures, without
inducing any significant damage to the nanomaterial. Physically
adsorbed pollutants can be released more easily than chemically
adsorbed ones since desorption requires less energy, thus
preserving the carbon nanomaterials’ capacity for re-use. Recent
developments demonstrate that under reasonably benign
conditions, microwave technology would be an efficient method
for producing pristine and functionalized carbon-based
nanomaterials from biobased resources, with several benefits and
prospective applications including the treatment of wastewater.
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