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Quasi-one-dimensional
carbon-based fractal lattices

L. L. Lage and A. Latgé*

Instituto de Fisica, Universidade Federal Fluminense, Niterdi, Rio de Janeiro, Brazil

Fractal systems are now considered alternative routes for engineering physical
properties on the nanoscale. In particular, stable annular quantum corrals have
been demonstrated in distinct synthesis procedures and can provide interesting
localized and resonant states. We here present a theoretical description of
effective fractal lattices, mainly composed of annular Koch geometries based
on carbon atoms, and of more complex organic molecules described by triangular
Sierpinski geometries. A single band tight-binding approach is considered to
derive electronic and transport properties. Fractal molecular linear chains
composed of fractal Koch quantum corrals are proposed, and their electronic
transport is discussed based on the complexity of the neighboring hopping. The
spatial charge distributions at different energies highlight the contribution of the
composing metallic and carbons atoms in the quantum corral features, serving as
a guide to new functionalization applications based on the symmetry and fractal
peculiarities of the proposed nanostructured lattices.

KEYWORDS

fractals, molecular chains, electronic and transport properties, Koch fractals, tight-
binding models

1 Introduction

A crucial size parameter for determining the physical properties of a system is its
dimensions. For example, in quasi-1D nanostructured systems such as extensively studied
graphene nanoribbons (Castro Neto et al.,, 2009; Wakabayashi et al., 2010; Berdonces-
Layunta et al., 2022), the electron confinement is characterized by 1D-like Van Hove
singularities in the density of states (DOS). Quantum corrals are also important nanosystems
for studying localized states and have been explored since their first synthesis in 1993
(Crommie et al., 1993). More recently, covalently linked large-sized organic quantum corrals
were made possible through bottom-up growth processes with atomic precision, revealing a
high degree of controlling localization and resonant states (Peng et al., 2021). Usually, the
localized states are highly degenerated and exhibit a set of flat bands of increasing interest to
condensed matter physics (Freeney et al., 2022; Kempkes et al., 2019).

On the other hand, fractals are fascinating natural objects and have been extensively
investigated within mathematical and theoretical frameworks, taking into account the
different focuses for discussing fractal geometries. Advances and future challenges of
fractal materials have been discussed recently by Gowrisankar and Banerjee (2021), with
advanced research proposing the application of fractal features to the dynamics of highly
nonlinear complex systems. A very good overview of fractal origins and applications is also
available in the classical book by Mandelbot (1983). The advance of experimental techniques
in synthesizing finite fractal molecules, such as self-assembly (Shang et al, 2015),
electrostatic attraction (Dai et al., 2023), have allowed a better comprehension of the
particles interacting within fractal lattices; this lies in non-integer dimensions known as
“Hausdorff dimensions”. Carbon-nanotube-based networks have been successfully designed
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to work as neural sensor devices (Browning et al., 2021), among
other interesting fractal hierarchical investigations of single-walled
carbon nanotube films (De Nicola et al., 2015) and other graphite
systems (Zhou et al.,, 2016). Electrons and photons (Xu et al., 2021)
moving through such lattices undergo the fractional dimension of
the structures, revealing self-similar patterns on the corresponding
band (DOS),
conductance. Molecular chains based on carbon Sierpinski

structures, density of states and electronic
triangle architectures have been recently reported (Zhang Y.,
et al. 2020; Lage and Latgé,2022), exhibiting the manifestation of
different spatial charge distribution which may be explored in
functional nanodevices (de Laissardie’re et al., 2010).

Here, we present a fractal version of a Koch snowflake-like
quantum corral in two symmetries: the triangular and square Koch
corrals. A topological description of the systems is depicted in Figure 1:
triangular and square Koch rings, named “TK-G (n)” and “SK-G (n)”,
respectively. The decorated rings are obtained by particular rotations in
the Koch lines, resulting in Cs, and C,, symmetries, respectively. The
Koch chain dimension is calculated from D = log(N)/log(L), with N
being the number of lines between each corner and L the proportional
length-fraction of each line compared with the first order G (0), giving
D = log(4)/log(3) = log(16)/l0g(9) = log(64)/l0g(27) = 1.26, respectively,
for the 19, 2", and 3" generations. As expected, this dimension applies
also for the TK and SK snowflakes.

Such quasi-one-dimensional fractal geometries with triangular,
square, pentagonal, and hexagonal symmetries were experimentally
probed through chemical routes, in which nitrogen bases are connected
between metallic atoms (Ru, Fe, and Co) to construct quantum-corral
molecular architectures with trapped electrons (Wang et al., 2018; Jiang
etal, 2017; Zhang Z. et al., 2020.) With the actual engineering facilities
of varying molecular geometries mainly assembled by carbon based
composites (Peng et al., 2021), quantum corrals have become ideal
systems for studying
confinement, and other rich quantum responses. In this work, we

electronic wave resonances, electronic
explore a variety of localized states in annular geometries, considering
both triangular and square Koch symmetries. We investigate electronic
properties such as transmission, band structure, and the spatial

distributions of the electronic states through density of states on
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molecular chains that may be compared with STM images. The
systems are described within a tight binding framework in which
the lattice is included in a microscopy point of view, and not
following continuum models (El-Nabulsi and Anukool, 2021; El-
Nabulsi and Anukool, 2023). The theoretical approach is used to
describe synthesized chemical molecules and to prescribe possible
smart routes for application in selective transport nanodevices.

2 Theoretical model

A single-orbital tight-binding (TB) Hamiltonian is used to
describe the proposed Koch systems, given by:

H= Z &l + Z tiicle; + z thicle; + he. (1)
i @ @

with ¢; being the on-site energy for an atom located at site i, ¢} (c;)
being the creation (annihilation) operator of an electron on site i,
and t;;and t/; being the hopping energies for nearest neighbors (1N)
and second-nearest neighboring (2NN) atoms, respectively. We
discuss below the effects of considering both first and second
neighboring atoms in the Hamiltonian. For the corral lattices, we
discuss here, via fractal Koch curves, the urgency of including second
and/or further neighboring interactions which will be dictated by the
real system to be described, and by a proper comparison with the
experimental data, if available (STM images and dI/dV curves, for
instance), and with first principle calculations.

The electronic properties of the studied corrals are derived via
the eigenfunctions v, and eigenenergies A, determination, with #
being the number of sites. The local density of states (LDOS) is
obtained using a Lorentzian function to better adjust the electronic
states as following:

r
LDOS(E,r0) = 3= 3 9, () @

2 4+0.25I%°

where r, are the site positions. The total density of states (DOS) is
calculated by summing LDOS(E, r,) over all sites.
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Eigenvalue index

Comparison between the energy spectra of (A) triangular and (B) square Koch corrals of second (left) and third (right) generations, G (2) and G (3),

respectively. Fermi levels are marked by dashed lines.

Transport properties are calculated using the Landauer
approach (Data, 1995), in which the system is decoupled into
three parts: central conductor, and right and left leads (Felix
et al.,, 2022; Santos et al., 2020; Chico et al., 2015). We consider
semi-infinite Koch chains as leads, perfectly matching the central
scattering region. Following the Green function formalism, we can
also obtain local DOS. The central advanced (a) and retarded (r)
Green functions are given as

G (E) = [w- H. - =" (E) - 2 (B)] ", 3)

with w = E * in, n being an infinitesimal energy value and H, being
the Hamiltonian of the central part. X% (E) correspond to left and
right self-energies, given by the related surface Green functions,
from which the coupling matrices are obtained via
ILR(E) = i(2] g (E) = £7 p (E)). Finally, to derive the electronic
conductance in Koch chains, G (E)=2e%/h7T (E), we calculate the
energy-dependent transmission given by

T (E) = Tr[I*G'T*GY]. (4)

3 Results and discussions
3.1 Koch quantum corrals

We now explore square and triangular geometries, using the
Koch fractal, as basic units that comprise molecular systems. Figures
2A, B presents a comparison between the eigenenergies of TK and

SK-second generation corrals, respectively, considering first (red
curves) and second (blue curves) neighbors, with the second
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hopping given by # = 0.5¢t. This particular value of hopping
energy may be overestimated compared to the smaller intensity
parameter usually adopted for graphene-based lattices (¢ = 0.1¢). It
was chosen considering an inverse linear dependence with atomic
distance. Smaller values that should also be considered reduce the
changes on the electronic features compared to the single first-
neighbor model. However, as we want to highlight how changes may
be induced by considering the NN2, we consider stronger coupling
limits. It is clear from the results in Figure 2 that the two fractal
arrangements (triangular and square) have similar energy spectra
for both first and second neighbor models, although they have
different numbers of atoms. The corresponding Fermi energies are
depicted for both cases in blue and red horizontal dashed lines.
While there are available energy states crossing the Fermi level for
the 2NN model, the Fermi level is marked by an energy gap E,,, = ¢
for the 1N description, revealing a semiconducting-like feature for
that model. A simple comparison between the G (2)-TK and SK
eigenvalue results for first neighbors shows a 6- and 12-order
degeneracy for the state E = —t, respectively, which is responsible
for the sharp peak in the corresponding electronic density of states
(red curve) in the bottom of Figure 3A.

By comparing the LDOS for both first- and second-neighbor
results at E = —t (Figure 3B), we note that the electronic density is
localized in a dimer-like charge distribution or displayed mostly
around all the corral sites, respectively. This difference occurs due to
the degeneracy lift and the subsequent formation of a bounding
state, caused by the inclusion of second-neighbor interactions that
are responsible for spreading the charges through the annular corral.
At E = —1.64t, the dimmer-like feature is preserved for the case of the
IN model, although rotated spatially relative to the E = —t example,
and preferring the external ST positions. In contrast, the charge for
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Results for a G (2)-TK using first (red curve) and second neighbors (blue curve) TB models. (A) Schematic view of the triangular corral (top) and DOS
(bottom). (B) LDOS comparison at energy values equal to E = —t and £ = —1.64t, available for both cases. Parameters: t' = 0.5t and ¢ = 0.
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considering only first neighbors and ¢ = 0.

the 2NN case is more pronounced at the internal sites of the corral
(see bottom part of Figure 3B). It is important to emphasize that,
although triangular and square Koch corrals exhibit similar
eigenspectra, as shown in 2, the charges are distributed as
expected around the sites according to each symmetry. The
charge distribution effects are also preserved in molecular Koch-
corral chains, as discussed next.
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3.2 Molecular Koch-corral chains

As previously reported (Zhang Z. et al., 2020), the synthesized
corrals are usually displayed in lines very close to each other, or
sometimes physically connected (Dai et al., 2023). Therefore, in this
section we propose a TB model connecting the Koch corrals in order
to create a kind of molecular chain with periodic boundary
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FIGURE 5

TK-G2 chain results considering first (red) and up to second (blue) neighbors, respectively. (A) Electronic bands, (B) electronic conductance, and (C)

local density of states at £ = —t.

conditions along one single direction. Usually, the fractal dimension
in a perfectly symmetrical system promotes energy spectra with
fractal characteristics and exhibiting infinite band gaps in the
thermodynamic limit. Such characteristic features are verified by
comparing electronic band structures or the density of electronic
states of different fractal generations revealing the self-similar
aspects in energies (Lage and Latgé,2022; Pedersen, 2020). The
three
generations G (2), G (3), and G (4) are shown in Figure 4 using

results for the electronic structures for successive
the 1IN model. It is possible to see the occurrence of self-similarity
allusions between the band structures, highlighted by the shadow
regions (blue and yellow) in the figure, at narrower energy ranges as
we move to higher orders of Koch-corral structures. This is a
fundamental aspect of the fractal nature emerging from the
electronic properties of such systems. It is important to note that
real self-similarity patterns should require perfect fractal geometries,
as presented, for instance, in triangular Sierpinski lattices (Domany
etal., 1983; Wang, 1995; Pedersen, 2020). In the construction of the
proposed TK chains, the presence of the interfaces between the
fractal units breaks the ideal fractal symmetry of the single flakes. In
the absence of such perfect self-similarity features, we have not
explored the localization nature of the involved wavefunctions.
Figure 5A compares the electronic structure of the TK-G2
discussed in Figure 4, considering IN (red curves) and 2NN
(blue curves) models. Remarkably, the negative energy spectrum
for the 1IN model exhibits almost flat bands—that is, without
dispersion, a manifestation of high localized states. For the 2NN

approach, however, the spectrum is more dispersed. The electronic
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conductance results for TK-G (2) chains described by both models
are shown in Figure 5B. As expected from the electronic bands
relative to the IN model, the transport response is mostly null for the
considered negative energy range. In a more realistic model, up to
second neighborhood, the
increases—marked by the blue conductance in the same energy

number of available channels
range—due to the non-zero electronic group velocities in the energy
interval from —1.2¢ to zero.

Concerning to the charge distribution at E = —¢ (Figure 5C), it is
clear that, for the 1IN model, the charges are concentrated around
particular sites that resemble the localized states for the same
geometry in the single corral (Figure 3). The wavefunction of
such states does not spread along the neighboring unit cells of
the molecular chain (Koch corrals), resulting in high localized states
and suppression of the transport response at this energy. The
situation is completely different within the 2NN model, as shown
in the results of the corresponding LDOS (right panel in Figure 3C),
highlighting the delocalization of the state through the chain.

3.3 Effective molecular quantum corrals

As mentioned in the introduction, with recent experimental
advances in the synthesis and fabrication of carbon nanocomposites,
new possible geometries can be explored that take into account the
interplay between fractal structures and regular geometries. Here, we
propose a quantum corral based on hexagonal symmetries similar to
the previously reported hexagram (Zhang Z. et al, 2020) and
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(A) From left to right: schematic view of G (1-4) fractal corral structures. For G (4), the colored squares distinguish G (1-4) generations. (B) Left:
numerical results for energy spectra in G (1-4); colored bar bright is directly proportional to the degeneracy order of states. Right: box counting linear fit

result.

hexagonal gasket (Newkome et al., 2006). However, in our suggested
TB framework, the systems can be considered hexagonal triangular
Sierpinski corrals of different orders (HTS). They are generated by
repeating Sierpinski triangles connected to form self-similar objects
like Koch corrals, as depicted in the G (1-4) sequence (Figure 6A).
For the sake of simplicity, we first consider the nanostructures
composed of equal atoms, represented by the black dot in all the
4" first generations G (1-4). In particular, we have taken all on-site
energies in the Hamiltonian €; = 0 representing the carbon lattices.
The fractal dimension D of the proposed system can be calculated
through the relation (Foroutan-pour et al., 1999):

D - fim LI ]

i o] 5)

with N® being the number of squares as a function of the size r
delimited by the image size. The box counting method (Kaurov,
2012) was used to estimate the fractal dimension, where it can be
obtained by the linear regression of the values as illustrated in the
right-hand chart in Figure 6B. The dimension estimated for the
1.63, which is
consistent with the reported version with hexagonal units instead

nanostructured system proposed here is D =

of Sierpinski triangles (Devaney, 2004), where D = log(6)/log(3) =
1.63.The energy spectrum for the first G (1-4) generations is
depicted in the diagram shown in the right-hand panel of
Figure 6B. The corresponding degeneracy of the states is coded
by the brightness of the colored bars in a direct correspondence. For
example, at E = —2¢ there are 6, 42, 258, and 1,554 degenerate states
in the sequence of G (1-4), respectively, and also at E = —t for
G (2-4).
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Returning to the molecular synthesized structures, due to the
presence of chemical elements in the systems other than carbon
atoms, we have chosen different on-site energies in the numerical
calculations: e = 0.25t, &g, = —0.25t, and eg,, = —0.35t.We have also
investigated (not shown here) cases in which &g, > &g, which did not
produce significantly changes in the present results. The set of
different atomic site symmetries in the effective lattice is denoted
by circles of different colors, as illustrated in the right-hand chart in
Figure 7A. Note that other non-equivalent sites are also marked in
the figure with dashed black circles that represent sites very similar
to those marked by purple and red circles. The LDOS corresponding
to the four non-equivalent colored sites are shown in Figure 7B. The
total density of states (averaged over the total number of atoms) is
also displayed in shaded grey curves. Special charge densities over
the quantum corral sites are depicted in Figure 7C for different states
marked in the eigenenergy spectrum diagram. The spatial LDOS for
the energies E = —0.3t and 0, next to the Fermi level (Er = -0.3¢), and
also for E = 1.1t, show that the main contributions comes from Fe
and C sites located in the internal hexagonal. On the other hand, for
E = -1.3t, the highest LDOS values come from the Ru atom
positions. The charge density panels are consistent with the
previous results of the LDOS versus energy presented in
Figure 7B, which highlight the charge distribution weight at the
individual atomic corral sites. The construction of higher generation
lattices would help to identify possible self-similarity manifestations
on the electronic properties. Also important is the incorporation of
spin-orbit coupling, mainly at the metallic sites, and hybridized-
orbital models to allow more realistic description of the metal
organic fractal structures (Canellas Nunez et al, 2023). Such
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(A) Top: chemical molecule illustration synthesized experimentally (adapted from Zhang Z. et al. 2020)). Bottom: proposed tight-binding effective

quantum corral, with colored dots denoting C (black), Fe (blue), and Ru (red) atoms. (B) LDOS of the corresponding sites marked by colored circles in the
TB corral and total averaged DOS (gray curve). (C) Energy spectrum with the electronic charge distribution for £ = -1.3t, —0.3t, 0, and 1.1t. TB parameters:
ec = 0.25¢, ¢ = —0.25t, and eg, = —0.35t.

analysis can help in engineering the electronic responses of the
quantum Triangle Sierpinski corrals and propose appropriate
functionalization of the molecules.

4 Conclusion

This research has explored the nature of localized states in
quantum corrals created by fractal structures, based on C atoms,
such as Koch lines and Sierpinski triangles. Annular triangular
and square Koch structures were proposed within a first- and up
to second-neighbor tight-binding framework. Comparison
between the two approaches reveals the existence of spreading
electronic states around the corrals, favoring the 2NN description
for possible transport applications. The emergence of conducting
channels is revealed for the proposed corral chains, similar to
what had been previously verified for other organic molecular
fractal chains (Lage and Latgé,2022). Furthermore, quantum
corral architectures based on triangular Sierpinski units were
proposed to effectively describe synthesized organic molecular
corrals. The results revealed rich features on the electronic
properties and good agreement with STM images of the
experimental data (Zhang Y. et al., 2020). Higher order fractal
structures can be envisaged that allow investigation of self-
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similarity responses. Also, more sophisticated descriptions
within the same tight-binding approach, incorporating many-
body correlation terms (spin-orbit couplings at the metallic sites
and electron-electron correlations), may be extended to better
describe complex molecular systems with transition metals. We
believe that the present research can be used to guide the
synthesis of a variety of real fractal molecular nanostructures,
highlighting the particular symmetries and possibilities of new
functionalization procedures.
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