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Oxidative stress is a key feature of the atherothrombotic process involved in the etiology
of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason
that antioxidants represent a credible therapeutic option to prevent disease progression
and thereby improve outcome, but despite positive findings from in vitro studies, clinical
trials have failed to consistently show benefit. The aim of this review is to re-appraise the
concept of antioxidants in the prevention and management of cardiovascular disease.
In particular, the review will explore the reasons behind failed antioxidant strategies
with vitamin supplements and will evaluate how flavonoids might improve cardiovascular
function despite bioavailability that is not sufficiently high to directly influence antioxidant
capacity. As well as reaching conclusions relating to those antioxidant strategies that
might hold merit, the major myths, limitations, and pitfalls associated with this research
field are explored.

Keywords: antioxidants, vitamin C, vitamin E, carotenoids, polyphenols, vascular disease, N-acetylcysteine,
allopurinol

Introduction

Inappropriate oxidation of biomolecules is a hazard associated with all aerobic life. Harmful
oxidation is often mediated by reactive oxygen species (ROS) that are generated by a wide range of
biological processes, including mitochondrial respiration and both enzymatic and non-enzymatic
chemical reactions. The long-standing but simplistic view of ROS is that they are harmful to cells,
contributing to the aging process [the so-called free radical theory of aging (1)] and implicit in awide
range of disease processes, including cancer and cardiovascular disease. However, the complexity of
the interaction between cells and ROS is evident in the fact that cells can generate ROS deliberately
in small amounts to act as signaling molecules (2), deliberately in large amounts to act as part of
the immune defense mechanism (3), or inadvertently through the respiratory chain (4) or other
metabolic processes. Indeed, the free radical theory of aging is no longer universally accepted
on account of the fact that two of the most effective interventions for improving health, caloric
restriction and physical activity, induce a counter-intuitive induction of mitochondria-derived ROS
(5). How then are the ROS generated under these conditions beneficial? The answer lies in the
adaptive response that the cells mount to counter the potential for deleterious effects. In particular,
there is strong evidence that repeated low-level bouts of oxidative stress up-regulate endogenous
antioxidant defense mechanisms, which might drive paradoxical improved health and longevity (6).
To label oxidative stress as universally harmful is, therefore, inaccurate; its propensity toward harm
is a function of the site and amount of ROS generation and can be ameliorated or entirely reversed
by the compensatory adaptive response.

Frontiers in Cardiovascular Medicine | www.frontiersin.org July 2015 | Volume 2 | Article 291

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org/Cardiovascular_Medicine/editorialboard
http://www.frontiersin.org/Cardiovascular_Medicine/editorialboard
http://dx.doi.org/10.3389/fcvm.2015.00029
https://creativecommons.org/licenses/by/4.0/
mailto:ian.megson@uhi.ac.uk
http://dx.doi.org/10.3389/fcvm.2015.00029
http://www.frontiersin.org/Journal/10.3389/fcvm.2015.00029/abstract
http://www.frontiersin.org/Journal/10.3389/fcvm.2015.00029/abstract
http://loop.frontiersin.org/people/198525/overview
http://loop.frontiersin.org/people/190696/overview
http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


Goszcz et al. Antioxidants in cardiovascular therapy

Antioxidants are substances that “neutralize” ROS before they
are able to react with cellular components and alter their structure
or function. According to the free radical theory of aging, antioxi-
dants were considered to be universally protective and beneficial;
hence, the familiar manufacturers’ claims that foods, drinks, and
supplements are “high in antioxidants,” with the subliminal infer-
ence that they must therefore be “good for you.” This generaliza-
tion is misleading for a number of reasons. First, it implies that all
antioxidants are the same; the truth is that the term “antioxidant”
applies to a very wide variety of chemical entities that share
only the capability of chemical reduction (donation of electrons).
Importantly, dietary antioxidants span the chemical spectrum;
some are highly lipophilic with long alkyl chains (e.g., vitamin E,
carotenoids), while others are highly water-soluble (e.g., vitamin
C). In addition, the size and complexity of antioxidants varies
from the small and simple (e.g., salicylates; RMM ~170) to very
complex polyphenolic agents, like tannic acid (RMM~1700). This
chemical diversity impacts heavily on bioavailability, metabolism,
and cellular distribution of any given antioxidant; lipophilicity will
predispose to accumulation in cell membranes and circulating
lipoproteins, while water-soluble agents are unlikely to penetrate
cell membranes without the aid of transporters. Bioavailability is a
highly complex issue that depends on resistance to digestion and
metabolic conversion by the gut microbiome (7, 8), absorption,
metabolism, and clearance. Finally, antioxidants are, by definition,
rapidly oxidized; while this is less of an issue for those that can
be stored in solid form, it is an important consideration upon
dissolution and in oils. Oxidation before or during ingestion
might not only render an antioxidant inert but could also actively
promote oxidative stress, depending on the nature of the product
formed.

There is a wealth of literature relating to the benefits or oth-
erwise of antioxidants in cardiovascular disease, but there is no
consensus as to the relative merits of this therapeutic approach,
partly on account of the heterogeneity among study populations,
coupled with the wide variety of different antioxidant approaches
undertaken – fromdietary interventions (e.g., fruit and vegetables,
foods, snacks, drinks, and multivitamins) to specific antioxidants
(e.g., vitamin C, vitamin E, quercetin, resveratrol, epicatechin,
N-acetylcysteine, allopurinol). While several clinical studies have
suggested that diets rich in fruit and vegetables protect against
cardiovascular disease (9–13), the evidence supporting the notion
of protective effects of particular diets, or components therein,
is both complex and contradictory. In this review, we aim to
critically assess the preclinical and clinical evidence with a view to
making some sense of the conflicting data. In particular, we will
focus on the role of oxidative stress in atherogenic disease progres-
sion, prior to evaluating the evidence surrounding antioxidants in
foods, drinks, and supplements.

Oxidative Stress, Antioxidants, and
Cardiovascular Disease

Oxidative stress – an imbalance between pro-oxidants and antiox-
idants, in favor of the former – is an important contributory
factor to the atherogenic process (14). Many conditions linked to
cardiovascular disease are associated with excessive pro-oxidant

TABLE 1 | Pro-oxidant substances.

Free radicals Non-radicals

Reactive
oxygen
species

Reactive
nitrogen
species

Reactive
oxygen
species

Reactive
nitrogen
species

Superoxide Nitric oxide Hydrogen peroxide Peroxynitrite
Hydroxyl Nitrogen dioxide Nitrite
Hydroperoxyl
Peroxyl

production and/or depression of endogenous antioxidant sta-
tus; examples include diabetes, hyperlipidemia, hypertension, and
obesity (15–19). In addition, a range of environmental factors
[e.g., tobacco smoke (20–22), pollution (23, 24)] is known to con-
tribute to oxidative stress and to promote cardiovascular disease.
Pro-oxidant substances can be described as either free radical
species or non-radical species that mediate peroxidation; the two
major sub-groups are ROS and reactive nitrogen species (RNS;
Table 1).

Antioxidants are either endogenous, derived fromdiet, or in the
form of therapies. Endogenous antioxidants include superoxide
dismutase (SOD), catalase, glutathione (GSH), GSH peroxidase
(GPx), thioreductase, and uric acid. Dietary sources include vita-
mins A, C, and E, as well as polyphenolic compounds and min-
erals (25), while N-acetylcysteine and allopurinol are therapeutic
agents under investigation for antioxidant effects.

Coronary artery disease, stroke, peripheral vascular disease,
hypertension, and heart failure are examples of cardiovascular
diseases that are considered to be valid targets for antioxidant
therapy. Atherosclerosis is the pathological process that underlies
coronary artery disease, leading to myocardial infarction, as well
as other vascular disease leading stroke and peripheral vascular
disease. Given the importance of atherosclerosis in cardiovascular
disease, it will form the focus of this review, although some
of the studies described transgress the boundaries into related
conditions, such as hypertension and heart failure.

Atherosclerosis

Dysfunction of the endothelial cells that line all blood vessels is
a key early event in the development of atherogenesis (26). The
endothelium is an active monolayer of cells with a wide variety
of key roles, including control of vascular tone, smooth muscle
cell proliferation, platelet aggregation, inflammation, and main-
tenance of vessel wall permeability (14, 26, 27). Endothelial cells
are particularly susceptible to oxidative stress, not only through
ROS-mediated cell death but also because the bioavailability of the
normally protective mediator, nitric oxide (NO), is compromised
through its very rapid reaction with superoxide anion (28). As
well as eliminating the protective effects of NO, this reaction
generates peroxynitrite (ONOO-), a highly cytotoxic RNS, which
can also mediate peroxidation of arachidonic acid derivatives
to form isoprostanes and malondialdehyde (MDA), lipoproteins
to form oxidized LDL, and n-6 polyunsaturated acids to form
4-hydroxynonenal (29–32).
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Smoking (33), diesel particulate matter (23), diabetes (34),
hyperlipidemia (35), and hypertension (36) are risk factors for
atherosclerosis that are associated with oxidative stress. Disease
progression is often considered to be an inflammatory process,
which ultimately results in lipid deposition in the intima of the
blood vessel wall (27, 37, 38). Atherosclerosis is a continuous
process, but is often categorized into three stages: fatty streak
formation, fibrous plaque development, and establishment of a
complicated plaque. The fatty streak is instigated by damage
to the endothelium, resulting in expression of cellular adhe-
sion molecules, such as vascular adhesion molecule-1 (VCAM-
1), which ultimately leads to recruitment of monocytes into
the sub-endothelial space. Monocytes are activated by cytokines
to differentiate into macrophages (Figure 1). Accumulation of
macrophages in the vessel wall does not necessarily constitute
a problem because, ordinarily, inflammation is rapidly resolved.
However, a crucial step in progression of this inflammatory event
into a chronic disease process hinges on oxidative stress because
LDL, which usually diffuses freely across the endothelium, read-
ily undergoes peroxidation to ox-LDL, triggering recognition by
scavenger receptors on activated macrophages now resident in
the vessel wall. Phagocytosis of ox-LDL by macrophages traps
the lipoprotein in the intima and the now bloated macrophages
take on a new identity – “foam cells” (39) (Figure 1). The fibrous
plaque is characterized by a stable cap of proliferated smooth
muscle cells and fibroblasts, which secrete collagen and other
connective tissue, enveloping a cholesterol-rich, lipid, and colla-
gen core. The final stage of plaque development, the complicated
plaque, results in an unstable lesion characterized by inflamma-
tion, necrosis, ulceration, hemorrhage, and thrombus, which can
ultimately be responsible for the occlusion of the blood vessel,
with clinical consequences of myocardial infarction, stroke, or
peripheral ischemia, depending on the location (40).

Oxidative stress has a clear role in the onset and the progression
of atherosclerosis, impinging on a number of points in the disease
process (Figure 1). As such, it is an attractive target for antioxidant
therapy, but the success or otherwise of proposed interventions
will rely on the ability to deliver sufficient amounts of the appro-
priate antioxidant to the right target, which is not a trivial issue to
resolve.

Antioxidant Defense

Cells synthesize and accumulate a wide variety of powerful antiox-
idants, including vitamins (A, C, and E), and enzymes (e.g.,
SOD, catalase, GPx, and thioredoxin reductase). Among other
non-enzymatic antioxidants available for cells are GSH (41, 42),
and the diet-derived free radical scavengers, carotenoids, and
polyphenols, assuming that they accumulate in sufficiently high
concentrations to be effective in this mode.

Primary Defense Mechanisms
In a state of oxidative stress, antioxidants help to mitigate against
damage by removing potential oxidants or transforming them into
less reactive compounds. The function of the so-called primary
defense mechanism is to prevent the oxidative damage directly
by intercepting free radicals before they can damage intracellular
targets. The endogenous enzymes are central in primary defense
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FIGURE 1 | The protective effects of antioxidants on endothelial
function, LDL handling, inflammation, and thrombosis (top panel).
Under conditions of oxidative stress, endothelial cell damage, loss of the
protective effects of NO, and enhanced LDL peroxidation combines to drive
an inflammatory state, leading to lipid accumulation in the arterial wall. CAMs,
cell adhesion molecules; NOX, NAD(P)H oxidase; eNOS, endothelial NO
synthase; iNOS, indicible NO synthase; NF-κB, nuclear factor kB; SOD,
superoxide dismutase; ET-1, endothelin-1; CAT, catalase; GSH, glutathione;
GPx, GSH peroxidase; LDL, low-density lipoprotein; ox-LDL, oxidized low
density lipoprotein; ONOO−, peroxynitrite; O·−

2 , superoxide; NO, nitric oxide.

(43, 44). SOD is responsible for converting superoxide radical to
hydrogen peroxide as follows:

O2
.− + O2

.− + 2H+ SOD
→ H2O2+ O2

Primary defense against H2O2 ismediated by the enzymes cata-
lase and GPx, which transform H2O2 into water and molecular
oxygen:

2H2O2
catalase

→ 2H2O + O2

The GSH system is an important cellular defense mechanism
against free radicals. GSH not only acts as a direct ROS scavenger
but also plays a fundamental role in the regulation of the intra-
cellular redox state. The system consists of GSH, GPx, and GSH
reductase. GPx is an enzyme that catalyzes the reduction of H2O2
to water utilizing GSH as a co-substrate:

H2O2 + 2GSHGPx
→ GSSG + 2H2O
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Glutathione disulfide (GSSG) is then reduced back to GSH by
GSH reductase:

GSSG + NADPH + H+ → 2GSH + NADP+.

The ability of cells to regenerate GSH (through the reduction
of GSSG or by de novo synthesis of GSH) reflects efficiency of the
cell in managing oxidative stress (44).

Secondary Defense Mechanisms
Secondary antioxidant defense mechanisms – also known as
chain-breaking defenses – trap harmful radicals before they can
inflict damage. Many small molecules widely distributed in bio-
logical systems can scavenge free radicals as a part of the secondary
defense system, including vitamin C, uric acid, and free and
protein-incorporated cysteine (e.g., Cys 34 in albumin).

Lipid soluble antioxidants, such as vitamin E, are present in
cell membranes and protect against lipid peroxidation. Vitamin
E converts oxygen-centered free radicals to less reactive form
by donating a hydrogen ion. Nuclear enzymes involved in DNA
repair can be considered to be secondary defense systems against
oxidative injury caused by oxygen free radicals. Many GSH trans-
ferases that express peroxidase activity are considered to also
protect against lipid peroxidation (43).

Antioxidant Therapies

In an effort to make some sense of the range of outcomes
achieved with antioxidants and to take into consideration the
concept that each antioxidant has different merits and should
be considered as a separate entity, we will examine each of the
most studied antioxidants individually. However, it is impor-
tant to highlight the findings of large multivitamin supplement
clinical trials to frame the findings for individual antioxidants
(vitamin, mineral, or other) to follow. For clarity, we have not
included supplements and drugs that have well-characterized pri-
mary actions that might be complemented by antioxidant activ-
ity. For example, antioxidant activity has been described as one
of several pleiotropic effects attributable to statins (45–47), but
their principle activity is through inhibition of hydroxy-3-methyl-
glutaryl-CoA (HMG-CoA) reductase. Similarly, polyunsaturated
fatty acids [e.g., omega-3 fatty acids, docosahexanoic acid (DHA)
and eicosapentaenoic acid (EPA)] might have antioxidant effects
(48–51), but they also have amajor impact on the balance between
pro- and anti-inflammatory eicosanoids (52–55). In these cases,
more than others, it is difficult to attribute any effects seen in
clinical studies to antioxidant activity as opposed to alternative
actions, but it is nevertheless acknowledged that they have the
potential for antioxidant effects.

Multivitamin Clinical Trials
The blanket approach of daily multivitamin therapy is appealing
because it negates the need to identify the active ingredient –
simply deliver all the essential vitamins at the agreed recom-
mended daily allowance to ensure that none are deficient. Another
potential benefit of a multivitamin approach is that there might
be synergistic effects of the vitamins and minerals included in

the supplement. The risk, however, is that individuals might
view multivitamin supplements as a substitute for a healthy fruit
and vegetable-rich diet, leading to deprivation of other beneficial
micronutrients and health-enhancing components (e.g., fiber),
which might hold just as much, if not more, promise than the
vitamins themselves.

A range of case–control studies have reported on the potential
benefits of multivitamins in cardiovascular disease. While some
show a reduction in cardiovascular risk associated with multivi-
tamin use (56, 57), others do not (58–60). Perhaps most tellingly,
a large (14,641 male participants) randomized placebo-controlled
trial among US physicians (PHS II) failed to identify any differ-
ence in cardiovascular outcomes between the multivitamin group
and the placebo group (61). A limitation of this study is that the
study group (US physicians) is highly educated and likely to be
well-nourished, with a balanced diet; vitamin supplements might
be superfluous in such a group. Nevertheless, in response to these
and other trials, the US Preventative Services Task Force state-
ment regarding multivitamins for prevention of cardiovascular
disease and cancer reads “no recommendation” on account of
insufficient evidence to determine the balance of benefits and
harm (62). Furthermore, a comprehensive Cochrane review (63)
of the impact of antioxidant supplements (administered singly
or in various combinations) on healthy individuals (26 trials),
or in people with one or more of a range of diseases (52 tri-
als), including cardiovascular disease (10 trials), found no overall
reduction in all-causemortality, irrespective of the combination of
antioxidants used. Indeed, the findings of the review indicate that
some antioxidants (β-carotene, vitamin A, and vitamin E) have
the potential to increase mortality, either singly or in combination
with other antioxidant supplements.

These findings and the conclusions drawn provide a backdrop
for all of the data relating to individual vitamins and minerals that
have been advocated in protection against cardiovascular disease,
the essence of which is covered in the sections to follow.

Vitamin C
Biochemistry
Vitamin C (ascorbate or ascorbic acid) is a water-soluble vitamin
found in high concentrations in fruit and vegetables, particularly
citrus fruit, kiwi, cantaloupe, mango, strawberries, and peppers
(64). Dietary ascorbate is essential for humans because we lack
the enzyme, -gulono-γ-lactone oxidase, required to synthesize
it (65). The recommended daily allowance for ascorbate varies
from country to country (40–90mg/day) derived from knowledge
about both the minimum requirement to prevent scurvy – the
debilitating disease that is caused by chronic vitamin C defi-
ciency (66) – and the threshold plasma concentration that drives
excretion. However, it has long been recognized that vitamin C
is an antioxidant and that its consumption may be beneficial
in reducing the impact of oxidative stress in a range of disease
processes (64).

Vitamin C is a strong reducing agent that is reported to pro-
vide cytoprotection by scavenging ROS, and hence, protecting
DNA, protein, and lipids against peroxidation (64). The powerful
ability of vitamin C to eliminate ROS results in its oxidation to
inactive dehydroascorbate; hence, its notoriety as a “sacrificial”
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FIGURE 2 | Vitamin C (ascorbate) and its oxidation products.

antioxidant. However, it is important to recognize that vitamin
C is also capable of recycling other endogenous antioxidants,
including vitamin E (67). The free radical scavenging ability of
vitamin C is attributed to donation of two electrons from a double
bond between the second and third carbons in the ring (Figure 2).
Among the ROS scavenged are superoxide, hydroxyl radicals, per-
oxyl radicals, NO, and many non-radicals, such as hydrochlorous
acid and nitrosating agents (64).

The importance of vitamin C in cellular function is high-
lighted by its very high intracellular concentration (>1mM) (68),
which is considerably greater than that in the plasma (typically
30–80 µM). There are specific transport systems for uptake and
accumulation of vitamin C in cells: sodium-dependent vitamin C
transporters (SDVC-1 and SDVC-2) transport the reduced form
of the vitamin, while the hexone transporters, GLUT-1 andGLUT-
3, transport dehydroascorbic acid (69–71).

On a cautionary note, however, despite the many beneficial
properties of vitaminC, in the presence ofmetal ions, it can be pro-
oxidant by catalyzing the reduction of Fe3+ to Fe2+ (66), which
can then take part in Fenton chemistry, producing highly reactive
hydroxyl radicals, resulting in oxidative damage to proteins, lipids,
and DNA (72):

Fe3+ + •O2- −→ Fe2+ + O2

Fe2+ + H2O2 −→ Fe3+ + OH− + •OH

It is also important to acknowledge that, by definition, vita-
mins are only required in small quantities. Indeed, absorption
of vitamin C occurs at variable rates, depending on the intake
(~100%with low intake and as low as ~30%with high intake) (68).
Similarly, there is relatively tight regulation of the plasma concen-
tration on account of a renal re-absorption threshold for clearance
at ~80 µM (68). In addition, vitamin C is readily oxidized by the
endogenous enzyme, -ascorbate oxidase; taken together, these
biological regulators ensure a degree of homeostasis for plasma
vitamin C at concentrations that rarely drift below 30 or above
80 µM. This is important because increased ingestion in an indi-
vidual with a relatively healthy diet will have only a transient
impact on plasma concentration and quite possibly none at all.
Indeed, the recommended daily allowance has been reached with
consideration of the pharmacokinetics of vitamin C.

In Vitro and In Vivo Animal Studies
The inflammatory response seen in atherosclerosis can be inhib-
ited by vitamin C by preventing leukocyte aggregation and adhe-
sion to the endothelium, induced by cigarette smoke in vitro (73).
Vitamin C also has the potential to prevent lipid peroxidation,
central to atherosclerosis, by inhibiting oxidation of LDL and
subsequent uptake of ox-LDL (64, 74).

Mice lacking -gulono-γ-lactone oxidase (Gulo−/−), the
enzyme essential for vitamin C synthesis, show extensive vascular
damage, including elastic lamina disruption, smooth muscle cell
proliferation, and desquamation of endothelial cells, when vita-
min C is withdrawn from their diets, highlighting the essential
nature of vitamin C in vascular development and function (75).
In the Apo-E−/−/Gulo−/− atherosclerotic mouse model, plaque
development was found to be unaffected by vitamin C deficiency,
but reduced collagen deposition in plaques suggested the potential
for increased risk of rupture in this in vivo animal study (76).

Clinical Studies and Trials
The fact that the majority of animal species synthesize vitamin
C makes animal studies difficult. A number of small-scale clin-
ical studies have investigated the impact of vitamin C on sev-
eral factors associated with vascular health. The British Regional
Heart Study found an inverse association between plasma vitamin
C concentration and markers of inflammation and endothelial
dysfunction in men with no history of cardiovascular disease or
diabetes (77). In addition, acute administration of vitamin C (3 g)
improved endothelium-dependent vasodilation in the epicardial
coronary artery in patients with hypertension (78). Endothelial
dysfunction has been identified as the major target for vitamin
C-mediated effects. For example, in patients with coronary artery
disease or hyperglycemia-induced impairment of vasodilation,
NO-mediated vasodilation is restored with either oral (6 g over
2 days) or intra-arterial infusion (24mg/min for 10min) of vita-
min C (79, 80). The precise mechanism underlying this effect is
not yet clear, but it has been postulated that, as well as scavenging
ROS, vitamin C might impact on NO bioavailability through
direct stimulation of the enzyme responsible for synthesis of NO
(endothelial NO synthase: eNOS), or enhanced synthesis of an
essential cofactor for NOS activity, tetrahydrobiopterin (BH4) (81,
82). Likewise, oral vitamin C administration (2 g) was found to
reduce arterial stiffness and platelet aggregation in healthy indi-
viduals; the mechanism involved was not established in this study,
but improved endothelial function was considered to be a strong
possibility (83).

The European prospective investigation into cancer and nutri-
tion (EPIC) Norfolk study found that plasma vitamin C con-
centration was inversely related to incidence of cardiovascular
disease-related mortality, as well as all-cause mortality, in both
men and women. The study recruited nearly 20,000 individuals
aged 45–79 years and monitored plasma vitamin C and all-cause
mortality, with a particular focus on cardiovascular disease and
cancer, for ~4 years. It was determined that by increasing plasma
vitamin C by 20 µM through increased intake of fruit and vegeta-
bles, cardiovascular disease mortality was reduced by ~20% (84).
By contrast, only the smallest two of seven vitamin C supplement
studies included in a recent meta-analysis (85) have shown any
benefit in reducing major cardiovascular events, leading to the
conclusion that vitamin C has no effect on this end point. A
large-scale study conducted over 20 years found that diets rich
in vitamin C were associated with a lower incidence of stroke
in elderly people (+65 years), but no significant association was
found with coronary heart disease (86). Taken together, these
findings infer that vitamin C might not be the active agent in the

Frontiers in Cardiovascular Medicine | www.frontiersin.org July 2015 | Volume 2 | Article 295

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


Goszcz et al. Antioxidants in cardiovascular therapy

effect seen in the Norfolk trial, but that the benefits shown by
eating sufficient fruit and vegetables to have a significant impact
on plasma vitamin C induce a protective effect through other
fruit and vegetable-derived nutrients. The Cochrane review on
antioxidant supplements similarly concludes that vitamin C fails
to reduce all-cause mortality (63).

Vitamin E
Vitamin E is the most comprehensively studied antioxidant in
humans, to date, particularly with respect to large-scale clinical
trials. The results of these trials have had a major impact on
the perception of antioxidants as whole in the cardiovascular
arena.

Biochemistry
The term “Vitamin E” refers to eight lipid soluble, isomeric com-
pounds containing three asymmetric carbon atoms, known as
tocopherols and tocotrienols (Figure 3). The major isoforms in
human diet are α- and γ-tocopherol; α-tocopherol is the best-
researched as it is the most potent antioxidant of the group (87–
89). Cooking oils, egg yolk, butter, green leafy vegetables, and
some fruits (kiwi fruit, pumpkins, mangoes, papayas, and toma-
toes) are rich sources of vitamin E. While vitamin E deficiency
can cause serious health problems, it usually occurs in premature

babies who have genetic deficiency in tocopherol transport pro-
tein or have fat absorption problems – it is rarely due to deficiency
in the diet (90).

The tocopherols and tocotrienols are absorbed with fats
through a non-specific uptake mechanism in the intestine, from
where they are transported to the liver in chylomicrons prior
to secretion in very low density lipoproteins (VLDL). VLDL
is subject to delipidation and converted to LDL, enriching all
lipoproteins with vitamin E. LDL transport is essential for deliv-
ering vitamin E into tissues; unbound vitamin E is hydropho-
bic, making it immiscible with the aqueous plasma and cellular
compartments (87).

In Vitro and In Vivo Animal Studies
In vitro and in vivo animal experiments have led to the pro-
posal that vitamin E, and α-tocopherol, in particular, has pro-
tective qualities that might help to prevent cardiovascular disease.
In vitro studies have shown that α-tocopherol can protect against
oxidative stress, inflammation, and endothelial dysfunction, all of
which are characteristic of atherosclerotic plaque development.
For example, monocyte adhesion to the endothelium can be
reduced in the presence of α-tocopherol in cultured monocytes
(91) and primary humanmonocytes (92). Vitamin E has also been
shown to inhibit expression of adhesion molecules, VCAM-1 and

FIGURE 3 | Structure of tocopherols and tocotrienols.
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ICAM-1, on cultured endothelial cells stimulated by ox-LDL (93).
Vascular smooth muscle cell proliferation can also be inhibited by
α-tocopherol via inhibition of protein kinase C activity (94).

The effects of vitamin E/α-tocopherol in in vivo animal mod-
els are inconclusive. For example, α-tocopherol can significantly
lower circulating C reactive protein (CRP), an inflammatory
marker that is associated with atherosclerosis (95) and, impor-
tantly from an antioxidant perspective, vitamin E supplemen-
tation can protect LDL from peroxidation, which may slow
atherosclerotic plaque development (96). Lipid peroxidation can
be prevented by α-tocopherol, through scavenging of ROS, pre-
venting the early stages of atherosclerosis, and limiting the damage
caused during ischemia reperfusion, where excessive ROS are
produced (97, 98). In addition, vitamin E supplementation has
been shown to reduce intravascular fatty deposits andmacrophage
activation in a mouse model of diabetes in which the animals are
ordinarily prone to developing atherosclerosis (99). By contrast,
however, vitamin E supplementation failed to reduce atheroscle-
rotic lesion size or levels of 8-iso-prostaglandin F2α , a marker of
oxidative stress, in obese hyperlipidaemic mice (100).

Clinical Studies and Trials
Vitamin E has been the subject of two large clinical trials: the
Cambridge heart antioxidant study (CHAOS) and the heart out-
comes prevention evaluation study (HOPE). The results from
CHAOS showed some promise in that, while α-tocopherol sup-
plementation failed to have an impact on cardiovascular mor-
tality rates, it succeeded in reducing the incidence of non-fatal
myocardial infarction in patients with coronary artery disease
(101). Results from the HOPE trial, however, were disappointing,
because vitamin E supplementationwas found to have no effect on
cardiovascular outcomes in patients at high risk of cardiovascular
events or in patients with diabetes (102, 103). It is difficult to spec-
ulate on the reasons for this difference because both studies used
patients with similar disease profiles, although the HOPE trial
measured many more outcomes than CHAOS. The CHAOS trial
only recruited patients with angiographically proven coronary
artery atherosclerosis, whereas the HOPE trial recruited those at
high risk of cardiovascular disease. Vitamin E was administered
in the same way in both trials, but initially in CHAOS, a high
dose (800 IU) was administered to the first group of patients
recruited. Irrespective of theminor differences between individual
studies, the antioxidant Cochrane review found that vitamin E
supplements have the potential to significantly increase all-cause
mortality (63).

Despite the disappointing outcomes of these large-scale trials,
there is still a broad spectrum of in vitro and in vivo data that
support the possibility that vitamin E may exert cardioprotective
properties. For example, dietary supplementation with vitamin E
has been shown to inhibit platelet adhesion ex vivo, suggesting a
potential benefit in preventing thrombus formation (104). In any
event, the results of theHOPE trial dealt amassive blow to vitamin
E as a beneficial antioxidant in cardiovascular disease and led to
a widespread sense that the whole concept of antioxidant therapy
might be flawed. While the former conclusion might hold some
truth, the latter perception is almost certainly unwarranted. The
current recommendation from the US preventative task force is

that vitamin E supplementation is not recommended in primary
prevention of cardiovascular disease (62).

Vitamin A and the Carotenoids
Biochemistry
The carotenoids are a group of lipid soluble, vibrantly colored
pigments (yellow, orange, and red) found extensively in fruit and
vegetables (Table 2). Retinol (vitamin A) can be synthesized from
β-carotene in the gut, both before and after absorption [Ref.
(105) for detailed review]. Lycopene, the precursor for β-carotene
and many other carotenoids, is probably the most studied of this
group. It is a potent singlet oxygen scavenger that is twice as
effective in this capacity as β-carotene and 10 timesmore effective
than α-tocopherol (106). The remarkable free radical scavenging
activity of lycopene has been attributed to its highly unsatu-
rated chemical identity, although it does not vary greatly from
other carotenoids in this regard. The structures of the important
carotenoids are illustrated in Figure 4.

While lycopene’s antioxidant activity might be higher than that
of vitamin E and other diet-derived antioxidants, the limitation
to in vivo antioxidant effects revolve around its bioavailability
(plasma concentrations typically <1 µM in free living individuals

TABLE 2 | Dietary sources of carotenoids.

Carotenoid Dietary source

β-carotene Apricot, carrot, spinach, cantaloupe, broccoli,
green beet, tomato

Lycopene Tomato, guava, watermelon, pink grapefruit
α-carotene Carrot
Lutein and zeaxanthin Spinach, green beet, broccoli, green peas
β-crytoxanthin Tangerine, papaya

FIGURE 4 | Structure of five major carotenoids in human diet.
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in a placebo-controlled β-carotene trial) (107). However, the sit-
uation is more complex than simply considering raw plasma con-
centration because lycopene associates with LDL in the plasma,
where the local concentration in these lipid-rich moieties will be
considerably higher. In addition, the lipid solubility of lycopene
ensures that it accumulates in fat-rich organs and tissues (e.g.,
liver, prostate, testes) (108), where it might reach sufficient con-
centrations to have a genuine impact on antioxidant capacity. As
with other diet-derived components, it is also crucial to consider
the effect of cooking and oxidation prior to ingestion, as well as
metabolism on the eventual metabolites available in the appro-
priate compartment to influence biological processes. The impact
of cooking is not necessarily detrimental to antioxidant capacity,
studies involving thermal processing of tomatoes indicated that
heating reduced vitamin C content, but caused a concomitant
increase in bioavailable lycopene, possibly due to release from the
matrix of the fruit, and a net increase in antioxidant capacity (109).

In Vitro Studies
Evidence surrounding carotenoids from in vitro studies is con-
flicting. For example, β-carotene, lycopene, and lutein all prevent
Cu2+-mediated LDL peroxidation (110). However, a similar study
using endothelial cells to induce lipid peroxidation found no
benefit from β-carotene or lycopene enrichment of LDL (111).
Both of these studies used similar concentrations of carotenoids;
therefore, it is most likely that different results stem from using
different models to induce oxidative stress.

In vitro studies indicate that β-carotene and lycopene are
capable of reducing plasma cholesterol levels through inhibition
of HMG-CoA reductase, the rate-limiting enzyme involved in
cholesterol synthesis. HMG-CoA reductase is the target of the
highly successful group of drugs known as statins (e.g., simvas-
tatin, fluvastatin) and therefore constitutes a valid target for plant-
derived agents. Both β-carotene and lycopene (10 µM) reduced
HMG-CoA activity to a similar extent as fluvastatin (10 µg/ml),
suggesting a potential therapeutic application for carotenoids. In
addition to this, macrophage LDL receptor activity was increased
in the presence of these carotenoids, reducing circulating LDL,
suggesting a possible a protective role in the cardiovascular system
(112, 113). By contrast, however, it has been demonstrated in
cardiac myocytes and endothelial cells that retinoic acid (the
active metabolite of retinol) has been shown to reduce activity of
inducible NOS (iNOS), which is usually active during inflamma-
tion, producing cytotoxic levels of NO in both cardiac myocytes
and endothelial cells (114).

Clinical Studies and Trials
Many clinical studies have suggested that carotenoids have car-
dioprotective properties. The Physicians Health Study found that
coronary artery disease was less prevalent in men who ate veg-
etables rich in carotenoids (115). Moreover, recent studies, such
as the coronary artery risk development in young adults (CAR-
DIA) and the young adult longitudinal trends in antioxidants
(YALTA) studies, have found that high-plasma carotenoid con-
centrations are associated with reduced inflammation, oxidative
stress, and endothelial dysfunction, three important characteris-
tics of atherosclerosis (116), while theBruneck study found a lower

incidence of atherosclerosis in individuals with higher plasma
levels of β-carotene and α-carotene (117). Reduction in markers
of endothelial dysfunction, such as soluble intercellular adhesion
molecule (sICAM-1), and inflammation (CRP) are associated
with elevated plasma concentrations of carotenoids resulting from
high intake of fruit and vegetables rich in carotenoids (118).
By contrast, however, the β-carotene and retinol efficacy trial
(CARET) found an inverse correlation between supplementation
and risk of cardiovascular disease; this is the only trial, to date,
which has investigated the impact of retinol supplementation
on cardiovascular disease, albeit in combination with β-carotene
(119). The EURAMIC study found a weak association between
adipose β-carotene concentration and risk of MI, but the effect
was lost after controlling for a range of confounding factors (120).
Findings from a more recent study in 1031 Finnish men, however,
found a more convincing correlation between serum β-carotene
and reduction in risk of MI (121). Similarly, LDL oxidation was
not reduced by β-carotene in a study inwhich vitaminEwas found
to be beneficial (96). Again, there is perhaps a disparity between
findings where β-carotene is used as a marker of fruit and veg-
etable ingestion and those involving supplements, which could be
interpreted to indicate that β-carotene is a bystander rather than
causal in dietary studies. Indeed, based on these studies, the state-
ment from the US Preventative Task Force is to not recommend
β-carotene for prevention of cardiovascular disease (62). Likewise,
the Cochrane review on antioxidant supplements and all-cause
mortality found β-carotene and vitaminA to significantly increase
all-cause mortality (63).

There has been considerable recent interest in lycopene – the
carotenoid that is found in high concentration in tomatoes. In
the EURAMIC study, adipose lycopene concentrations correlated
with a reduction in risk of MI and the effect was retained after
correction for confounding factors. The odds ratiowasmodeled in
this study using the contrast between the 10th and 90th percentile
for adipose lycopene and was found to be 0.52 (120), suggesting
that risk of mortality was substantially reduced in those with
high-adipose lycopene. A similar correlation has been reported
for serum lycopene and a reduction in risk of MI (121). These
promising epidemiological studies have prompted a number of
small interventional studies, which have generally shown benefi-
cial effects of lycopene on a range of outcome measures related
to cardiovascular disease [see Ref. (122) for review]. In short, the
data indicate that diet- or supplement-derived lycopene reduces
inflammation and oxidative stress markers in overweight and
healthy individuals, improves endothelial function, and reduces
platelet activity (123, 124). Interestingly, the most recent study
(125) found that lycopene only improved endothelial function
in a patient group and not a parallel healthy volunteer group,
perhaps suggesting a therapeutic rather than preventative role for
lycopene. All of these studies are small and require confirmation
in larger cohorts, but the findings are positive and the anti-
thrombotic data (123, 124) were the basis for a patent and the
subsequent commercialization of a tomato extract with European
Food Standard Agency approval for therapeutic claims.

Compared to β-carotene and lycopene, the other carotenoids
have received considerably less attention. The Los Angeles
Atherosclerosis Study demonstrated that lutein-rich diets were
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inversely related to early atherosclerotic lesion development.
Moreover, in vitro and knockout mice findings were also pre-
sented showing lutein reducedmonocyte chemotaxis in an in vitro
atherosclerotic model and atherosclerotic lesion size was reduced
in lutein-treated apolipoprotein E (Apo-E) and LDL receptor
knockout mice (126). Zeaxanthin and β-cryptoxanthin have not
been as intensely investigated as β-carotene, lycopene, and lutein
(127), although plasma lutein, zeaxanthin, and β-cryptoxanthin
(collectively known as the oxygenated carotenoids) have been
shown to be inversely associated with coronary artery dis-
ease (128).

Despite encouraging in vitro and in vivo data relating to a
range of carotenoids, and an apparent correlation between plasma
carotenoid concentration and reduced risk of cardiovascular
disease in epidemiological studies, data from carotenoid inter-
vention trials have failed to provide incontrovertible evidence
in support of carotenoids in cardiovascular disease. However,
the findings have not all been negative and the results relat-
ing to lycopene in particular suggest that the less convincing
findings for β-carotene should not be taken as indicative of all
carotenoids. Indeed, the ex vivo and in vitro data for tomato
extracts have been regarded to be sufficiently strong by the
European regulatory body to gain rare approval for therapeutic
claims.

Folate and Other B Vitamins
Biochemistry
Dark leafy vegetables, such as spinach, are rich sources of folate
(folic acid, vitamin B9) and other B vitamins. Folate and the
B vitamins have a crucial role in metabolism of the essential
amino acid, methionine, with impacts on both homocysteine and
antioxidant GSH (Figure 5).

In Vitro and In Vivo Animal Studies
Homocysteine is believed to induce endothelial dysfunction
because its thiol group is easily oxidized, generating ROS, which
reduce bioavailability of NO by direct oxidative inactivation
and depletion of intracellular GSH pools (129, 130). In addi-
tion, homocysteine has been implicated in increased formation
of asymmetric dimethyl--arginine, an endogenous inhibitor of
NOS (131) and in protein kinase C activation, leading to the
inhibition of eNOS and further reducing NO bioavailability
(132). Furthermore, vascular inflammation can be promoted by
homocysteine through NF-κB-mediated expression of the pro-
inflammatory cytokines,monocyte chemotactic protein (MCP-1),
and IL-8 (129). Hyperhomocysteinemia is therefore recognized to
be an independent risk factor for cardiovascular disease (133), at
least partly via oxidative stress. Homocysteine-lowering therapy
is a potential option in homocysteine-driven cardiovascular dys-
function; B vitamins involved in homocysteine cycling and GSH
synthesis (Figure 5) represent potential therapeutic agents in this
arena.

Folate has been demonstrated to scavenge hydroxyl and lipid
peroxyl radicals in vitro (134). The latter is perhaps surprising,
given the water solubility of folic acid but, if true, is likely to
contribute to any protective effects in cardiovascular disease.
Moreover, folate supplementation in vivo in Apo-E knockout
mice (135) has been shown to decrease number of atherosclerotic
plaques in these animals, and was also associated with a decrease
in LDL peroxidation. Similar results have been reported in a
homocysteine-induced rat model of atherosclerosis (136), while
a further potential use of folate has been identified in an animal
model of abdominal aortic aneurysm (137), whereby folate acts to
help reverse uncoupling of eNOS implicated in the etiology of the
condition.
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FIGURE 5 | The role of vitamins B9 (folate), B6, and B12 in methionine metabolism and glutathione (GSH) synthesis.
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Clinical Studies and Trials
Low-circulating levels of folate, vitamin B12, and vitamin B6 are
risk factors for stroke, peripheral vascular disease, and coronary
artery disease (138). Supplementation of folate, hydroxocobal-
amin (vitamin B12), and pyridoxine (vitamin B6) reduces serum
homocysteine in elderly patients with slightly elevated plasma
concentrations (139). A similar study found that folate, hydrox-
ocobalamin, and pyridoxine supplements for 8weeks reduced
serum homocysteine to within the normal range in healthy vol-
unteers and in patients with venous thrombosis (140). Moreover,
a similar small-scale supplementation study found a decrease in
carotid artery intima-media thickness in high-risk cerebral infarc-
tion patients (141). A further positive study showed that low-
dose folate supplementation improved endothelial function in
patients with cardiovascular disease shortly after receiving a coro-
nary graft. Importantly, the benefits in this study were attributed
to improved coupling of endothelial NO synthase through the
essential cofactor, tetrahydrobiopterin, rather than by an impact
on plasma homocysteine levels (142).

The vitamin intervention for stroke prevention (VISP) ran-
domized controlled trial found no significant effect of folate,
hydroxocobalamin, and pyridoxine supplementation in reducing
incidence of cerebral infarction, coronary events, or cardiovascu-
lar death. Patients with non-disabling cerebral infarction received
a high-dose or low-dose folate, hydroxocobalamin, and pyridox-
ine supplementation for 2 years, after which recurrent cerebral
infarction, coronary events, or death was recorded (143).

As with many of the other antioxidant vitamin interventions
discussed above, there appears to be a mis-match between the
potential of vitamin B supplements shown in vitro and suggested
by cohort, prospective, and retrospective clinical studies, and ran-
domized control trials with B vitamins. In a recent review on the
subject (144), a convincing argument is put forward that any ben-
eficial effects of vitamin B (or vitamin E) in intervention studies
is masked by the effects of statins, aspirin, and other drugs that
patient groups are inevitably receiving. Added to this, we would
argue that vitamin therapy is only likely to benefit individuals
deficient in the vitamin of choice and could only show benefit in
a sub-set of the study populations. The findings of a Cochrane
systematic review for vitamin B6, 9, and 12 in cardiovascular
disease were that there is no evidence to support the use of these
B vitamins to prevent cardiovascular events (145).

Polyphenolic Compounds
Biochemistry
A polyphenol is defined as a compound that contains two or more
phenol groups (146). This large group of compounds is divided
into several sub-groups: flavonoids, phenolic acids, stilbenes, and
lignans (147) (Figure 6). Polyphenolic compounds are abundant
in plants and are readily found in fruit and vegetables (Table 3). In
addition, they are important components of herbs and spices and
are likely to be critical ingredients in Chinese medicines.

Polyphenols as antioxidants
The paradigm for the mechanism of action of polyphenols is
through direct antioxidant activity, on account of their interac-
tion with ROS, including both radical and non-radical oxygen

species, such as O·−
2 , H2O2, HOCl, NO, as well as those derived

from biomolecules, such as LDL, proteins, and oligonucleic acids
(DNA, RNA) (149–152). Structural features, such as number and
relative position of hydroxyl and catechol groups, determine the
antioxidant properties of polyphenols (150, 152, 153).

Polyphenols can also act as antioxidants by chelatingmetal ions,
such as iron and copper, which are involved in conversion of
O·−

2 and H2O2 into highly aggressive ·OH (Fenton chemistry).
They can also block the action of some enzymes responsible
for generation of superoxide radical, such as xanthine oxidase
(XO) and protein kinase C, as well as activating antioxidant
enzymes (150, 154).

There is an ongoing debate regarding the probability of
observed direct antioxidant activities in vivo, since supra-
physiological concentrations (100–400 µM) of polyphenols were
often used in tests determining their antioxidant properties. Low
bioavailability (~1 µM) of phenolic compounds seriously ques-
tions their ability to engage in direct antioxidant potential in the
in vivo scenario (152). The emerging concept is that phenolicsmay
induce endogenous antioxidant defense systems through modu-
lation of gene expression, therefore, protecting against oxidative
stress in an indirect manner (154, 155).

Polyphenols as pro-oxidants
The pro-oxidant activities of polyphenols are based on their abil-
ity to generate ROS. It has been reported that phenolic com-
pounds can oxidize readily in beverages, tissue culture media, and
phosphate buffers, especially in the presence of transition metal
ions (156, 157). Oxidation of polyphenols leads to superoxide
radical and H2O2 production, as well as a complex mixture of
semiquinones and quinones, all of which are potentially toxic
(157, 158). The level of cytotoxicity depends on both the type of
polyphenol and the amount of free radicals generated (156).

A variety of polyphenols and polyphenol-containing extracts
have been reported to generate ROS, including green tea, black tea,
and apple extracts, as well as individual phenolics, such as gallic
acid, protocatechuic acid, vanillic acid, ellagic acid, caffeic acid,
quercetin, rutin, kaempferol, catechin, epicatechin, delphinidin,
and malvidin (158).

The pro-oxidant effects of polyphenols can also be beneficial,
since, by imposing a mild degree of oxidative stress, they can
induce endogenous antioxidant defense mechanisms. However,
the amount of research on the antioxidant potential of polyphe-
nols overshadows the lesser number of studies on the biological
implications of their pro-oxidant properties (154, 156).

Fruit and vegetable-derived polyphenols have been subject to
a great deal of study, providing a substantial body of evidence
to support the beneficial effects of these substances on health.
Here, we look specifically at the benefits of polyphenols on the
cardiovascular system (159), where polyphenols have been found
to be associated with a reduction in mortality from cardiovascular
disease (160–162), but the mechanisms through which they exert
their cardioprotective actions are not yet fully understood (163).
The assumption is that the antioxidant properties of polyphenols
protect blood vessels against oxidative damage and the asso-
ciated cardiovascular risk factors (163, 164). It has been pro-
posed that polyphenols might protect vascular endothelial cells
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FIGURE 6 | Flavonoid and non-flavonoid phenolic compounds. Schematic showing phenolic compounds, along with typical examples and associated chemical
structure (adapted from http://www.frenchglory.com/polyphenol-classification.html).

TABLE 3 | Dietary sources of common (poly)phenolic compounds [adapted from Watson et al. (148)].

Polyphenol class Examples Common dietary sources

Anthocyanidins Cyanidin, delphinidin, malvidin, pelargonidin, peonidin, petunidin Fruit, red wine, some cereals, aubergines, cabbage, beans,
onions, radishes

Catechins Catechin, epicatechin, gallocatechin, epigallocatechin Tea (black and green), cocoa, chocolate
Flavanones Hesperitin, hesperidin, homoeriodictyol, naringenin, naringin Citrus fruit, tomatoes, mint
Flavones Apigenin, luteolin, tangeritin, nobiletin, sinensetin Fruit, vegetables, some cereals, skin of citrus fruit
Flavonols Kaempferol, myricetin, quercitin Fruit, onions, kale, leeks, broccoli, blueberries, red wine, tea
Isoflavones Daidzein, genistein, glycitein Soybeans, peanuts, leguminous plants
Hydroxybenzoic acids Gallic acid, p-hydroxybenzoic acid, vanillic acid Tea, wheat, raspberry, blackcurrant, strawberry
Hydroxycinnamic acids Caffeic acid, ferulic acid, p-coumaric acid, sinapic acid Kiwifruit, blueberries, apples, cereals
Lignans Pinoresinol, podophyllotoxin, steganacin Flax seed, sesame seeds, some cereals, broccoli, cabbage,

apricots, strawberries
Stilbenes Resveratrol Red wine
Tannins Castalin, pentagalloyl glucose, procyanidins Tea, berries, wine, cocoa, chocolate

against ROS-induced damage, thereby preventing oxidation of
LDL and protecting the crucial vasodilator nitric oxide (NO)
against oxidation (164–167).

The objection to the direct antioxidant paradigm to explain
the beneficial effects of polyphenols in vascular diseases is that

polyphenols are characterized by low bioavailability; the con-
centrations required to induce direct antioxidant activity are
infeasible in vivo. Instead, it is becoming increasingly recognized
that phenolic compounds can interact with various molecular
targets and affect multiple signaling pathways in endothelial
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cells, providing an alternative putative mechanism to define the
means by which these agents can induce benefit despite very
low concentrations in vivo (150). Prominent among the putative
mechanisms triggered by low concentrations of polyphenols is
activation of the nuclear factor E2-related factor 2 (Nrf2), antioxi-
dant response element (ARE) pathway (168). Activation of Nrf2
causes it to bind to the enhancer DNA sequence, ARE, which
regulates more than 200 genes that code for a wide variety of
proteins, including antioxidant and detoxifying enzymes. The key
antioxidant enzymes induced are glutamyl-cysteine ligase (GCL –
the rate-limiting enzyme for GSH synthesis), GPx, thioredoxin,
thioredoxin reductase, SOD, and heme oxygenase-1 (HO-1). A
wide variety of polyphenols have been identified to be effective
activators of this pathway, with the effect of driving a broad spec-
trum antioxidant response [for review, see Ref. (169)]. In addi-
tion, phenolic compounds impact on the cardiovascular system
by improving endothelial function, inhibiting angiogenesis, cell
migration, and proliferation of blood vessels, and reducing platelet
aggregation and hypertension (164, 166, 170). Plant polyphenols
may stimulate the production of major vasodilatory factors [NO,
endothelium-derived hyperpolarizing factor (EDHF) and prosta-
cyclin] and inhibit the synthesis of vasoconstrictor endothelin-1
in endothelial cells (171). Moreover, phenolic compounds inhibit
the expression of two major pro-angiogenic factors, vascular
endothelial growth factor (VEGF), and matrix metalloproteinase-
2 (MMP-2) in smooth muscle cells (172).

In endothelial cells, one of the mechanisms that drives the
effects described above involves Ca2+-mediated activation of
the phosphoinositide 3 (PI3)-kinase/Akt pathway, leading to
rapid enhanced expression and stimulation of eNOS, as well
as formation of EDHF. In smooth muscle cells, polyphenols
have been shown to induce both redox-sensitive inhibition of
the p38 mitogen-activated protein kinase (p38 MAPK) pathway
activation, which leads to inhibition of platelet-derived growth
factor (PDGF)-induced VEGF gene expression, and other redox-
insensitive mechanisms (171, 172). While these effects have been
seen with a range of polyphenols, the cellular response and its
intensity may vary between phenolic compounds (142, 158). In
addition, it is important to note that the concentrations used in
many of these experiments are in the micromolar range.

Bioavailability of (Poly)phenolics
Polyphenols are characterized by very low bioavailability, with
<1% of the ingested amount reaching the plasma (162, 173–
176); concentrations in human plasma usually peak at 0.5–2 h
after ingestion, falling to near baseline levels within 8–12 h (177).
Maximum concentrations of polyphenols found in the blood after
consumption of polyphenol-rich foods or beverages tend to be
around 0.1–1 µM. This is in stark contrast to the concentrations
regularly used in vitro, where supra-physiological concentrations
of individual polyphenols or extracts tend to be in themicromolar
range (151, 160, 178).

Numerous polyphenols have been detected in the plasma at
concentrations around 1 µM in their native intact forms (glu-
cosides), as an effect of fast absorption in the stomach; these
are rapidly excreted (179). Anthocyanin glycosides pass through
the stomach and are hydrolyzed in the small intestine or by

colon microbiota (180). Liberated aglycones are very unstable and
undergo further degradation to simple phenolic acids and aldehy-
des at neutral pH. Smaller phenolic species and other metabolites
have greater chemical stability in the physiological environment
than anthocyanins, suggesting that the metabolites and not the
parent compoundsmight be present in the plasma at much higher
concentrations and could, therefore, play an important role in
physiological effects (162). There needs now to be a concerted
effort to identify the in vivometabolite profile derived from given
polyphenols to guide more appropriate in vitro experiments that
mimic metabolite composition and concentration. This is a major
limitation of in vitro experiments that utilize crude extracts.

In Vitro and In Vivo Animal Studies
There are three major mechanisms by which (poly)phenols might
impact on cardiovascular disease, acting as antioxidants, anti-
inflammatory agents, and/or anti-thrombotic agents.

The high levels of polyphenolics contribute to the high-
antioxidant capacity in fruit and vegetables (181, 182) and extracts
from plants or fruits with high-antioxidant capacity have pow-
erful free radical scavenging activity in vitro. Apples are a rich
source of polyphenols, including chlorogenic acid, epicatechin,
procyanidin B2, phloretin, and quercetin. The antioxidant capac-
ity, determined by a ferric reducing ability of plasma (FRAP)
assay, has been shown to vary between apple genotype, and has
been demonstrated to relate directly to the polyphenol content
of the fruit (182). Similarly, currants, rich in vanillic acid, have
shown a similar pattern, using the 1,1-diphenyl-2-picrylhydrazyl
(DPPH.) radical scavenging assay (183).Meanwhile, the flavonols,
quercetin and rutin, are potent scavengers of peroxynitrite, the
highly noxious RNS formed by the reaction between superoxide
and NO (184). Peroxynitrite has been shown to convert LDL to
ox-LDL, key to the development of atherosclerosis, and to oxidize
α-tocopherol (185). Few, if any of these in vitro experiments
use concentrations that equate to those likely to be bioavailable
through oral ingestion; so, these findings should be viewed with
caution.

The anti-atherogenic effects of the polyphenolics include pre-
venting lipid peroxidation (186) and uptake of ox-LDL by
macrophages (187), increasing NO bioavailability (188, 189), and
decreasing activation of redox-sensitive genes (190). Polyphenolic
compounds present in pomegranate juice, red wine, and grapes
prevent ox-LDL deposition in the vascular wall. Purple grape juice
can both decrease LDL oxidation and flow-mediated vasodilation
in patients with coronary artery disease (191). Resveratrol, cin-
namic and hydroxycinnamic acids, and cyanidin present in these
sources can increase expression of eNOS (188, 189, 192).

Resveratrol, a stilbene found in red or purple grapes, has
also been shown to have potent anti-inflammatory properties.
Vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and
intracellular adhesion molecule-1 (ICAM-1) are all markers of
inflammation that are down-regulated endothelial cells, cultured
in the presence of non-physiological concentrations of resvera-
trol (1–100 µM) (193). Moreover, resveratrol has been shown to
inhibit lipopolysaccharide (LPS)-induced monocyte adhesion to
cultured endothelial cells (193). However, many of the positive
aspects of the results obtained so far with resveratrol are tempered
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by the fact that the plasma concentration of resveratrol is thought
to be very low (picomolar to nanomolar), mainly because of its
rapid metabolism in the gut. To reach the concentrations used
in many experiments, 25–50mg of resveratrol would need to be
consumed, the equivalent of drinking 20 glasses of red wine a
day (194, 195). It is somewhat difficult to explain, therefore, how
the acute effects of cigarette smoking on endothelial dysfunction
can be reversed by direct antioxidant activity attributed to a single
glass of red wine, irrespective of alcohol content (196). Given the
above information, it is unlikely that the results are due solely to
resveratrol, but they might nevertheless be due to the combined
effects of antioxidants in red wine. The same paradigm might
also apply to fruit and vegetable consumption; perhaps a single
component is not wholly responsible for the beneficial effects
seen. Alternatively, the antioxidant benefits of resveratrol in vivo
might be entirely driven by stimulation of antioxidant signaling
pathways (e.g., activation of the Nrf2/ARE pathway), requiring
substantially lower concentrations to be effective.

Delphinidin, an anthocyanin found in berries, has anti-
apoptotic properties in cultured endothelial cells; it is thought that
NO may be involved, as this effect is prevented in the presence of
NOS inhibitors, leading to the suggestion that delphinidin may
exhibit cardioprotection by preventing endothelial cell apopto-
sis (197). The anthocyanins have strong anti-thrombotic activi-
ties (198, 199): anthocyanins found in fruit and vegetables can
inhibit P-selectin expression, an adhesion molecule involved in
platelet activation. Resting, TRAP-activated, H2O2-stressed, and
adrenaline pre-activated platelets were inhibited by the antho-
cyanins in vitro, whereas collagen- and ADP-activation are not
affected (198). It is plausible that anthocyanins in purple grape
juice are at least partly responsible for its ability to inhibit platelet
function both in vitro and in vivo, through an increase in NO
production and a decrease in superoxide generation. Analysis of
purple grape juice using high-performance liquid chromatogra-
phy (HPLC) found that fractions containing high amounts of pro-
anthocyanins were most effective in preventing lipid peroxida-
tion (199, 200).

Quercetin has anti-hypertensive properties and reduces cardiac
hypertrophy in animal models. Hypertension has been shown
to be reversed in spontaneously hypertensive rats and Goldblatt
hypertensive rats, but not in normotensive controls (201, 202). In
addition, cardiac hypertrophy in hypertensive rats was reduced
in animals fed a quercetin-rich diet (203, 204). A wide range of
studies have indicated that quercetin has the capability to act as an
antioxidant in vivo through altered gene transcription (205–208).
These in vivo experiments are likely to be a more reliable source
of mechanistic information than in vitro experiments involving
crude extracts and isolated compounds, often at inappropriate
concentrations.

Clinical Studies and Trials
Epidemiological studies appear to show an association between
high-flavonoid intake and cardiovascular outcomes. For example,
the Zupthen Elderly study found a significant inverse relationship
between flavonoid intake and coronary heart disease after 5 years,
but after 10 years this relationship was no longer significant (209,
210). Moreover, the Rotterdam study found a significant inverse

relationship between total flavonoid intake from the diet, in par-
ticular, black tea (which is rich in flavon-3-ols in particular), with
myocardial infarction incidence (211).

A meta-analysis published in 2008 reported on 133 placebo-
controlled trials on specific flavonoids and flavonoid-rich foods
(212). None of the studies reported on morbidity or mortality;
instead, they measured one or more of a range of physiological
measures (blood pressure, endothelial function) andmarkers (e.g.,
LDL) of cardiovascular disease. The heterogeneity of the stud-
ies made firm conclusions difficult to reach, but certain trends
were identified in this meta-analysis. Measures of flow-mediated
dilatation – an indicator of endothelial function –were universally
improved in the acute phase, irrespective of the epicatechin dose
administered, but there was little effect of flavonoid interventions
on either blood pressure or LDL cholesterol (212).

More recent trials on specific polyphenols or food types have
lent weight to the concept that there might be merit in polyphenol
supplementation in cardiovascular disease prevention. In a mod-
est placebo-controlled crossover clinical trial involving 93 obese
or overweight men with metabolic syndrome traits, quercetin
was found to reduce systolic blood pressure by ~3mmHg, an
effect that was more pronounced in the sub-group of patients
with hypertension (213). Despite the low-plasma concentrations
of quercetin measured in this study (71–269 nM) and a lack of
significant increase in plasma antioxidant capacity, there was also
a significant increase inHDL and a reduction in the concentration
of pro-atherogenic ox-LDL.

However, the studies that have captured the imagination of
the press and public the most are those involving the benefits of
tea, chocolate, and red wine; it is evidently attractive for healthy
nutritional interventions to also be pleasurable. The phenolic
content of chocolate and both green and black tea is dominated by
flavan-3-ols (catechin and epicatechin) and isoflavones. Dietary
intake of cocoa or chocolate is inversely associated with carotid
atherosclerosis (214) and calcified plaque development (215). In
a double-blind placebo-controlled trial with flavonoid-enriched
chocolate in patients with type 2 diabetes, there was an improve-
ment in carotid vascular function (216). Similarly, isoflavone-
specific intervention trials in healthy individuals have indicated
some benefits with respect to endothelial function, blood pressure,
and arterial stiffness. However, the longest trial with isoflavones
(2.7-year follow up) showed no benefit, as measured by common
carotid artery intima-medial thickness.

Red wine is a flavonoid-rich drink that has long been associ-
ated with cardiovascular benefit. Its notoriety in this regard was
triggered by the suggestion that high red wine consumption in
France provided a plausible explanation for the so-called French
paradox – the remarkably low risk of cardiovascular mortality
among the French population, irrespective of high-saturated fat
consumption and smoking rates. However simplistic the original
suggestion was, the potential merits of red wine have been sup-
ported by data from the Copenhagen City Heart Study, in which
individuals who drankmoderate amounts (three to five glasses per
day) of red wine were at substantially lower risk (RR – 0.51) of
cardiovascular mortality than those who never drank wine (217).
By contrast, there was no significant benefit from drinking beer
and a substantial increase in risk associated with drinking spirits.
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Several recent intervention studies have interrogated the associa-
tion with a view to establishingmechanism; the findings generally
confirm beneficial effects, most likely conveyed by polyphenol
constituents [but not necessarily resveratrol (218)]. However, the
data regarding impact of red wine on antioxidant capacity (219)
or platelet activity (220) are unconvincing, compared to benefits
mediated via improvements in plasma lipoprotein profile (221,
222), NO concentration (223), and inflammatory markers [most
notably chemokine C–C motif ligand 5 (CCL-5) (224) and NF-κB
(219)]. Interestingly, there is a pattern emerging to suggest that
alcohol-free red wine might convey enhanced benefits over red
wine itself (222, 223).

Although the results from intervention studies are not univer-
sally supportive of benefit of polyphenol-rich foods and drinks,
there is reason for optimism regarding potential benefits with
respect to several markers of key elements (e.g., endothelial func-
tion, platelet function) central to the atherothrombotic process.
Antioxidant activity is not necessarily a factor. Data relating to
red wine consumption are perhaps the most convincing, with an
association identified between moderate red wine consumption
and cardiovascular mortality. However, it is also clear that the
limited bioavailability of beneficial flavonoids is universally low
(typically in the nanomolar range) and that a direct antioxi-
dant effect is unlikely to drive the benefits seen. This does not,
however, preclude the possibility that the beneficial effects are
mediated by an adaptive response that includes up-regulation
of endogenous antioxidant systems. In addition, it is apparent
that flavonoids have subtle, antioxidant-independent effects (e.g.,
reduced inflammation, reduced insulin resistance), which might
be at least as important as any antioxidant activity. It is also impor-
tant to note that flavonoids are typically bitter to taste and that the
strategy often employed in nature (berries) and in foodproduction
(chocolate) is to modulate the bitter taste with sugar (berries,
chocolate) or alcohol (red wine). Inevitably, therefore, there is an
element of risk balance between the benefits of flavonoids and
the potential detrimental effects of associated ingredients in tasty
foods and drinks.

Minerals
A number of minerals have the potential for antioxidant activity
in vivo, not through direct scavenging of free radicals (indeed,
many transition metal ions are considered to be pro-oxidant),
but instead through their requirement for antioxidant enzyme
function. The requirement for metal ions, such as copper, zinc
(cofactors for cytoplasmic SOD-1), manganese (cofactor formito-
chondrial SOD-2), and selenium (cofactor for GPx and thioredox-
ins), is generally at trace levels that are easily obtainable through
the diet. Deficiencies are, therefore, rare, but can occur in cases
of malabsorption or in geographical regions where these minerals
are deficient or absent in the soil. Of the minerals named above,
selenium is the most recognized to be deficient in some popula-
tions, and to have a link to cardiovascular (and other) diseases
(225), potentially on account of reduced antioxidant capacity.

Selenium
Selenium is required at trace levels and excessive supplementation
can lead to toxicity (selenosis). Much of the work relating to

selenium has centered on its role in cancer prevention, but a
number of studies have focused on cardiovascular disease or have
included cardiovascular outcomes as a sub-set of all-cause mor-
tality. While observational studies suggest an inverse relationship
between selenium levels in the body and cardiovascular risk (226),
placebo-controlled large trials failed to find a significant effect of
selenium supplements for CVD events (fatal and non-fatal; RR
1.03) (227), suggesting that selenium supplementation is ineffec-
tive in this setting. Indeed, the findings of the Cochrane review
on antioxidants and all-cause mortality indicate that there is no
evidence for reduced mortality with selenium supplementation.
In this sense, the story for selenium mirrors those for many of
the antioxidants above in that the results of observational studies
are not supported by those from placebo-controlled trials. Once
again, the lack of agreement between the two approaches might
simply reflect the heterogeneity of the controlled trial population
with respect to selenium levels; only a small sub-set might be
deficient and likely to benefit from the intervention.

Keshan disease is a specific endemic cardiomyopathy has also
been linked with selenium deficiency. The name relates to the
region of China associated with an unusually high incidence of
the disease, first identified in 1935. However, cases are found in a
range of areas, predominantly in China, where the soil is deficient
in selenium. The symptoms include acute or chronic episodes of
cardiogenic shock and/or heart failure. Although the cause has
not yet been fully characterized, animal studies suggest a possi-
ble mechanism involving reduced expression of the antioxidant
enzyme,GPx1, leading to increased virulence of viruses associated
with myocarditis (228). Clinical studies suggest an extra layer of
complexity surrounding Keshan disease on account of decreased
GPx1 activity in individuals with both selenium deficiency and a
specific leucine-containingGPx1 allele (229). The link to selenium
deficiency has long been recognized (230) and selenium supple-
mentation trials have shown a striking impact on Keshan disease
development and disease-related deaths, possibly on account of
increased GPx activity (231). Here, at least, there is clear evidence
of a substantial beneficial effect of a supplement that has the
potential to increase antioxidant defense via GPx enzymes.

Repurposed Drugs as Antioxidants
N-Acetylcysteine
N-Acetylcysteine (NAC) has sparked interest in the cardiovascu-
lar field on account of its reputation as an antioxidant. NAC is a
drug that is licensed for use in several clinical settings, but it is also
feely available as an oral supplement through health food outlets,
although it is not generally considered to be a dietary component.
In reality, its antioxidant activity and oral bioavailability is too
low to merit consideration as an antioxidant in vivo [reviewed in
Ref. (232)], but it nevertheless merits inclusion in this review on
account of its ability to serve as a substrate for the synthesis of
the critical ubiquitous intracellular antioxidant, GSH (233). GSH
is central to a variety of important processes, including detoxi-
fication, and its synthesis, utilization, and redox status is under
the regulation of a battery of enzymes, underlining its importance
to cell function. GSH can be depleted in cells for a variety of
reasons, most notably in hepatocytes as a result of paracetamol
overdose, and also in association with atherosclerosis (41). NAC
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was originally designed as a means of effectively delivering sub-
strate (cysteine) to the rate-limiting enzyme (glutamyl-cysteine
ligase) for GSH synthesis. Although the mechanism by which
NACachieves this goal is not yet fully understood, it is certainly an
effective remedy in patients suffering from paracetamol overdose
(234). NAC is also used in some pulmonary conditions, but from
an antioxidant perspective, it has received attention as a potential
means of protecting against oxidative stress-induced radiocon-
trast nephropathy and as a possible alternative anti-thrombotic
agent in diabetes (232). The latter use is the most relevant to this
review and is supported by several in vitro and in vivo studies,
suggesting that there is some merit in this concept. NAC has been
shown to have a significant impact on blood pressure in patients
with type 2 diabetes (235) and, most recently, a small clinical
study has indicated that oral NAC supplementation in patients
with type 2 diabetes reduces platelet–monocyte interaction (236),
which is recognized to be a marker and potential mediator of
cardiovascular disease. Importantly, the beneficial effect was most
prominent in those deficient in GSH at baseline, indicating that,
like vitamin C, cellular GSH is under strict regulation and provid-
ing more substrate for its synthesis to replenish cells is ineffectual.
That said, GSH is well known to be depleted in diabetes (237),
and in vitro studies indicate that NAC can replenish platelet GSH
(238). Therefore, NAC might well present an effective strategy in
this high-risk patient group, especially given its beneficial effect
in blood vessels as well as platelets. Larger trials are merited to
test whether these findings translate into improved cardiovascu-
lar outcome in patients at risk of cardiovascular disease and in
patients with diabetes in particular.

Allopurinol
Allopurinol is an inhibitor of the enzyme, XO, which catalyzes the
conversion of hypoxanthine, via xanthine, to uric acid. As such,
allopurinol is an effective treatment for gout, caused by the accu-
mulation of uric acid crystals in the joints. However, allopurinol
is also considered to be a XO-specific antioxidant because the
enzyme usesmolecular oxygen as the electron acceptor during the
oxidation process, generating ROS as a by-product. This has rele-
vance to a number of diseases because XO predominantly exists in
its dehydrogenase form, which does not generate ROS; conversion
of the dehydrogenase to XO can be caused by oxidative modifi-
cation of the enzyme or irreversible proteolysis. The amount of
XO-derivedROS is dependent on the preponderance of XO aswell
as the availability of substrate (hypoxanthine and xanthine). In
heart failure, hypoxanthine and xanthine concentrations increase
as a result of cellular damage and there is also the potential for
oxidative modification to generate more XO in this disease. As
a result, serum uric acid is recognized to be an independent
marker of heart failure severity (239) and a possible surrogate
marker of oxidative stress in heart failure. Animal studies indicate
that allopurinol, among other inhibitors of XO (e.g., oxypurinol),
effectively reduce mortality and improve left ventricular function
in models of heart failure (240, 241). Some clinical studies using
intravenous or intracoronary infusion of XO inhibitors support
these findings (242, 243), but themajority of the randomized clin-
ical trials (244–249) have failed to replicate the beneficial findings
in animal studies, although there are some hints of improvement

in ejection fraction [reviewed in Ref. (250)]. The lack of consis-
tency between the animal and clinical studies is frustrating, but
no doubt highlights the complexity of the human disease profile,
in which XO-derived ROS are only a contributory element.

Conclusion

Given that oxidative stress is a key player at various levels in the
atherogenic process, it is a reasonable assumption that antioxidant
therapy would be an effective therapy in this setting. Indeed,
puzzling anomalies in epidemiological data (the French paradox)
have been attributed to high-antioxidant ingestion specific to a
given population and in vitro studies using relatively high con-
centrations of a wide range of antioxidants support the notion
that antioxidants have protective effects. However, associations
between plasma concentrations of antioxidant vitamins (A, C,
and E) and protection against cardiovascular disease have proved
elusive and large intervention trials with these vitamins have
failed to conclusively show any benefit. In hindsight, the failure of
antioxidant vitamins to show benefit is unsurprising for a range of
fundamental reasons that expose several generalizations relating
to oxidative stress and antioxidants. First, ROS are not universally
harmful; repeated, low-level exposure to ROS is a vital trigger
for up-regulation of endogenous antioxidants. Second, redox is
a question of balance and the concept of flooding cells with
dietary antioxidants to combat oxidative stress is flawed, not only
because there are powerful physiological processes in place to
ensure that these agents are kept within reasonably strict limits,
but also because driving cells into a highly reducing state is likely
to be harmful too. Third, many of the diet-derived antioxidants
(e.g., polyphenols) are very effectively screened out by the gut
or rapidly metabolized and excreted. Plasma concentrations are
typically in the nanomolar range – too low to have a direct impact
on antioxidant capacity. Paradoxically, it is some of these dietary
micronutrients that are perhaps the most promising in terms of
cardiovascular outcome, but they should not be considered to
be direct antioxidants in this regard. Instead, polyphenolic com-
pounds, ormore likely themetabolites that they yield, probably act
as mild toxins to drive endogenous defense mechanisms, includ-
ing up-regulation of a battery of cellular antioxidant systems (168).
The irony is that the direct antioxidant activity of polyphenols is
almost irrelevant in their protective properties; instead, it is their
toxic properties that could prove decisive in determining their
efficacy in this regard. Achieving a better understanding of the
mechanisms by which polyphenols work is essential in driving
the paradigm shift away from the concept that foods high in
antioxidants will improve cardiovascular health. Perhaps the focus
should be on the diversity and frequency of exposure to dietary
polyphenols that should be the focus of public health messages
rather than amount.

Fruit and Vegetables vs. Supplements
Plants synthesize an enormous variety of chemicals with power-
ful antioxidant properties, and many clinical studies support the
notion that increased consumption of fruit and vegetables have
beneficial effects with respect to variousmarkers of cardiovascular
disease (84, 251). It is a reasonable extrapolation to suggest that
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the benefits of fruit and vegetables might be attributable to the
most abundant antioxidants that are often present in these foods,
namely, vitamins A, C, and E. However, the benefits of vitamin-
rich foods have not been matched by large-scale supplement stud-
ies, perhaps suggesting that it is not these agents that are respon-
sible to the beneficial effects, but some of the micronutrients that
accompany the antioxidant vitamins in these foods. Alternatively,
it might be that the whole is greater than the sum of its parts
and that there is a synergistic effect of the rich combination of
micronutrients and vitamins in fruit and vegetable that bring
about the benefit – an effect that is lost in isolated supplements or
in multivitamin formulations. Either way, the lack of alignment
of results from whole fruit and vegetables compared with vitamin
supplements would suggest that vitamins alone do not constitute
the answer with respect to antioxidant benefits of certain foods in
cardiovascular disease.

In Vitro and In Vivo Studies
Why then, the dichotomy between in vitro (e.g., cell culture) and
small-scale clinical studies compared with larger clinical trials?
The answer to this question is vexing, but the reason is likely to
lie in the detail of experimental procedures. For example, many
in vitro experiments use concentrations of antioxidants that are
much higher (sometimes orders of magnitude greater) than those
that are likely to be found in vivo after oral ingestion. Second,
it is clear that the digestive system has an enormous impact
on the survival or otherwise of antioxidants; for example, large
polyphenolic compounds undergo significant hydrolysis and it is
widely acknowledged that only small phenolic compounds pass
into the plasma. Third, the combination of antioxidants that one
might receive from ingestion of fruit and vegetables could be
crucial in providing significant benefit – telling in this regard
are the data from studies that demonstrate a benefit of elevated
vitamin C from increased fruit and vegetable ingestion, but not
from vitamin C supplements alone. It is entirely plausible that
the plasma vitamin C measured in the fruit and vegetable studies
was a marker of the dietary intervention, but a red herring with
respect to causality. In addition, there may be other benefits of
fruit and vegetables beyond antioxidants; plant-derived sterols,

for example, have a modest impact on plasma LDL levels (252).
Finally, the end point that ismost important in terms of cardiovas-
cular benefit is reducedmortality due tomyocardial infarction and
stroke. Cardiovascular events are precipitated by plaque rupture,
a process that is perhaps influenced by inflammation within the
plaque, but does not necessarily correlate with atherosclerotic
load. It is quite possible, therefore, that subtle improvements in
endothelial function or lipid peroxidation might not have a great
deal of impact on the predisposition to plaque rupture.

Despite a wealth of in vitro and in vivo animal data, the car-
diovascular benefits of antioxidant have not yet been proven,
particularly with respect to reduced mortality, but there is suffi-
cient evidence in the literature to suggest that there is consider-
able promise of improving some aspects of cardiovascular health
through increased fruit and vegetable consumption. Whether
the same is true of isolated antioxidant vitamins, minerals, or
polyphenols is less convincing, but as we gain a better under-
standing of the complexity of the mechanisms involved, there
is increased potential to find diet or drug-derived antioxidant
agents with beneficial effects, though not necessarily on account
of their ability to directly scavenge radicals. Priming the adap-
tive response on account of low-grade, repeated toxicity, in a
process with some parallels to those now thought to be impor-
tant in underpinning the benefits of exercise, looks like it might
hold more promise than attempting to flood the system with
antioxidants.

In conclusion, antioxidants should not be considered to be
either a panacea or a false hope with respect to cardiovascular
disease prevention. To achieve success, however, it is necessary
for studies to be carefully designed; the choice of antioxidant
should be informed by the target disease, the confirmed role of
oxidative stress, and the relevant cellular compartment, as well as
the potential antioxidant deficiencies in the target population.
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