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The power spectral density (PSD) of heart rate variability (HRV) contains a power-law 
relationship that can be obtained by plotting the logarithm of PSD against the logarithm 
of frequency. The PSD of HRV can be decomposed mathematically into a power-law 
function and a residual HRV (rHRV) spectrum. Almost all rHRV measures are significantly 
smaller than their corresponding HRV measures except the normalized high-frequency 
power (nrHFP). The power-law function can be characterized by the slope and Y-intercept 
of linear regression. Almost all HRV measures except the normalized low-frequency 
power have significant correlations with the Y-intercept, while almost all rHRV measures 
except the total power [residual total power (rTP)] do not. Though some rHRV measures 
still correlate significantly with the age of the subjects, the rTP, high-frequency power 
(rHFP), nrHFP, and low-/high-frequency power ratio (rLHR) do not. In conclusion, the 
clinical significances of rHRV measures might be different from those of traditional HRV 
measures. The Y-intercept might be a better HRV measure for clinical use because it 
is independent of almost all rHRV measures. The rTP, rHFP, nrHFP, and rLHR might be 
more suitable for the study of age-independent autonomic nervous modulation of the 
subjects.

Keywords: heart rate variability, power spectrum, power-law function, fractal, decomposition, slope, Y-intercept

INtRodUCtIoN

Heart rate variability (HRV) refers to the continuous oscillation of RR intervals (RRIs) around its 
mean value. Power spectrum analysis of heart rate (HR) fluctuations provides a quantitative and non-
invasive means to assess the sympathetic and vagal modulations of HR (1, 2). The imbalance in the two 
branches of autonomic nervous modulation may contribute to and reflect many kinds of illness. HRV 
analysis has long been used in the assessment of many diseases such as acute myocardial infarction 
(AMI) (3, 4), post-myocardial infarction status (5), and orthotopic heart transplantation (6).

The HR is influenced by the complex interplay of neural, humoral, and electrophysiological fac-
tors, which in turn are modulated by central and peripheral oscillators (7). To evaluate the complexity 
of the controlling system of HR, the power-law characteristics of power spectral density (PSD) can 
be obtained by plotting the logarithm of PSD against the logarithm of frequency (Frq) to obtain a 
linear regression line (8–16). The existence of the linear regression line indicates that the relationship 
between PSD and Frq in the power spectrum of HRV can be described by a power-law function. 
The power-law relationship of HRV has been used as a predictor of mortality in the elderly (9), 
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tABLe 1 | General characteristics and the slope and Y-intercept of linear 
regression of hRV spectra of the study subjects (n = 60).

Gender (M/F) 23/37
Age (years) 34.9 ± 13.4
Body height (cm) 164.2 ± 8.6
Body weight (kg) 60.2 ± 10.2
Body mass index (kg/m2) 22.2 ± 2.6
Systolic blood pressure (mmHg) 115.8 ± 14.8
Diastolic blood pressure (mmHg) 72.9 ± 9.4
Pulse pressure (mmHg) 42.9 ± 10.7
Mean arterial blood pressure (mmHg) 87.2 ± 10.3
Heart rate (bpm) 76.5 ± 9.9
Slope 1.34 ± 0.36
Y-intercept 1.39 ± 0.55
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and the analysis of the fractal characteristics of short-term RRI 
dynamics can yield more powerful prognostic information than 
the traditional HRV measures among patients with depressed left 
ventricular function after AMI (10), patients with Chaga’s disease 
(15), and pediatric patients with multiple organ failure (16).

Since power-law relationship between PSD and Frq is 
an important ingredient of HRV spectrum, it is possible to 
decompose mathematically the HRV spectrum into a power-law 
relationship between PSD and Frq and a remaining part. Thus, 
the aims of this study were to decompose the PSD of traditional 
HRV into a power-law function and a residual HRV (rHRV) and 
to compare the rHRV measures with their corresponding HRV 
measures in healthy adults.

MAteRIALs ANd Methods

study subjects
The healthy subjects were volunteers recruited from the com-
munity. The subjects included in this study did not have known 
cardiopulmonary or other systemic disease, which may influence 
HRV. This research has been approved by the Ethics Committee 
of the Taipei Veterans General Hospital. Informed consent was 
obtained from each subject before the study.

Physiological Measurements
Sixty healthy subjects recruited from the community participated 
in this study. The general characteristics of these healthy subjects 
are shown in Table 1. The study subject was requested to not take 
caffeinated or alcoholic beverages 24 h prior to the study. After 
5 min rest in sitting position, a trend of electrocardiogram (ECG) 
signals was picked up by a multichannel recorder (Biopac MP150 
with 16 channels, BIOPAC Systems, Inc., Goleta, CA, USA) from 
conventional lead II on each subject. The analog signals of ECG 
were transformed into digital signals by using an analog-to-
digital converter with a sampling rate of 500 Hz. The ECG signals 
were recorded for 10 min, so that at least 512 inter-beat intervals 
(RRIs) can be obtained for HRV analysis. All procedures were 
performed in the afternoon in a bright and quiet room with a 
room temperature of 24–25°C and humidity of 54–55%.

hRV Analysis
The method of HRV analysis has been reported previously (17). 
In brief, the recorded ECG signals were retrieved to measure the 

consecutive RRIs, which are the time intervals between successive 
pairs of QRS complexes, by using the software for the detection of 
R wave. The atrial or ventricular arrhythmia was deleted before 
HRV analysis. If the percentage of deletion was >5%, then the 
data of the patient were excluded from HRV analysis. The last 512 
stationary RRI were used for HRV analysis.

The fast Fourier transform (FFT) of Cooley and Tukey 
expresses the discrete Fourier transform (DFT) of an array of 
size N recursively in terms of two DFTs of size N/2 to reduce 
the overall runtime of computations (18). The basis of the binary 
form of FFT is the Danielson–Lanczos lemma, which breaks 
each term in the array again and again into even and odd terms 
until the samples are exhausted (19). Thus, a binary form of FFT 
requires the number of points N in the array to be a power of 2, or 
N = 2r, where r is an integer. In this study, we chose N = 29 = 512 
stationary RRI for HRV analysis, so that the time required for 
ECG recording could be <10 min in general.

The mean, SD (SDRR), coefficient of variation (CVRR), and 
rMSSD of 512 RRI were calculated using standard formula. 
The power spectra of the 512 RRI were obtained by means of 
fast Fourier transformation (Mathcad 15.0, Mathsoft Inc., 
Cambridge, MA, USA). Direct current component was excluded 
before the calculation of the powers. The area under the curve of 
the spectral peaks within the Frq range of 0.01–0.4, 0.01–0.04, 
0.04–0.15, and 0.15–0.40 Hz were defined as the total power (TP), 
very low-frequency power (VLFP), low-frequency power (LFP), 
and high-frequency power (HFP), respectively.

The Task Force of the European Society of Cardiology and the 
North American Society of Pacing Electrophysiology (2) has sug-
gested that the power within the Frq range of 0.04–0.4 Hz be used 
for the normalization of LFP and HFP. Since this Frq range does 
not cover the Frq ranges of VLFP and may not be suitable for the 
normalization of VLFP, we used the power within the Frq range 
of 0.01–0.4 Hz to normalize VLFP, LFP, and HFP in this study. 
The normalized VLFP (nVLFP  =  VLFP/TP) was used as the 
index of vagal withdrawal, renin–angiotensin modulation, and 
thermoregulation (20–22), the normalized low-frequency power 
(nLFP  =  LFP/TP) as the index of combined sympathetic and 
vagal modulation (23), the normalized HFP (nHFP = HFP/TP) 
as the index of vagal modulation, and the low-/high-frequency 
power ratio (LHR =  LFP/HFP) as the index of sympathovagal 
balance (24).

Mathematical decomposition of Psd
In the study by Huikuri et al. (9), the power-law scaling of the 
power spectra (exponent β) from 24-h Holter recordings was 
calculated from the Frq range of 0.0001–0.01 Hz. This Frq range 
did not cover the spectral peaks in the very low-frequency (VLF), 
low-frequency (LF), and high-frequency (HF) ranges. To facilitate 
the decomposition of the whole HRV spectrum, the power-law 
relationship of HRV was calculated by plotting log(PSD) against 
log(Frq) within the Frq range from >0 Hz to the Nyquist Frq in 
this study. The 0 Hz point must be excluded because log(0) is not 
defined mathematically.

Since there is a linear relationship between the log(PSD) 
and log(Frq) in the power spectrum of HRV, the linear regress 
relationship between log(PSD) and log(Frq) can be expressed as
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log PSD s log Frq Y,rg( ) = ( ) +×

 (1)

where the “log” denotes logarithm, the subscript “rg” stands for 
“regression,” and the “s” and “Y” are the slope and Y-intercept of 
linear regression between log(PSDrg) and log(Frq) within the Frq 
range from >0 Hz to the Nyquist Frq, respectively. The PSDrg is 
the PSD that can be accounted for by the linear regression equa-
tion between log(PSD) and log(Frq). Thus, we have

 PSD Frqrg
s Log Frq Y Y s= = ×( )+10 10× .  (2)

It is clear that the PSDrg is a power-law function of Frq with 
scaling exponent s and a constant 10Y. The difference between 
PSD and PSDrg is the power-law free PSD or the residual PSD 
(rPSD) that cannot be accounted for by the power-law function 
shown in Eq. 2:

 
log rPSD log PSD log PSD log PSD PSDrg rg( ) = ( ) − ( ) = ( )/ ,

 (3)

 
rPSD PSD

PSD
PSD Frq

rg

Y s= = − −× ×( ).10
 (4)

In this way, the PSD can be decomposed into two parts, the 
PSDrg and the rPSD. The following simple equation depicts the 
relationship among PSD, PSDrg, and rPSD:

 PSD PSD rPSD Frq rPSD.rg
Y s= =× × ×10  (5)

rhRV Measures
Similar to the definition of traditional HRV measures, the area 
under the curve of the spectral peaks within the range of 0.01–0.4, 
0.01–0.04, 0.04–0.15, and 0.15–0.40 Hz in the rPSD were defined 
as the residual total power (rTP), very low-frequency power 
(rVLFP), low-frequency power (rLFP), and high-frequency 
power (rHFP) of the rHRV, respectively. The normalized rVLFP 
(nrVLFP = rVLFP/rTP), normalized rLFP (nrLFP = rLFP/rTP), 
normalized high-frequency power (nrHFP  =  rHFP/rTP), and 
low-/high-frequency power ratio (rLHR = rLFP/rHFP) were also 
defined in a similar way to those of HRV measures.

statistics
The Wilcoxon signed-rank test (SigmaStat statistical software, 
SPSS Inc., Chicago, IL, USA) was employed to compare the tra-
ditional HRV measures with the corresponding rHRV measures. 
Linear regression analysis was used to find the relations between 
the clinical characteristics and the measures of HRV and rHRV. 
All data are presented as median (25–75%). A P  <  0.05 was 
considered statistically significant.

ResULts

Figure  1A shows the power spectrum of traditional HRV. 
The peaks at around 0.3  Hz are the respiratory components. 
Figure  1B shows the linear plot of log(PSD) versus log(Frq). 

There is a statistically significant linear relationship between 
log(PSD) and log(Frq), indicating that an inverse power-law 
scaling relationship exists between PSD and Frq, and that the 
power spectrum of HRV is a fractal. The slope and Y-intercept 
can be obtained from linear regression analysis of log(PSD) 
versus log(Frq) to characterize the power spectrum of HRV. 
Figure  1C shows the power-law function between PSDrg and 
Frq in the linear plot. The subscript “rg” denotes “regression.” 
Figure  1D shows the residual PSD after the removal of the 
power-law relationship between PSDrg and Frq. The spectral 
peaks in the low-Frq range are suppressed, whereas the high-
Frq peaks at around 0.3 Hz are enhanced, as compared with the 
original power spectrum shown in Figure 1A.

Figure 2 compares the measures of HRV and rHRV. The rTP, 
rVLFP, rLFP, rHFP, rLHR, nrVLFP, and nrLFP of rHRV are all 
significantly smaller than their corresponding HRV measures, 
whereas only the nrHFP is significantly greater than the nHFP. In 
short, the rHRV has significantly enhanced high-Frq component 
and significantly suppressed lower Frq components, as compared 
with traditional HRV. This means that the removal of the power-
law function from the traditional HRV can disclose more details 
of the nrHFP of HRV.

Figure 3 shows that the exponent or slope of linear regression 
of the power-law function correlates significantly and positively 
with the LHR and nLFP of traditional HRV, and significantly and 
negatively with the HFP and nHFP of traditional HRV. In the 
rHRV, the exponent still correlates significantly and positively with 
the rLFP, rLHR, and nrLFP; however, it does not correlate with 
either HFP or nHFP. Instead, the exponent correlates significantly 
and negatively with rVLFP and nrVLFP. These results suggest that 
the removal of the power-law function from the traditional HRV 
also removes the dependence of high-Frq component of HRV 
on the exponent, but uncovers the dependence of low-Frq and 
very low-Frq component of HRV on the exponent instead. That 
is, the high-Frq component of rHRV has no correlation with the 
exponent of the power-law function, but the low-Frq and very 
low-Frq component of rHRV have.

Figure 4 shows that the Y-intercept has significant and positive 
correlations with the TP, VLFP, LFP, HFP, and nHFP of traditional 
HRV and has significant and negative correlations with LHR and 
nVLFP. In the rHRV, the Y-intercept has significant and nega-
tive correlation with rTP only. Even though the Y-intercept still 
has significant correlation with rTP, the correlation is a negative 
one, rather than a positive one in traditional HRV. It seems that 
the Y-intercept of linear regression is an important ingredient 
in the traditional HRV because almost all HRV measures have 
significant correlations with the Y-intercept except the nLFP, and 
because the removal of the power-law function from traditional 
HRV results in no significant correlations between Y-intercept 
and almost all rHRV measures except the rTP.

It is already known that the HRV measures depend on the age 
of the subjects. Therefore, it is necessary to inquire whether or not 
the rHRV measures still depend on the age of the subjects. Figure 5 
shows that the TP, LFP, HFP, nVLFP, and nLFP of traditional HRV 
depend on age. In the rHRV, the age still correlates significantly 
with the rVLFP, rLFP, and nrVLFP; however, the rTP, rHFP, 
nrHFP, and rLHR do not depend on age. The non-dependence 
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FIGURe 1 | the power spectrum of traditional hRV (A), the linear plot of log(Psd) versus log(Frq) (B), the power-law function between Psdrg and 
frequency in the linear plot (C), and the plot of rPsd (d).
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FIGURe 2 | the comparison of traditional hRV measures with the corresponding rhRV measures. # indicates statistical significance vs. corresponding 
HRV measure.
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of rTP, rHFP, nrHFP, and rLHR on age may make them more 
suitable for the study of age-independent autonomic nervous 
modulation of the subjects.

dIsCUssIoN

This study decomposed the traditional HRV spectrum into 
a power-law function and an rHRV spectrum and compared 
the rHRV measures with traditional HRV measures. We found 

that the rHRV measures are significantly smaller than their 
counterparts in the traditional HRV except the nrHFP, which 
is significantly greater than the nHFP in the traditional HRV. 
The exponent of power-law function does not have any cor-
relation with either HFP or nHFP, but correlate significantly 
and positively with the rLFP, rLHR, and nrLFP. Although the 
Y-intercept of linear regression has significant correlations with 
many measures in traditional HRV, it has no correlations with 
almost all rHRV measures except rTP. Furthermore, although 
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FIGURe 3 | the dependence of traditional hRV measures and rhRV measures on the slope of linear regression or the exponent of power-law 
function.
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FIGURe 4 | the dependence of traditional hRV measures and rhRV measures on the Y-intercept of linear regression.
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FIGURe 5 | the dependence of traditional hRV measures and rhRV measures on the age of the subjects.
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the TP of traditional HRV decreases with increasing age, the rTP 
of rHRV does not depend on the age of the subject. Since the 
nrHFP is significantly enhanced as compared to the nHFP in the 
traditional HRV, whereas other rHRV measures are significantly 
suppressed as compared to their counterparts in the traditional 
HRV, the rHRV might be better suited for the study involving the 
high-Frq component of HRV.

It is well known that the HF components of HRV do not fit the 
power-law profile. This is illustrated in Figure 1. On this basis, 
there is no surprise in finding the important residual power in the 
HF band after the removal of the 1/f component. In addition, it is 
not surprising to find an enhanced nrHFP in the rHRV because 
the powers of residual lower Frq components are reduced after 
the decomposition.

In some studies, the Frq range for the power-law relation-
ship in the power spectrum of HRV from the entire 24-h 
Holter recordings was calculated by using a line-fitting algo-
rithm of log(power) versus log(Frq) within the Frq range of 
0.0001–0.01  Hz to yield the scaling exponent (8–10, 13, 14). 
Other Frq ranges for the calculation of scaling exponent, such 
as 0.001–1 Hz (11), 0.003–0.1 Hz (12), and 0.0001–0.1 Hz (15), 
have also been used by various study groups. In this study, the 
ECG recording was performed for 10  min and a short-term 
HRV was obtained from 512 RRIs. So long as a power-law 
relationship exists between the PSD and the Frq, the power 
spectrum can be decomposed into a power-law function and a 
residual part no matter how long the ECG recording is. In other 
word, the decomposition method shown in this study can be 
used to decompose the power spectrum of HRV for both short-
term and long-term HRV, so long as a power-law relationship 
exists between the PSD and the Frq. If only the PSD within the 
Frq range of 0.0001–0.01, 0.001–1, 0.0001–0.1, or 0.003–0.1 Hz 
is going to be analyzed by using the new method, the power 
spectrum of HRV can also be decomposed within that small 
Frq range. If, however, the power spectrum within a larger Frq 
range is going to be analyzed by using this method, then a larger 
Frq range must be adopted. The size of the Frq range is not a 
problem for the new method.

The rHRV is obtained by removing the power-law function. 
It can be expected that the magnitude and clinical significance 
of rHRV measures are different from their corresponding HRV 
measures. For instance, the rTP, rVLFP, rLFP, rHFP, nrVLFP, 
nrLFP, and rLHR are all significantly smaller than their cor-
responding HRV measures, whereas only the nrHFP is signifi-
cantly greater than the nHFP. In addition, the dependences of 
TP, HFP, and nLFP on age in the HRV no longer exist in the 
rHRV, because the rTP, rHFP, and nrLFP do not depend on 
age. The dependence of TP, HFP, and nLFP on age might come 
from the Y-intercept because the Y-intercept has significant 
and positive correlations with the TP, VLFP, LFP, HFP, and 
nHFP and has significant and negative correlations with LHR 
and nVLFP.

It has been shown that the VLFP of HRV is a powerful 
predictor of clinical prognosis in patients with congestive heart 

failure (25). This prognostic value of VLFP of traditional HRV 
might originate from the Y-intercept of the power-law function 
because there is a significant and positive correlation between 
VLFP and Y-intercept and significant and negative correlation 
between nVLFP and Y-intercept in this study (Figure 4). Since 
there are no correlations between rVLFP and Y-intercept, and 
between nrVLFP and Y-intercept, the rVLFP and nrVLFP might 
no longer be used as the predictors in patients with congestive 
heart failure and other diseases. Instead, the Y-intercept might 
have the potential of being used as the predictor in patients with 
various kinds of diseases.

The rTP, rVLFP, rLFP, rHFP, rLHR, nrVLFP, and nrLFP of 
rHRV are all significantly smaller than their corresponding HRV 
measures, while the nrHFP is significantly greater than the nHFP 
(Figure 2). This finding suggests that the clinical meaning and 
significance of rHRV measures might be different from tradi-
tional HRV measures and that the nrHFP might be a better index 
of vagal modulation of the subjects. The dependence of almost 
all HRV measures on the Y-intercept and the non-dependence of 
almost all rHRV measures on the Y-intercept (Figure 4) further 
suggest that the currently used HRV measures are not independ-
ent of one another and that the Y-intercept and rHRV measures 
might be better indices of autonomic nervous modulation of 
the subjects. Further studies are needed to explore the clinical 
significance and applicability of the Y-intercept, slope, and rHRV 
measures introduced in this study.

CoNCLUsIoN

The PSD of traditional HRV can be decomposed into a power-law 
function displaying the fractal characteristics of the PSD and an 
rHRV. The decomposition of traditional HRV into a power-law 
function and an rHRV suggests that the rHRV measures and the 
exponent and Y-intercept of linear regression must be included 
in future spectral HRV analysis. The clinical significances of 
rHRV measures might be different from those of traditional 
HRV measures. The Y-intercept might be an important HRV 
measure for clinical use because almost all rHRV measures have 
no significant correlation with it. The non-dependence of rTP, 
rHFP, nrHFP, and rLHR on the age of the subjects might make 
them more suitable for the study of age-independent autonomic 
nervous modulation of the subjects.
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