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Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta common in 
adults older than 65 years of age. AAA is usually imaged using ultrasound or computed 
tomography. Molecular imaging technologies employing nanoparticles (NPs) have been 
proposed as novel ways to quantify pathological processes, such as inflammation, within 
AAAs as a means to identify the risk of rapid progression or rupture. This article reviews 
the current evidence supporting the role of NP-based imaging in the management of AAA. 
Currently, ultrasmall superparamagnetic NPs enhanced magnetic resonance imaging 
appears to hold the greatest potential for imaging macrophage-mediated inflammation 
in human AAA.
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iNTRODUCTiON

Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta common in older adults 
(1–4). AAA is usually defined as a macroscopic permanent pathological dilatation of the infrarenal 
aortic diameter ≥30 mm (4–7). Most AAAs are asymptomatic until rupture, which is often fatal 
(1, 3, 4, 8). Patients with small AAAs usually undergo regular imaging to monitor AAA diameter 
until it exceeds 55 mm (4). At this point, patients are usually recommended to have open surgical 
or endovascular stent graft repair according to current guidelines (2, 8, 9). AAA management is 
primarily focused on averting rupture (8, 9). Rupture of small AAAs is uncommon (2, 10). It has been 
reported that approximately 1% of AAAs measuring <55 mm rupture each year while undergoing 
careful follow-up during which large, symptomatic, or progressively expanding AAAs are selected 
for surgical repair (11–13). For example, the UK small aneurysm trial reported that the rupture rate 
for asymptomatic AAAs measuring <55 mm was 1% per annum, and the risk of rupture was higher 
in women (12). The future management of AAA could be optimized through an enhanced ability 
to identify small AAAs at risk of rupture and identification of small AAAs that would benefit from 
early surgical intervention (3, 14). One potential way of doing this could be through functional or 
molecular imaging in which key pathological processes implicated in AAA rupture were quantified 
in individual patients.
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FiGURe 1 | Schematic diagram of nanocarriers, potential targets, and potential applications in medicine. This shows nanocarriers with typical 
nanoparticle (NP) base/core, potential targets in humans ranging from receptors, immune fragments, and vascular tissue components. The potential role of the NPs 
in disease management in medicine is also highlighted.
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Recent research has explored the efficacy of nanoparticle 
(NP)-enhanced molecular imaging technologies in identify-
ing key pathological processes within AAAs (15, 16). NPs are 
constructs of sizes ranging from 1 to 100  nm in at least one 
dimension and are 100 to 10,000 times smaller than human 
cells (17–19). They are bioactive and can interact with biological 
molecules both intra and extracellularly (20). Generally, they are 
characterized by a long blood half-life and can evade elimina-
tion by the reticuloendothelial system (17, 21); hence, they are 
relatively stable in biological systems. NPs can be successfully 
delivered using optimized nanocarriers such as dendrimers, 
quantum dots, liposomes, albumin, gold, and iron oxide to 
target diseased or normal tissues as therapeutic or diagnostic 
agents (Figure 1) (19, 21, 22). Their unique properties include 
a high penetration power (23), ability to be modified with any 
molecule of choice (24–26), biocompatible size distribution (27), 
and image contrasting ability (28). The use of NPs in medicine 
(nanomedicine) is being investigated in a range of diseases, 
particularly cancers (17) and cardiovascular disease (29–31). 
Nanotube-antibody microarrays, for example, have been used to 
detect metastatic breast cancer cells in the circulation (32). NPs 
have been employed in imaging AAA (33, 34) and to enhance 
magnetic resonance imaging (MRI) detection of endoleaks fol-
lowing endovascular aneurysm repair (29). NP-based biofilms 
have been utilized to detect infection (35).

Magnetic NPs and quantum dots are being investigated as 
treatments to modify stem cell proliferation and differentiation 

in regenerative medicine (36, 37). For example, mice with spinal 
cord injury injected with nanofiber conjugated with laminin 
were reported to show improved neurological function (36). 
Polylactic-co-glycolic acid NPs conjugated to tissue plasminogen 
activator have been reported to gradually lyse fibrin-rich clots 
(38). This has been suggested as a potential strategy for removing 
intraluminal thrombus (ILT) to allow endovascular delivery of 
therapeutic agents to the wall of AAAs, although this has not been 
specifically investigated. Intra-arterial NP-based thrombolytic 
therapy combined with temporary endovascular bypass has also 
been reported to be more effective than temporary endovascular 
bypass alone in a rabbit model of carotid artery occlusion (39). 
This may potentially be important in the management of patients 
with arterial occlusion. For other potential applications of NPs in 
medicine, please refer to the articles by Wang and Wang (40) and 
Zhang et al. (41). A number of animal and human investigations 
have studied various NPs as nanocarriers or in combination with 
standard contrast agents in imaging AAA (33, 34, 42–45).

In this article, we discuss the findings of these studies and 
highlight the potential challenges in utilizing these novel mol-
ecules as contrast agents in the functional and molecular imaging 
of AAA.

LiTeRATURe SeARCH

A literature search was conducted to identify studies employing 
NPs for molecular imaging of AAA using the MEDLINE (1966), 
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FiGURe 2 | Proposed stages in abdominal aortic aneurysm (AAA) pathogenesis and steps where nanoparticles (NPs) have been used to enhance 
imaging the disease process. This shows proposed stages in AAA pathogenesis from initiation to rupture. A combination of genetic and environment factors and 
tissue injury may lead to recruitment of inflammatory cells, macrophages (M), and neutrophils (N) leading to vascular smooth muscle cell (VSMC) apoptosis and 
extracellular matrix (ECM) degradation. This leads to aortic wall weakening and subsequent aneurysm progression. The aorta tries to repair itself but is overwhelmed 
by continual inflammation and ECM degradation. Eventually, failure of this compensatory mechanism leads to aortic rupture and death. NPs target inflammatory cells 
and components of the ECM at steps 1, 2, and 3 to aid in the imaging of functional components implicated in AAA pathology.
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SCOPUS (1996), Web of Science (1965), and Cochrane Library 
databases (1992) from inception to the 25th of September 2016. 
The following search terms were applied either as single or 
combined searches: “abdominal aortic aneurysm diagnosis” OR 
“AAA imaging,” [Title/Abstract] AND “nanoparticles,” AND/OR 
“clinical studies” OR “human studies,” AND/OR “animal studies” 
OR “experimental studies.” Abstracts were analyzed for relevance. 
Studies describing the use of NPs as agents for AAA imaging were 
retrieved. All studies investigating the use of NPs in AAA imaging 
were included. The reference lists of all included articles were also 
hand searched. Studies excluded were those in languages other 
than English and investigations which did not use NPs in AAA 
imaging.

AAA PATHOGeNeSiS AND POTeNTiAL 
iMAGiNG TARGeTS FOR NPs

Abdominal aortic aneurysm is a complex disease thought to 
be an abnormal interaction between genetic predisposition 
and environmental risk factors that aggravate the normal aging 

processes (3). It has been suggested that AAA formation is initi-
ated by endothelial injury with resultant chronic inflammation 
denoted by invasion of the tunica media by inflammatory cells 
including lymphocytes and macrophages as shown in Figure 2 
(46–51). Macrophages in turn secrete proteolytic enzymes 
such as matrix metalloproteinases (MMPs) (52, 53), resulting 
in significant remodeling and degradation of the extracellular 
matrix (ECM), significant damage to elastin and collagenous 
fibers and reductions in vascular smooth muscle cell (VSMC) 
density (53, 54). We and others have shown that most AAAs 
have marked ILT that is implicated in AAA progression (4, 55). 
Previous research suggests that ILT encourages the migration of 
neutrophils (56), macrophages, and lymphocytes (48), which are 
implicated in VSMC apoptosis and degradation of the aortic wall 
(48). P-selectin, an adhesion molecule expressed by the endothe-
lium and activated platelet, mediates leukocyte diapedesis and 
trapping (57, 58) and is implicated in ILT growth that may be 
important in AAA progression (4, 57).

Macrophage- and lymphocyte-driven inflammation is 
believed to be a key factor in AAA pathogenesis (2, 4, 6, 7). This 
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TABLe 1 | examples of animal studies assessing the use of nanoparticles (NPs) in AAA imaging.

AAA model AAA process Target NP imaging mode Findings

Elastase-induced rat model Inflammation Platelets expressing 
P-selectin

USPIO-FUCO MRI USPIO-FUCO-enhanced MRI detection of ILT (61)

Ang II-infused Apo E−/− mice Inflammation Macrophages USPIO MRI Reduced signal intensity in the post-USPIO transverse 
images of AAA (45)

Ang II-infused Apo E−/− mice Inflammation Macrophages SPIO MRI Ang II infusion increased SPIO uptake. AAA wall contained 
significantly more iron-positive macrophages (42)

Ang II-infused and TGβ-
neutralized C57BL/6 mice

ECM remodeling Collagen CNA-35 
micelles

MRI Increased MRI signal enhancement in AAA wall (31)

Ang II-infused Apo E−/− mice Inflammation Macrophages RGD-HFn NIR and MRI RGD-HFn-enhanced NIR (65), and MRI (30) imaging of AAA
Angiogenesis Endothelial cells

Ang II-infused Apo E−/− mice Inflammation Macrophages 18F-CLIO PET-CT Improved PET-CT imaging of AAA (66)

18F-CLIO, dextran-coated cross linked-iron oxide nanoparticles labeled with fluorine-18; AAA, abdominal aortic aneurysm; Ang II, angiotensin II; ApoE−/−, apolipoprotein E deficient; 
C57BL/6, C57 black 6; CNA-35, paramagnetic/fluorescent micellar nanoparticles functionalized with a collagen-binding protein; ECM, extracellular matrix; ILT, intraluminal thrombus; 
MRI, magnetic resonance imaging; NIR, near-infrared fluorescence imaging; PET-CT, positron emission tomography-computed tomography; RGD-HFn, Arg–Gly–Asp-conjugated 
human ferritin nanoparticle; SPIO, superparamagnetic iron oxide nanoparticles; TGFβ, transforming growth factor-β; USPIO, ultrasmall superparamagnetic iron oxide nanoparticles; 
USPIO-FUCO, USPIOs coated with fucoidan.
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is evidenced by previous research from our group and others 
demonstrating marked infiltration of macrophages, lympho-
cytes, and neutrophils in aneurysmal tissue (1, 46). Iron oxide 
NPs have been reported to have a high affinity for macrophages 
(48–50). Hence, these NPs, specifically the subset with diameters 
<50  nm known as ultrasmall superparamagnetic iron oxide 
nanoparticles (USPIOs), have been used as agents to aid imaging 
of AAAs in both animal models and patients (30–35). USPIOs 
such as ferumoxytol are composed of an iron oxide core enclosed 
by a hydrophilic coating that readily accrues in neutrophils and 
macrophages (51). They have been employed as MRI contrasts 
agents for assessing tissues with active inflammation such as 
AAA. NPs have been employed as agents to target inflammation 
(macrophages, neutrophils), VSMC apoptosis, and ECM degra-
dation (P-selectin) in AAA.

STUDieS ASSeSSiNG NPs iN AAA 
iMAGiNG

Several molecular imaging approaches have been investigated for 
AAA, but their ability to clearly differentiate between AAAs at 
risk of rupture and predict AAAs that will benefit from a surgi-
cal intervention is still unclear (3, 14, 15, 59). Both animal and 
human studies have suggested that NPs, particularly those with 
an iron oxide component, can be taken up by AAAs and identified 
on imaging (30–35). We highlight some of these studies in the 
following sections.

Animal Studies
A number of studies have assessed the use of NPs to enhance 
imaging of AAA within animal models (Table 1) (58, 60, 61). ILT 
is common within AAAs, and a large volume of thrombus has 
been associated with more rapid AAA progression (62). Suzuki 
and colleagues reported that the detection of ILT within a rat 
model using MRI was enhanced by infusion of USPIOs coated 

with fucoidan (USPIO-FUCO) as compared with infusion of 
USPIOs coated with carboxymethyldextran (USPIO-CMD) (61). 
Fucoidan is a natural ligand for P-selectin with high affinity for 
activated platelets (61). The authors reported that intraluminal 
hyposignals detected by USPIO-FUCO enhanced MRI where 
histologically confirmed to be thrombus. Bonnard et  al. using 
a rat model reported that fucoidan-conjugated microparticle-
enhanced MRI detection of inflammatory cells localized in 
AAAs (58). Turner and colleagues evaluated the use of the USPIO 
(ferumoxtran) as a marker for the detection of macrophages in 
the angiotensin II (ang II)-infused apolipoprotein E deficient 
(ApoE−/−) AAA mouse model (45). They reported marked accu-
mulation of USPIO-labeled macrophages within the aneurysmal 
aorta that could be identified by MRI and was confirmed by 
immunohistochemistry (45). Similarly, Yao et  al. reported that 
superparamagnetic iron oxide (SPIO) enhanced MRI visualiza-
tion of AAA in an angiotensin II-infused ApoE−/− model of AAA 
(42). They proposed that SPIO diffuses across the interendothelial 
junction of the vasa vasorum into the interstitium where they are 
engulfed by macrophages. These macrophages then migrate into 
the tunica media and tunica adventitia within the aneurysmal 
aorta. The authors suggested that SPIO-enhanced imaging may 
be useful for quantifying the risk of AAA rupture (42). This 
assertion by the authors is mitigated by the fact that the pres-
ence of endogenous iron within ILT may reduce the specificity 
of SPIO-enhanced imaging for localizing inflammation. ILT is 
reported to be rich in inflammatory cells (55, 63). In a mouse 
model in which AAAs were induced by ang II infusion and injec-
tion of transforming growth factor-β neutralizing antibody, Klink 
and colleagues reported that administration of paramagnetic/
fluorescent micellar NPs functionalized with a collagen-binding 
protein (CNA-35) markedly increased high-resolution multi-
sequence MRI visualization of aortic remodeling (31). AAA 
severity (Stages I–IV) was based on the classification by Alan 
Daugherty’s group (64). They imaged mice in which AAAs had 
been induced 5 and 15  days after CNA-35 NP injections and 
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FiGURe 3 | CNA-35-enhanced MR imaging of AAAs of increasing 
severity at early and late stage of development and complications.  
(A) Typical image of Stages II–IV AAA obtained after CNA-35 injection. 
Corresponding histological sections stained with combined Masson elastin 
are shown in the third column. (B) Quantification of aneurysm severity 
(increasing from Stage I–IV) and normalized signal enhancement percentage 
(%NSE) relative to CAN-35 injection. Reprinted from Klink et al. (31), with 
permission from Elsevier. Abbreviations: %NSE, normalized percentage signal 
enhancement; AAA, abdominal aortic aneurysm; CNA-35, paramagnetic/
fluorescent micellar nanoparticles functionalized with a collagen-binding 
protein. AAA severity Stages I–IV are based on the classification by Manning 
et al. (64).
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correlated the images to disease pathology (Figure 3). Marked 
CNA-35 NP uptake correlated with high collagen uptake (Stage 
II AAA) and hence less ECM degradation, while rupture Stage IV 
AAAs had negligible CNA-35 NP and low collagen uptake. These 
data suggested that CNA-35 micelles were able to identify some 
AAA pathological changes, but how this relates to rupture risk in 
patients is unknown (31).

Two further studies assessed Arg–Gly–Asp (RGD)-conjugated 
human ferritin nanoparticle (HFn) enhanced near-infrared fluo-
rescence imaging (65) and MRI imaging (30) of AAAs in the ang 
II-infused Apo E−/− mouse model. In a proof-of-concept analysis, 
RGD-HFn was shown to co-localize with infiltrating macrophages 
and angiogenesis as assessed by immunohistochemistry (30, 65). 
Mural macrophage infiltration and angiogenesis were assessed by 
CD-11b and CD-31 immunohistochemistry (Figure 4). In addi-
tion, RGD+ AAAs exhibited higher iron staining in the media and 
adventitia compared to the RGD− ones, and this was correlated 
with the percentage signal intensity loss (30). Nahrendorf et al. 

employed dextran-coated cross-linked iron oxide nanoparticles 
(CLIO) labeled with fluorine-18 (18F) to image AAAs within the 
same mouse model (66). They reported that 18F-CLIO had a high 
affinity for inflammatory macrophages and enhanced AAA imag-
ing by positron emission tomography-computed tomography 
(PET-CT). They reported that PET signal intensity was a good 
predictor of AAA growth. AAAs with marked uptake of F-CLIO 
had significant later expansion. They also reported a weak cor-
relation between the AAA diameter measured by CT and the 
macrophage PET signal. Importantly, their study suggested that 
18F-CLIO uptake by macrophages was a useful marker of subse-
quent AAA progression.

Together, these studies suggest that contrast agents employ-
ing NPs to target inflammation and thrombosis have potential 
to visualize pathological processes in AAAs. However, whether 
these imaging agents can advance current methods of identifying 
high risk AAAs remains to be established (67).

Human-Associated Studies
A number of clinical studies have assessed the potential of NPs 
for enhancing imaging of AAAs (Table  2). Truijers and col-
leagues conducted a clinical study investigating the uptake of 
macrophage-specific USPIO in 11 patients with an aneurysm 
(aortic, n  =  6, and iliac, n  =  5) and 11 age-matched non-
aneurysmal controls (44). They reported that USPIO-enhanced 
MRI identified large number of USPIO-positive quadrants 
within the walls of two AAAs but limited or no USPIO uptake 
in the other aneurysmal patients and the controls. They 
hypothesized that the observed variation in USPIO uptake 
may be due to selective uptake of the NPs within AAAs with a 
propensity for growth or rupture (44). Sadat et al. reported the 
USPIO-enhanced MRI of the inflamed aortic wall of 13 patients 
with AAA. They also reported that quantitative T2

* (transverse 
relaxation time constant) and T2 values (decay of transverse 
magnetization) provided a reliable quantitative method for 
assessing USPIO uptake within AAAs (32). These findings 
provide some evidence that USPIO-enhanced MRI may visual-
ize severe inflammation within AAAs, although no histological 
confirmation of uptake was available (43). SPIO-enhanced MRI 
has also been reported to enable successful visualization of AAA 
ILT morphology and localization of phagocytic leukocytes in 
a study of 15 patients (68). The authors reported a significant 
decrease in the MRI contrast-to-noise ratios in both the ILT and 
the deeper thrombus following SPIO administration, which was 
positively correlated with the levels of MMP-2, MMP-9, and 
CD68+ macrophages (68).

In a pilot study involving 27 male patients with AAAs (AAA 
diameter >4  cm) recruited from a surveillance program, it 
was reported that USPIO-enhanced MRI identified AAAs that 
subsequently rapidly expanded (33). The authors reported that 
patients with significant mural uptake of USPIO had a threefold 
higher AAA growth rate (measured over 6  months) compared 
to those with no or non-specific USPIO uptake (33). They also 
reported that USPIO co-localized with CD68+ inflammatory 
macrophages in the aneurysmal wall of patients who had open 
AAA repair, which was verified by immunohistochemistry 
(33). In a more recent study from the same group, the authors 
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FiGURe 4 | Histological analysis of abdominal aortic aneurysms and correlation with T2
* signal loss on MRi. (A) Immunohistochemical AAA staining 

showed mural macrophage infiltration and angiogenesis within the AAA wall. Perl’s iron staining showed greater accumulation of RGD-HFn-Fe3O4 in the media and 
adventitia of AAA wall (AAA RGD+) compared to HFn-Fe3O4 (AAA RGD−), co-localizing with both macrophages (asterisks) and areas of angiogenesis (dagger). The 
control aortic wall showed minimal Perl’s iron staining in both RGD+ and RGD− groups. (B) There was a close correlation between the total number of Perl’s 
iron-stained cells and % signal intensity loss in the AAA (n = 10, r = 0.83, P = 0.003). Reprinted from Kitagawa et al. (30), under the terms of the Creative Commons 
Attribution Non-Commercial License (CC BY-NC). Abbreviations: AAA, abdominal aortic aneurysm; MRI, magnetic resonance imaging; RGD-HFn, Arg–Gly–Asp-
conjugated human ferritin nanoparticle; r, Pearson’s correlation coefficient; T2

*, transverse relaxation time constant.

compared 18F-Fludeoxyglucose (18F-FDG) combined PET-CT 
(18F-FDG PET-CT) and USPIO-enhanced MRI for assessing 
aortic tissue inflammation in 15 patients with asymptomatic 

AAA [mean AAA diameter 4.6 cm (Figure 5)] (34). Both areas 
of increased USPIO uptake with and without co-localization 
with 18F-FDG were identified in the same quadrant within the 
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TABLe 2 | examples of human studies assessing the use of nanoparticles (NPs) in AAA imaging.

AAA process Target Sample size NP imaging mode Findings

Inflammation Macrophages 22a USPIO MRI USPIO-enhanced MRI detected inflammation in AAA (44)

Inflammation Macrophages 13 USPIO MRI Significant difference in decay of transverse magnetization pre- and post-USPIO 
infusion in AAA (43)

Inflammation Leukocytes 15 SPIO MRI SPIO-enhanced MRI detected inflammation in AAA (68)

Inflammation Macrophages 27 USPIO MRI Patients with marked USPIO uptake had threefold higher AAA growth rate (33)

Inflammation Macrophages 15 USPIO PET-CT and MRI F-FDG PET-CT appears to target glycolytic macrophages while USPIO-enhanced 
MRI appears to target phagocytic macrophages
Both methods improved AAA imaging (34)

a11 with aneurysm and 11 aged-matched non-aneurysmal controls.
AAA, abdominal aortic aneurysm; F-FDG, 18F-fludeoxyglucose; MRI, magnetic resonance imaging; PET-CT, positron emission tomography-computed tomography; SPIO, 
superparamagnetic iron oxide nanoparticles; USPIO, ultrasmall superparamagnetic iron oxide nanoparticles.

FiGURe 5 | (A,B) Representative magnetic resonance imaging (MRI) (A) and 
fused positron emission tomography-computed tomography (PET-CT)  
(B) scans from the same patient with an abdominal aortic aneurysm (AAA). 
Ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake, defined 
by percentage change in T2

*  are demonstrated using a color scale. Changes 
in T2

* value over the threshold (59%) are presented on a graduated 
(yellow-red) color scale and data below the threshold appears blue. 
Corresponding 18F-fludeoxyglucose (FDG) activity (red arrow) is shown (B). 
Differences in the location of regions of uptake between the techniques are 
apparent, as marked by the white arrow. Panels (C,D) are corresponding 
MRI and fused PET-CT slices from the same patient who had no USPIO or 
18F-FDG uptake in the wall of the AAA, with uptake limited to the peri-
luminal area. Reprinted from McBride et al. (34), under the terms of the 
Creative Commons Attribution-Non-Commercial-No Derivatives License (CC 
BY-NC ND).

aortic wall. They further reported that both 18F-FDG PET-CT 
and USPIO-enhanced MRI were equally efficient in identifying 
AAA associated inflammation; however, their data suggested that 
the different modalities targeted distinct macrophage phenotypes 
(i.e., those exhibiting glycolytic activity or those exhibiting 
phagocytic activity, respectively) (34).

Collectively, these studies suggest that NPs can be localized in 
some AAAs and may have a role in identifying higher risk AAAs. 
However, the studies currently published are pilot or feasibility 
studies with small sample sizes. It remains to be shown whether 
these findings can be validated in large scale clinical trials.

The Potential of employing NPs to identify 
High Risk AAA
Currently, available methods of imaging AAAs assess anatomical 
features, such as maximum AAA diameter and volume (67). Most 
AAAs identified by screening studies are small. There is a dearth 
of available imaging techniques that can identify pathological 
features of AAAs. The use of NPs as contrast agents could provide 
a means to identify such pathological features. Such functional 
imaging could provide a means to identify AAAs likely to rupture 
or grow more rapidly which should undergo early elective AAA 
repair. Larger studies are, however, needed to assess the value of 
this imaging in a more robust way. We have previously highlighted 
the difficulties in translating findings from pre-clinical animal 
models into practice (69), particularly as there is no current ideal 
AAA animal model. If further clinical studies are encouraging, 
there are also other challenges to overcome before the widespread 
clinical application of NP-enhanced imaging. These include cost, 
large scale production difficulties, and putative systemic toxic-
ity of these agents (70, 71). The design of nanomaterials able to 
specifically target high risk AAAs (15) is complicated by the 
multifactorial nature of AAA. Problems with non-specific uptake 
of NPs by non-target tissues can complicate signal quantification. 
Hence, image acquisition, quantification, and analysis methods 
need standardization to ensure rigor, reproducibility, validity, 
and reliability. Another potential problem is that NP localization 
is unlikely to reflect the hemodynamic forces on the aortic wall, 
which are also relevant to AAA rupture risk (72).

Nanoparticle-associated toxicity has been suggested to depend 
on a number of factors including NP size, composition, or charge 
(17, 73). Gold NPs, for example, are implicated in the induction of 
reactive oxygen species and autoimmunity (74). Cationic liposo-
mal NPs can interact with lipoproteins, serum proteins, and ECM, 
resulting in aggregation and oxidative stress with consequent 
non-target tissue damage (75, 76). None of these toxic effects were 
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