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Coronary artery disease (CAD) has a complex etiology involving numerous environmental 
and genetic factors of disease risk. To date, the genetic 9p21 locus represents the most 
robust genetic finding for prevalent and incident CAD. However, limited information is 
available on the genetic background of the severity and distribution of CAD. CAD mani-
fests itself as stable CAD or acute coronary syndrome. The Gensini score quantifies the 
extent CAD but requires coronary angiography. Here, we aimed to identify novel genetic 
variants associated with Gensini score severity and distribution of CAD. A two-stage 
approach including a discovery and a replication stage was used to assess genetic 
variants. In the discovery phase, a meta-analysis of genome-wide association data of 
4,930 CAD-subjects assessed by the Gensini score was performed. Selected single 
nucleotide polymorphisms (SNPs) were replicated in 2,283 CAD-subjects by de novo 
genotyping. We identified genetic loci located on chromosome 2 and 9 to be associated 
with Gensini score severity and distribution of CAD in the discovery stage. Although the 
loci on chromosome 2 could not be replicated in the second stage, the known CAD-
locus on chromosome 9p21, represented by rs133349, was identified and, thus, was 
confirmed as risk locus for CAD severity.
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inTrODUcTiOn

Coronary artery disease (CAD) is the most common cause of 
death in industrialized countries, and its prevalence is rapidly 
increasing in developing countries. CAD has a complex and 
heterogeneous etiology involving numerous environmental and 
genetic factors of disease risk. According to epidemiological and 
family-based studies, the genetic heritability of CAD is suggested 
to be ~40–60% within a population (1). Common genetic suscep-
tibility loci have been identified to be independently associated 
with CAD risk through genome-wide association studies (GWAS) 
(2, 3), including the 9p21 locus as being the most robust genetic 
finding for CAD to date. However, from a clinical perspective 
the observed effect sizes of these loci are small to moderate (3) 
which may, in part, be due to the heterogeneity of the different 
CAD phenotypes that were examined ranging from population 
at risk of developing CAD over anamnestic CAD to angiographi-
cally confirmed CAD and from stable disease to acute coronary 
syndrome.

In primary prevention, population risk of CAD is established 
mainly by the Framingham Risk Score (4). However, in recent 
years, this attributable risk was refined by additional mark-
ers indicating low, intermediate, or high risk populations (5). 
Coronary angiography remains the gold standard to assess CAD 
(6). The Gensini score (7) was established to quantify the severity 
and extent of CAD, including stenosis severity and anatomical 
location according to its functional relevance in the coronary 
circulation. An important advantage of using the Gensini score 
over others (e.g., SYNTAX score) is that it includes early altera-
tions of atherosclerotic disease and mild stenoses.

In this study, we aimed to identify additional genetic loci more 
specific to the severity and distribution of CAD. We carried out 
a genome-wide approach of genetic variations with the Gensini 
score in European patients who underwent coronary angiography.

MaTerials anD MeThODs

gWa Meta-analysis—Discovery
We conducted a meta-analysis of GWAS data in 4,931 participants 
of European ancestry from three large cohorts. The study was 
performed in the AtheroGene study (8), the LIFE Heart Study (9), 
and the LURIC study (10). Each study was carried out in accord-
ance with the recommendations of the local ethics committee, 
and all participants gave written informed consent in accordance 
with the Declaration of Helsinki. The protocols were approved by 
the respective local ethics and data safety committee. The cohorts 
are described in detail in the Supplementary Material.

assessment of the gensini score
Coronary artery disease severity was assessed according to the 
method described by Gensini (7). Briefly, each coronary artery 
lesion is scored for the diameter stenosis (25%  =  1, 50%  =  2, 
75% = 4, 90% = 8, 99% = 16, complete occlusion) This score is 
multiplied with a predefined factor according to the functional 
relevance of the diseased vascular segment. This calculation 
yields a sum score describing CAD severity in each patient.

genotyping and imputation
Genotyping was conducted using the Affymetrix Whole-Genome 
Human SNP Array 6.0 in AtheroGene and LURIC and using the 
Affymetrix Axiom CADLIFE Array in LIFE Heart. Processing 
of DNA samples was performed using the Affymetrix Genome-
Wide Human SNP Nsp/Sty Assay 5.0/6.0, and the Affymetrix/
Axiom Reagent kit, respectively, and hybridization was done in 
accordance with the manufacturers’ standard recommendations. 
Details on quality control used for genotyping are described in 
the Supplementary Material.

Each study imputed genotype data to 2.5 million non-
monomorphic, autosomal SNPs using HapMap haplotypes 
(CEU population, release 24, build 36) as reference. Imputation 
was performed with the software IMPUTE v2.1.0. as reference. 
Analyses were restricted to individuals of European descent only.

statistical analyses
Genome-wide association study was conducted in each discov-
ery cohort independently. All individuals with coronary artery 
bypasses or with a Gensini score = 0 were excluded from analysis 
to ensure that the observed effect was driven by the continuous 
severity of CAD rather than binary presence or absence of the 
disease. Data were analyzed by applying linear regression with an 
additive genetic model (1 degree of freedom trend test) to evalu-
ate the association between log-transformed Gensini scores and 
genotypes (0, 1, and 2 variant alleles). Analyses were performed 
with adjustment for age and gender in all studies. To account for 
population stratification, we additionally adjusted for the first 
three components from principal component analysis (PCA). 
A fixed-effects meta-analysis was conducted by combining 
individual estimates of genotype effects from AtheroGene, LIFE 
Heart, and LURIC after excluding genotyped and imputed SNPs 
not meeting the quality control filters (Supplementary Material).

An a  priori threshold for genome-wide significance was 
5 × 10−8, and a p-value >5 × 10−8 but <5 × 10−6 was considered 
moderate evidence for association.

replication
Replication cohorts included 2,283 participants from the VIVIT, 
stenoCardia, and INTERCATH studies. Details about these 
cohorts are provided in the Supplementary Material.

For replication phase, we selected SNPs with a p-value 
<5  ×  10−6 from the discovery meta-analysis (rs1485086, 
rs2376012, rs16835318, and rs17752803) on chromosome 2 and 
SNP rs1333049 on chromosome 9.

De novo genotyping for replication was performed for the 
five selected SNPs in VIVIT, stenoCardia and INTERCATH 
by 5′Nuclease assays using ABI genotyping assays (Applied 
Biosystems, Darmstadt, Germany). Genotyping was performed in 
96-well plates. The Genotyping Master Mix (Applied Biosystems, 
Darmstadt, Germany) was used in a 7-µl total reaction volume, 
including 20 ng DNA per reaction. Genotypes were automatically 
attributed by measuring the allele-specific fluorescence on the ABI 
7900HT real-time PCR System (Applied Biosystems, Darmstadt, 
Germany), using the SDS 2.4 software for allele discrimination 
(auto caller confidence interval >95%).
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Table 1 | Characteristics of study participants of the three discovery cohorts in the meta-analysis of genome-wide association studies of severity of coronary artery 
disease using the Gensini score.

Discovery replication

atherogene  
n = 1,168

liFe heart  
n = 1,603

lUric  
n = 1,899

Vivit  
n = 1,235

stenocardia  
n = 490

inTercaTh  
n = 546

Age, years, mean ± SD 63 ± 9.8 63.4 ± 11.3 62.3 ± 10.8 64.2 ± 10.5 64 ± 11 69.7 ± 10.6
Women, % 257 (22) 427 (26.6) 603 (31.8) 343 (27.8) 144 (29.4) 151 (27.8)
Gensini score, median (25th–75th percentile) 38 (18–65.5) 24 (6–48) 27 (5–53.5) 15 (1–42) 23 (9–48) 16 (6.5–38)
Hypertension, % 838 (71.7) 1067 (66.6) 1364 (71.8) 1012 (82.0) 383 (78.2) 429 (81.2)
Diabetes mellitus, N (%) 248 (21.2) 533 (33.3) 746 (39.3) 366 (29.7) 83 (16.9) 151 (28.3)
Current cigarette smoker, N (%) 366 (31.3) 421 (26.3) 455 (24.0) 229 (18.6) 147 (30.1) 84 (16.5)
Former cigarette smoker, N (%) 363 (31.1) 624 (38.9) 723 (38.1) 535 (43.4) 140 (29.1) 249 (48.9)
Total cholesterol, mg/dL, mean ± SD 215.0 ± 48.5 207.0 ± 47.5 193.4 ± 38.9 204.7 ± 46.9 209.2 ± 47.0 167.7 ± 47.7
HDL cholesterol, mg/dL, mean ± SD 48.8 ± 14.4 47.5 ± 13.6 39.0 ± 10.9 52.6 ± 15.5 48.5 ± 13.6 47.8 ± 21.2
LDL cholesterol, mg/dL, mean ± SD 138.8 ± 43 129 ± 42 116.6 ± 34.4 128.03 ± 39.12 130.2 ± 42.2 93.6 ± 38.6
Triglycerides, mg/dL, mean ± SD 165.37 ± 114.6 173 ± 108 170.9 ± 121.6 151.6 ± 99.8 162.2 ± 123.9 153.8 ± 195.7
Body mass index, kg/m2, mean ± SD 27.5 ± 3.7 29.5 ± 4.8 27.5 ± 4.1 27.4 ± 4.2 27.9 ± 4.2 27.2 ± 5.2
History of MI, N (%) 280 (24) 400 (25) 710 (37.4) 363 (29.3) 95 (19.8) 123 (23.5)

FigUre 1 | Manhattan Plot of −log10 (p) for association of single nucleotide polymorphisms (SNPs) and chromosomal position for all autosomal SNPs analyzed in 
the meta-analysis of three independent discovery cohorts. Associations with a p–value <5 × 10−8 were considered genome-wide significant. The analysis was 
adjusted for age and gender.
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Association was tested by a linear regression model assuming 
additive allele effects in the replication studies. For single SNP 
replication analysis, we assumed concordant direction of effect 
and a p-value <0.05. Combined meta-analysis was repeated for 
the replication cohorts alone.

resUlTs

The characteristics of the discovery and replication cohorts 
are presented in Table 1. Mean age of the study participants in 
the discovery cohorts was 63 years (SD ± 9.8) in AtheroGene, 
63.4 years (SD ± 11.3) in LIFE Heart, and 62.3 years (SD ± 10.8) 

in LURIC. 22, 26.6, and 31.8% of the participants, respectively, 
were women. The median Gensini score was 38 (18–65.5) 
in AtheroGene, 24 (6–49) in LIFE Heart, and 27 (5–53.5) in 
LURIC.

In the replication cohorts, mean age was 64.2 years (SD ± 10.5) 
in Vivit, 64  years (SD  ±  11) in stenoCardia, and 69.7  years 
(SD ± 10.6) in INTERCATH. 27.8, 29.4, and 27.8% of the par-
ticipants, respectively, were women. The median Gensini score 
was 15 (1–42) in Vivit, 23 (9–48) in stenoCardia, and 16 (6.5–38) 
in INTERCATH.

Figure  1 provides a Manhattan plot of the meta-analysis 
p-values by chromosomal positions. Results of the meta-analysis 
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Table 2 | Effects of selected SNPs in the combined discovery and replication phase.

Discovery replication

snP iD chr Pos coded 
allele

Other 
allele

nearest gene Frequency 
coded  

allele [%]

beta (se) p-Value beta (se) p-Value

rs1485086 2 139722479 C G Upstream of NXPH2 
(184.7kb)

9.5 0.196 (0.040) 7.82 × 10−7 −0.079 (0.043) 6.63 × 10−2

rs16835318 2 194659522 A G – 8.8 0.191 (0.041) 3.83 × 10−6 0.003 (0.046) 9.56 × 10−1

rs2376012 2 139648059 A G Upstream of NXPH2 
(110.2 kb)

27.4 0.128 (0.026) 7.66 × 10−7 0.046 (0.028) 1.07 × 10−1

rs17752803 2 139810489 T C Upstream of NXPH2 
(272.7 kb)

10.0 −0.214 (0.042) 4.20 × 10−7 −0.061 (0.042) 1.48 × 10−1

rs1333049 9 22125503 C G Downstream of CDKN2B-
AS1 (4.4kb)

49.0 0.101 (0.024) 1.86 × 10−5 0.062 (0.025) 1.27 × 10−2

For single SNP replication analysis, we assumed concordant direction of effect and p-value <0.05.
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are shown in Table S1 in Supplementary Material. None of 
the SNPs reached genome-wide significance according to the 
conservative Bonferroni threshold of P  <  5  ×  10−8. However, 
two loci in an intergenic region on chromosome 2 (2q22.1 and 
2q32.3) reached p-values of <5  ×  10−6. The 2q22.1 region was 
represented by rs1485086-C [p = 7.8 × 10−7, beta = 0.196 (SD 
0.04)], rs2376012-A [p = 7.7 × 10−7, beta = 0.128 (SD 0.026)], 
rs17752803-T [p = 4.2 × 10−7, beta = −0.214 (SD 0.042)], and 
2q32.2 by rs16835318-A [p = 3.8 × 10−6, beta = 0.191 (SD 0.041)]. 
In addition, on chromosome 9p21, the most significant and 
known CAD locus so far, several SNPs showed an association 
with CAD severity. These SNPs included rs4977575-G [1.3 × 10−5, 
beta = 0.103 (SD 0.024)], rs1333047-T [1.7 × 10−5, beta = 0.102 
(SD 0.024)], and rs1333049-C [1.9  ×  10−5, beta  =  0.101 (SD 
0.024)].

To validate the regions on chromosome 2, the four SNPs 
(rs1485086, rs2376012, rs16835318, and rs17752803) were 
selected for de novo genotyping in our replication cohorts. In 
addition, we assessed SNP rs1333049 on chromosome 9 (as 
representative SNP of this known CAD locus) in our replication 
cohorts.

None of the four SNPs on chromosome 2 reached the pre-
defined statistical significance for replication and, thus, could 
not be considered as replicated neither as single SNPs nor in the 
combined meta-analysis. However, the locus on chromosome 
9p21 reached the statistical significance threshold for replica-
tion and was confirmed as locus for the severity of stenosis in 
CAD [rs1333049-C, p = 1.27 × 10−2, beta = 0.062 (SD 0.025)]. 
The results of the replication and combined analysis are listed in 
Table 2 and Figure 2.

DiscUssiOn

Our genome-wide association (GWA) study of angiographically 
defined CAD revealed that the well-established 9p21 locus is 
not only associated with disease risk but also severity and extent 
of CAD. However, this refined CAD phenotype did not lead to 
the identification of novel loci beyond this known locus in our 
medium-sized study samples.

Coronary angiography remains the gold standard for the 
assessment of CAD at current stage. A continuous acquisition of 
CAD severity may be superior to a binary assessment of CAD 
presence due to its progressive nature over time. Scoring systems 
such as the Gensini score (7) reflect the severity and extent of 
CAD and precisely define the disease phenotype. With the pro-
gression of CAD, an individual’s Gensini score may increase over 
time. Accordingly, analyses were adjusted for age of the patients. 
Prognostic implications of the Gensini score on overall survival 
have been demonstrated (11). CAD is a heterogeneous phenotype 
that is not fully mirrored by most of the recent GWAS (12). For 
example, high heritability estimates have been reported for left-
main disease and calcified coronary lesions (13). The Gensini 
score provides a detailed representation across the spectrum 
of CAD as it already reflects minor angiographically detectable 
vascular alterations and, thus, should more accurately subclassify 
individuals with a diagnosis of CAD.

Recent studies have demonstrated an association between 
9p21 and CAD burden with number of diseased vessels or semi-
quantitative methods such as the Gensini score, suggesting that 
9p21 promotes progressive atherosclerosis (14–18). By contrast, 
other studies have not confirmed this association, and this lack of 
consistency has led to difficulties in reconciling association with 
presence but not extent of CAD (19, 20).

A recent large meta-analysis, which included a breadth of 
published and unpublished reports on 9p21 and angiographic 
CAD, convincingly demonstrated that 9p21 was associated with 
greater CAD burden as marker of more severe atherosclerosis but 
not with prevalent myocardial infarction (21).

In this study, we aimed to identify genetic loci more specifically 
associated with the severity and distribution of CAD by using a 
two-stage approach including a discovery stage and a subsequent 
replication stage. While none of the SNPs reached genome-wide 
significance in the discovery stage, several SNPs on chromosome 
2 and chromosome 9 showed borderline significance. In the rep-
lication phase, the locus on chromosome 2 could not be verified; 
however, our results reconfirmed the known chromosome 9p21 
locus as locus for CAD severity and distribution.

Strengths of this study include the availability of data from 
three large CAD studies, independent replication of results, 
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FigUre 2 | Forest plots showing the results of the association analyses for each single study in the discovery (upper panel) and replication (lower panel) phase and 
for the meta-analysis are presented. The effect estimates and 95% confidence intervals are provided for each study separately and in combined analysis.
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and standardized definition and assessment of the extent of 
CAD through a validated semiquantitative score. Furthermore, 
similarity in quality control measures across cohorts, imputation 
strategies, and analytical methods account for homogeneity in 
analyses.

Some important limitations of our study should be noted. 
Compared to other GWAS samples, our combined samples were 
only of medium size because of the rigorous assessment of CAD 
that is not widely available in current GWAS studies. However, 
based on our statistical power, we should have been able to 
find medium to large effects with possible clinical relevance. 
Examination of larger cohorts with CAD defined by the Gensini 
Score may detect more genome-wide significant associations. 
In addition, we cannot generalize our findings to individuals 
of non-European ancestry. Assessment of CAD severity by 
semiquantitative angiographic scoring relies on angiographically 
detectable lesions. Disease burden that is limited to the vascular 
wall without significant intraluminal progression may be missed 
by this evaluation.

In summary, in-depth phenotyping of CAD using the angio-
graphically determined Gensini score confirmed the chromo-
some 9p21 locus as risk locus of CAD severity. No additional 
locus of CAD severity was identified in this study. Genetic 
correlates of the CAD scoring systems need to be investigated 
in larger cohorts.
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