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Background: Coronary heart disease (CHD) is the most common cause of death 
worldwide. Previous studies have identified numerous common CHD susceptibility loci, 
with the vast majority identified in populations of European ancestry. How well these 
findings transfer to other racial/ethnic populations remains unclear.
Methods and Results: We examined the generalizability of the associations with 71 
known CHD loci in African American, Latino and Japanese men and women in the 
Multiethnic Cohort (6,035 cases and 11,251 controls). In the combined multiethnic 
sample, 78% of the loci demonstrated odds ratios that were directionally consistent 
with those previously reported (p = 2 × 10−6), with this fraction ranging from 59% in 
Japanese to 70% in Latinos. The number of nominally significant associations across all 
susceptibility regions ranged from only 1 in Japanese to 11 in African Americans with the 
most statistically significant association observed through locus fine-mapping noted for 
rs3832016 (OR = 1.16, p = 2.5×10−5) in the SORT1 region on chromosome 1p13. Lastly, 
we examined the cumulative predictive effect of CHD SNPs across populations with 
improved power by creating genetic risk scores (GRSs) that summarize an individual’s 
aggregated exposure to risk variants. We found the GRSs to be significantly associated 
with risk in African Americans (OR = 1.03 per allele; p = 4.1×10−5) and Latinos (OR = 
1.03; p = 2.2 × 10−8), but not in Japanese (OR = 1.01; p = 0.11).
Conclusions: While a sizable fraction of the known CHD loci appear to generalize in 
these populations, larger fine-mapping studies will be needed to localize the functional 
alleles and better define their contribution to CHD risk in these populations.

Keywords: coronary heart disease, genome wide association study (gWas), multi-ethnic, african americans, 
latino american, Japanese americans, SORT1

intrODuctiOn

Coronary heart disease (CHD) is the most common, chronic, life-threatening illness in the United States, 
affecting more than 11 million people (1). A study with twins has estimated the genetic contribution to 
the variation in CHD mortality to be 0.57 and 0.38 in males and females, respectively (2). Genome-wide 
association studies (GWAS) have been conducted primarily in populations of European ancestry and 
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have identified ~65 regions associated with CHD risk (3–11). Many 
of the CHD loci were identified in a large study of 22,233 case and 
64,762 control of European ancestry in the CARDIoGRAMplusC4D 
consortium, which reported 46 genome-wide significant variants with 
odds ratios ranging from 1.01 to 2.08 and effect allele frequencies of 
0.06–0.91 (9). More recently, 10 additional loci were reported from 
the same consortium in a genome-wide association study involving 
61,289 cases and 126,310 controls subjects following imputation to 
the 1,000 Genomes Project reference panel (12). Genome-wide scans 
have also revealed 7 CHD risk loci in Asian populations (13–17). 
The known genetic risk variants for CHD are estimated to explain 
only 10–11% of the heritability of CHD (9, 12), suggesting that many 
additional genetic susceptibility loci remain to be discovered.

Several studies in Asian populations have reported successful 
replication of known CHD regions (17–20), with a reproducible 
disease association consistently noted with the 9p21 region. A 
limited number studies have been performed to investigate 
risk associated with CHD variants in minority groups such as 
African Americans or Latinos (21–28). In 2011, a GWAS in 
African Americans found a SNP, rs1859023, located at 7q21 
near the PFTK1 gene to be significantly associated with CHD 
(22), however this finding has never been replicated in African 
Americans or any other racial/ethnic group. In a study of 8,090 
African Americans (~700 CHD cases) that examined known 
CHD risk regions, only 9p21 was found to be associated with 
CHD (25). In a study of 8,201 African Americans (~550 CHD 
cases) (26), investigators found consistent direction of effects 
compared to studies of European ancestry for 23 of 44 (binomial 
p = 0.52) known loci with two nominally statistically significant 
(rs599839 at 1p13/SORT1 and rs579459 at 4p23/ABO). Genetic 
studies of CHD in Latino populations have been extremely 
limited. In a Costa Rican study that examined only 14 CHD SNPs 
in 1,898 cases with MI and 2,096 controls, 7 variants at 3 regions 
(SORT1, CXCL12, and 9p21) were found to be significantly 
associated with risk (29). Thus, additional studies are needed 
to understand the generalizability and relevance of the known 
CHD risk loci in populations of non-European ancestry.

In this context, the objective of this study was threefold. First, 
we wished to determine whether associations involving 71 known 
susceptibility variants of CHD from 65 independent regions generalize 
across African-American, Latino and Japanese men and women in 
the Multiethnic Cohort, a study that includes over 6,000 cases and 
11,000 controls. Second, we evaluated common genetic variation 
across each susceptibility region in an attempt to identify variation 
that might better define the risk associations compared to the index 
variants in the multiethnic sample. Lastly, we constructed genetic 
risk scores (GRS) summarizing one’s degree of exposure to high risk 
alleles of CHD and evaluated to what degree this GRS contributes to 
population differences in CHD risk.

MethODs

study Population
The Multiethnic Cohort study (MEC) is a large prospective 
cohort study that was established between 1993 and 1996. The 
MEC includes primarily African Americans, Japanese American, 

Native Hawaiians, Latinos and European Americans living in 
Hawaii and California. Cohort members were recruited through 
Department of Motor Vehicle license files and supplemented by 
voter registration and Health Care Financing Administration 
(Medicare) files. Participating individuals were between 45 and 
75 years of age, and completed a 26-page self-administered, detailed 
questionnaire at cohort entry (baseline data, 1993–1996). The 
questionnaire included basic demographic factors (including race/
ethnicity and education), lifestyle factors (e.g., diet, medication 
use and smoking history), and chronic medical conditions. 
Follow-up questionnaires were also administered in years 1999 
and 2003 which contained updates on participant’s CHD status and  
lifestyle factors.

Several nested case-control studies have been assembled in the 
MEC for GWAS of a number of cancer and non-cancer traits (30–
32) including breast cancer, prostate cancer, and type-2 diabetes, 
mainly in populations of non-European ancestry. In the current 
study, we identified CHD cases and non-cases within these nested 
studies for the genetic analysis of CHD risk SNPs.

The MEC study obtained written informed consent from study 
participants for genetic analysis, approval from the Health Science 
Review Board (HSIRB) at the University of Southern California, 
and IRB certification permitting data sharing in accordance with 
the NIH Policy for Sharing of Data Obtained in NIH Supported 
or Conducted Genome-Wide Association Studies (GWAS). 
Genetic data for the MEC is available on dbGAP (phs000517.
v3.p1, phs000851.v1.p1, phs000356.v2.p1, phs000306.v4.p1,  
phs000683.v1.p1)

chD case/cOntrOl DefinitiOns

CHD cases were identified through linkage of the MEC to the 
California Hospital Discharge Data (1990–2012) (CHDD) and 
the Centers for Medicare and Medicaid Services (CMS) claim 
files (MedPAR, outpatient) (1999–2011). Hospital discharge 
information was not available for the subjects from Hawaii which 
included 76.6% of the Japanese men and women. A CHD case was 
defined as having ischemic heart disease under ICD-9 codes (DX 
410–414), by the principal or first diagnosis code and the principal 
or first procedure code. We also included cases with a primary 
cause of death due to myocardial infarction (ICD-9 DX410, ICD-10 
I21), or other CHD conditions (ICD-9 DX411–414, ICD-10 I20, 
I22–25). Both prevalent and incident CHD cases were included in 
this study. Of the 6,035 CHD cases identified, 1,146 were identified 
from their baseline questionnaires at the time of enrollment in the 
MEC study, and a majority of these prevalent cases (1,122, 97.9%) 
were also identified from CHDD or Medicare.

Controls in this study were subjects with no history of heart attack 
or angina based on the baseline questionnaire or all subsequent 
follow-up questionnaires. Those taking nitrates at blood draw in 
subsequent examinations were also excluded. Individuals with non-
primary CHD diagnosis codes (i.e., 2–24) from the CHDD and 
Medicare data were excluded from being either a case or control. 
A total of 11,251 controls were selected, of which 8,307 had at 
least one previous Medicare or CHDD claim (and thus would have 
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been identified as a case). A sensitivity analysis using controls with 
definite claim information was performed.

genOtyPing anD Quality cOntrOl

We utilized genetic data generated from case-control studies in the 
MEC of breast cancer, prostate cancer, and type 2 diabetes in African 
Americans (2,976 males and 3,539 females), Japanese Americans 
(2,530 males and 2,132 females), and Latinos (3,340 males and 
2,769 females). Genotyping was conducted using the Illumina 
platform with different arrays, including the Human 1M-Duo 
v3.0 BeadChip (31, 32), HumanOmni2.5-Quad BeadChip (33), 
Human 660W-Quad BeadChip (34), and the Cardio-MetaboChip 
(35) (Table S1). We used the following exclusion criteria to remove 
samples whose genetic or phenotypic data were questionable: (1) 
unknown replicates across studies, (2) call rates < 95%, (3) samples 
with mismatched gender, such as male samples with >10% mean 
heterozygosity of SNPs on the X chromosome and/or <10% mean 
intensity of the Y chromosome; or female samples with <15% mean 
heterozygosity of SNPs on the X chromosome and/or similar 
mean allele intensities of SNPs on the X and Y chromosomes, (4) 
ancestry outliers (>4 standard deviations from the mean of the 
first or second principal component), and (5) first degree relatives.

A subset of 2,717 African Americans (879 CHD cases and 1,838 
controls) and 1,184 Japanese Americans (302 CHD cases and 882 
controls) genotyped with the Cardio-MetaboChip were missing 
data for 20 of the 71 SNPs; these subjects were excluded from the 
risk score analysis.

snP iMPutatiOn anD PrinciPal 
cOMPOnents analysis

All samples except for the African-American and Japanese samples 
genotyped with the Metabochip were imputed using the software 
IMPUTE2, based on build 37 (hg19) coordinates, to the 1000 
Genome Project data phase 1 v3. Principal components were 
calculated by study in smartpca from EIGENSOFT (36) using a 
random selection of 10,000 SNPs across the genome (MAF >5% 
and call rate >95%).

statistical analysis

The log-additive effect of each SNP on CHD risk was estimated 
in PLINK using unconditional logistic regression adjusted for 
age, sex, BMI and the first 10 principal components to account 
for potential population stratification (37). All analyses were 
stratified by ethnicity, disease status (i.e., breast cancer, prostate 
cancer, or type 2 diabetes disease status). METAL was used 
to combine the results within and across populations, which 
included 18 case-control strata in the overall meta-analysis of all 
populations. For SNPs that were imputed, all were imputed with 
an IMPUTE2 INFO score >0.8 in each study and population. 
SNPs rs11752643 and rs3782886 in African Americans, rs180803 

in Latinos, and rs6544713, rs4252120, rs2023938, rs3918226, 
rs3184504, and rs9982601 in Japanese had a minor allele 
frequency less than 1% and were not included in the ethnic-
specific analysis. The cross-ethnic meta-analysis was performed 
on SNPs observed in at least two ethnic groups.

In addition to testing of the index SNP, we examined regional 
replication of the signal through testing SNPs in linkage 
disequilibrium (LD) with the index SNP in European ancestry 
groups (r2 ≥0.4 in EUR 1000 Genomes Project). Haploview (38) 
was used to assess pairwise tag SNPs among bins of markers in 
the AFR population [tagging r2 ≥0.8 for SNPs with a MAF >1% 
based on 1000 Genomes Project data (39)]. For each region, 
an alpha threshold of significance was set at 0.05 divided by 
the number of tag SNPs in AFR. We considered evidence of 
replication to be present in a region when one or more SNPs 
in LD with the index SNP had a p-value that was lower than 
the region-defined alpha threshold. For imputed SNPs, only 
those imputed with high quality (IMPUTE2 INFO score 
>0.8) were included in the regional replication testing. The 
regional association plots were generated with the LocusZoom  
program (40).

We also examined the aggregate effect of the CHD risk 
loci. Three genetic risk scores (GRS) were calculated for each 
individual: (1) An unweighted GRS comprised of risk-associated 
alleles from the 71 CHD SNPs, (2) a modified unweighted GRS 
(I) that substitutes the index SNP with the lead SNP reaching 
region-wide significance within a specific race/ethnic group of 
each known CHD locus, and (3) a modified unweighted GRS 
(II) similar to I but substituting index SNPs with the leading 
SNPs in each region from our cross-ethnic meta-analysis. The 
risk alleles for the substitution SNPs were determined based on 
their observed effects in our study. As outlined above, subjects 
genotyped with the non-GWAS Metabochip were excluded 
from the risk score analysis because of missing data on 20 
SNPs. The risk score distributions across ethnic groups were 
compared using a two-sided t-test. The association of genetic 
risk scores with CHD were evaluated within each ethnicity in 
a logistic regression model adjusted for age, sex, BMI, and the 
first 10 principal components. Of the 71 SNPs selected, only 
one pair (rs16986953 and rs2123536) from TTC32-WDR35 was 
correlated. Since the association between rs2123536 and CHD 
was only observed in a Chinese population (16), both SNPs were 
kept in the GRS analysis.

Within each population, statistical power for each SNP was 
calculated in the R package “gap,” (41) using the allele frequency 
in each racial/ethnic group, and the documented OR from the 
literature. The allele frequency for the multiethnic sample was 
weighted by the sample size of each ethnic group. The power for 
detecting rare and common alleles within each ethnic group was 
calculated using QUANTO (42).

results

Descriptive characteristics of the 6,035 CHD cases and 11,251 
controls stratified by sex and race/ethnicity are presented in 
Table 1. We analyzed a total of 2,376 African-American cases and 
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4,139 controls, 2,291 Latino cases and 3,818 controls, and 1,368 
Japanese cases and 2,294 controls. In general, compared to controls, 
CHD cases were slightly older at cohort entrance, were heavier in 
all three ethnic groups and were more likely to have ever smoked 
than controls in all three ethnic groups (Table 1). The associations 
of BMI and smoking with CHD were similar when further stratified 
by prevalent conditions, including prostate cancer, breast cancer, 
and diabetes (Table S2).

We had a priori greater than 80% power to detect reported per 
allele effect sizes for 6 out of 71 SNPs in African Americans, 9 out 
of 71 SNPs in Latinos, and 9 out of 71 SNPs in Japanese Americans 
and 16 out of 71 SNPs when combining samples from all three 
ethnic groups (Figure S1). Given the sample size in each ethnic 
group, we had 28.5% power to detect an OR of 1.12 (mean OR from 
the selected index SNPs) for a rare (MAF = 0.05) allele and 71.6% 
power to detect the same OR for a common (MAF = 0.20) allele 
in African Americans; we had 27.3% power to detect OR of 1.12 
for a rare allele and 69.3% power for a common allele in Latinos; 
and 20% power for a rare allele and 52.7% power for a common 
allele in Japanese Americans.

We examined evidence of replication for 71 CHD variants 
from 65 regions (Table S3). Among these variants, 69 in African 
Americans, 70 in Latinos, and 65 in Japanese Americans had a 
MAF >1% and were included in the analysis. Compared to the null 
expectation that one-half of the examined SNPs show consistent 
direction of effects as previously reported, 65.2% (45 of 69, binomial 
p = 0.008) SNPs in African Americans, 70.0% (49 of 70, binomial 
p = 5.5 × 10−4) in Latinos, 58.5% (38 of 65, binomial p = 0.11) in 
Japanese, and 77.5% (55 of 71, binomial p = 2.0 × 10−6) in the 
combined multiethnic sample had the same direction of association 
as previously reported. In African Americans, nominally statistically 
significant associations (p < 0.05) and consistent directional effects 
were observed for 11 index SNPs in PPAP2B, SORT1, IL6R, REST-
NOA1, BTN2A1, SLC22A3-LPAL2-LPA, 9p21, CXCL12, SH2B3, 

and KCNE2. In Latinos, nominal evidence of association (p < 0.05) 
and consistent directional effects were observed with 8 index SNPs 
at SORT1, APOB, NOS3, LPL, ZHF259-APOA5-APOA1, MFGE8-
ABHD2, FURIN-FES, and BCAS3. In Japanese, only 1 index SNP 
at 9p21 was nominally significant and directionally consistent. 
In the combined multiethnic sample, 10 index SNPs at PPAP2B, 
SORT1, IL6R, REST-NOA1, EDNRA, PHACTR1, BTN2A1, NOS3, 
9p21, and CXCL12 were directionally consistent and nominally 
statistically significant.

We observed evidence of regional replication for 6 regions in 
African Americans, 3 in Latinos, 1 in Japanese Americans, and 10 
in the combined sample when examining SNPs correlated with the 
index SNPs (Table S4; see Methods). The previously reported index 
SNP in four of the 10 regions was not significant at the 0.05 level, 
but correlated SNPs with p-values smaller than the region specific 
significance levels were detected in these four regions: SLC22A4-
SLC22A5 and RAI1-PEMT-RASD1 in African Americans, TTC32-
WDR35 in the multiethnic analysis, and APOE-APOC1 in Latinos 
and the multiethnic sample.

The most statistically significant association was observed at the 
SORT1 locus (Figure 1). Two index SNPs in complete LD (rs602633 
and rs599839) were initially reported from GWAS in European 
ancestry populations. The index SNP rs602633 was associated 
with risk in African Americans (OR = 1.13; p = 0.004), Latinos 
(OR = 1.11; p = 0.04), and in the cross-ethnic meta-analysis (OR 
= 1.11; p = 7.8×10−4), but not in Japanese Americans (OR = 1.01, 
p = 0.88). The most significant association in the region was with 
variant rs3832016 (OR = 1.16; p = 2.5×10−5 in the multiethnic 
sample), an INDEL (−/T) in high LD with rs602633 in EUR (r2 
= 0.96) and with a MAF of 0.35 in African Americans, 0.20 in 
Latinos, and 0.07 in Japanese Americans. A previous fine-mapping 
study of the SORT1 region at 1p13 implicated a nearby non-coding 
polymorphism (rs12740374) to be the likely functional variant and 
to affect lipoprotein metabolism (43). SNP rs12740374 is in high 

table 1 |  Descriptive Characteristics of CHD Cases and Controls

study Population (total N = 17,286, chD case N = 6,035, chD control N = 11251)

         african americans (N = 6,515)
Male (N = 2,976) female (N = 3,539)

chD cases (N = 1,234) chD controls (N = 1,742) chD cases (N = 1,142) chD controls (N = 2,397)
Ever smoked* Yes (%) 936 (75.85) 1205 (69.17) 654 (57.27) 1120 (46.73)

No (%) 289 (23.42) 524 (30.08) 470 (41.15) 1257 (52.44)
BMI Mean (SD) 27.60 (4.29) 27.42 (4.24) 30.06 (6.10) 28.71 (5.76)
Age at cohort entry Mean (SD) 63.90 (7.22) 60.16 (8.64) 62.30 (8.05) 57.29 (8.71)

latinos (N = 6,109)
Male (N = 3,340) female (N = 2,769)

chD cases (N = 1,364) chD controls (N = 1,976) chD cases (N = 927) chD controls (N = 1,842)
Ever Smoked* Yes (%) 976 (71.56) 1306 (66.09) 336 (36.25) 599 (32.52)

No (%) 357 (26.17) 638 (32.29) 554 (59.76) 1173 (63.68)
BMI Mean (SD) 27.72 (4.01) 27.43 (3.78) 29.37 (5.96) 27.81 (5.19)
Age at cohort entry Mean (SD) 62.67 (6.31) 59.62 (6.98) 61.25 (6.49) 57.71 (7.16)

Japanese americans (N = 4,662)
Male (N = 2,530) female (N = 2,132)

chD cases (N = 930) chD controls (N = 1,600) chD cases (N = 438) chD controls (N = 1,694)
Ever Smoked* Yes (%) 664 (71.40) 1050 (65.63) 138 (31.51) 515 (30.40)

No (%) 262 (28.17) 541 (33.81) 296 (67.58) 1170 (69.07)
BMI Mean (SD) 25.50 (3.18) 25.56 (3.53) 24.40 (4.31) 24.25 (4.11)
Age at cohort entry Mean (SD) 64.30 (6.94) 59.71 (8.76) 62.26 (7.09) 57.20 (8.24)

*Numbers don’t total to 100% due to missing data.
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LD not only with the index SNP rs602633 (r2 = 0.90 in EUR) but 
also with rs3832016 (r2 = 0.94 in EUR). Variant rs12740374 was 
less strongly associated with risk in the current study (p = 0.008 
in African Americans with MAF = 0.25, p = 0.08 in Latinos with 
MAF = 0.20, p = 0.93 in Japanese Americans with MAF = 0.07, 
and p = 0.003 in the combined multiethnic analysis).

Other regions where evidence of regional replication was observed 
in African Americans include PPAP2B (rs72664341, p = 0.00018), 
SLC22A4-SLC22A5 (rs17689550, p = 0.006), SLC22A3-LPAL2-LPA 
(rs4709431, p = 0.0077), SH2B3 (rs10774625, p = 0.0047) and RAI1-
PEMT-RASD1 (rs9899364, p = 4.5 × 10−4). In Latinos, evidence for 
regional replication was observed at MFGE8-ABHD2 (rs8037001,  
p = 0.0017), FURIN-FES (rs8182016, p = 1.1 × 10−4), and APOE-
APOC1 (rs7412, p = 0.0043). In the Japanese, regional replication 
was only observed at 9p21 (rs10811656, p = 0.0015). Five of the 
10 regions that replicated in the multiethnic analysis were also 
significant in ethnic-specific analyses, whereas the remaining 5 
regions were detected with significant regional associations in one 
or more of the ethnic-specific populations alone (TTC32-WDR35, 
APOB, EDNRA, PHACTR1 and BCAS3; Table S4).

Genetic risk scores (GRSs) were used to compare the distribution 
of genetic risk between populations. Japanese Americans carried, on 
average, more risk alleles (70.26 ± 4.61, mean ± SD) in comparison 
to African Americans and Latinos (67.03 ± 4.73 and 68.37 ± 5.11, 
respectively) (Table 2; Table S5). The greater number of risk alleles 
resulted in the distribution of the GRS to be shifted to the right in 
Japanese Americans compared to African Americans and Latinos 
(Figure 2). The distribution of the GRS was slightly higher in cases 
than in controls for every group (two-sided t-test, AA p = 4.4 × 
10−5, LA p = 4.5 × 10−7, and JA p = 0.28). Only minor changes in 
the distribution of the GRS were noted when we included regionally 
significant leading SNPs from each ancestry (modified risk score 
I), or from the cross-ethnic meta-analysis (modified risk score II) 
(Table S5). The average risk scores remained highest in Japanese 
Americans whereas differences between African Americans and 
Latinos were reduced, especially when comparing CHD cases from 
these two ethnic groups (modified risk score II, p = 0.14).

The unweighted risk scores were statistically significantly 
associated with CHD risk in African Americans (per allele  
OR = 1.03, p = 4.1  ×  10−5) and Latinos OR = 1.03, (p = 2.2 × 

figure 1 |  Results for the SORT1 region on chromosome 1p13 from the multiethnic meta-analysis. The r2 shown is for the EUR group in the 1000 Genomes 
Project relative to the index SNP rs602633. The stronger signal, rs3832016, is also highlighted. This regional association plot was generated with the LocusZoom 
plot (40).
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10−8), but only weakly associated with CHD risk in Japanese 
Americans (OR = 1.01, p = 0.11) (Table  2). When comparing 
individuals within GRSs in the top quartile to individuals in the 
bottom quartile, we found both African Americans (OR = 1.40) 
and Latinos (OR = 1.39) to have a statistically significant ~40% 
increase in risk (Table 2). The analogous risk was lower (~10%) 
and not significant in Japanese-Americans (OR = 1.09). Results 
were similar for the modified risk scores (Table 2).

To evaluate the effect of existing conditions on the results, we 
repeated the analysis excluding cancer or diabetes cases; the ORs 
were comparable to those observed in each ethnic group and in 
the entire sample (Table S6).

A sensitivity analysis was also performed on the selected index 
SNPs using controls refined to those with medical claims from 
Medicare or CHDD. Despite the loss of statistical power due to 
smaller sample size, the effect sizes were comparable to those 
observed when using the entire control sample (Table S7).

DiscussiOn

We evaluated 71 SNPs associated with CHD risk within 65 risk 
regions in a large multi-ethnic sample of African Americans, 
Latinos, and Japanese Americans and found that a statistically 
significant proportion of SNPs exhibited consistent directions 
of effect beyond the 50% expected by chance. However, only a 
subset of 11, 8, and 1 of these SNPs were found to be nominally 
statistically significant in African Americans, Latinos, and Japanese 
Americans, respectively. Exploration of common genetic variation 
in these CHD-associated regions provided additional support for 

association at 10 regions, with different ethnic-specific or cross-
ethnic leading SNPs. These replication results provide additional 
evidence for shared common genetic effects across ethnicities, with 
previous studies only replicating signals at 9p21 (21, 24–26), SORT1 
(26), and ABO (26) in African Americans, and SORT1, CXCL12, 
and 9p21 in Latinos (29). This is the first report of BTN2A1, a region 
initially reported in Japanese, replicating in African Americans.

Japanese Americans had a higher GRS on average when compared 
to African Americans and Latinos. However, the GRS was more 
strongly associated with CHD in African Americans and Latinos 
compared to the Japanese Americans. We note that the genetic 
markers reported from previous discovery efforts are unlikely to 
be the functional alleles. The correlation between the index and 
functional SNPs may vary depending on the LD structure of each 
ancestral group, which may contribute to the difference in the ethnic-
specific odds ratios. In addition to having limited statistical power 
to replicate associations with index SNPs within and across these 
populations, differences in LD may serve as an alternative explanation 
for the lack of replication. In an attempt to address such issues, we 
conducted regional association testing and constructed modified risk 
scores incorporating regional association results. When substituting 
the index SNPs with leading SNPs from the regional analyses, the 
differences in the modified risk score distributions and per-allele 
aggregate effects were only modified slightly, but differences were still 
noted, particularly between the Japanese and the other populations. 
The reasons for these differences are unclear. Our findings may reflect 
the severity of subclinical coronary atherosclerosis among Japanese 
participants in the MEC that is on average greater than the severity 
observed in Africans and Hispanics (44). Although our analyses are 

table 2 |  Associations of the genetic risk score with CHD by ethnicity

african americans  latinos    Japanese americans  

chD risk score
(Mean ± sD, p)

case = 67.67 ± 4.63
control = 67.03 ± 4.73

p* = 4.4 × 10−5  

case = 69.05 ± 5.13
control = 68.37 ± 5.11

p* = 4.5 × 10−7     

case = 70.44 ± 4.60
control = 70.26 ± 4.61

p* = 0.28  

Unweighted risk 
score

Or† p† Or† p† Or† p†

Continuous 1.031 4.09E-5 1.031 2.23E-8 1.014 0.11

Quartile 1 Reference  Reference Reference 

Quartile 2 1.084 0.42 1.048 0.55 1.001 0.99

Quartile 3 1.132 0.21 1.190 0.03 1.288 0.02

Quartile 4 1.397 6.39E-4 1.393 1.98E-5 1.093 0.42

Modified risk score I‡

Continuous 1.028 2.12E-4 1.022 5.27E-5 1.009 0.29

Quartile 1 Reference Reference Reference 

Quartile 2 1.033 0.75 1.085 0.30 1.107 0.36

Quartile 3 1.252 0.02 1.205 0.02 1.214 0.08

Quartile 4 1.285 0.01 1.263 0.003 1.081 0.48

Modified risk score II§

Continuous 1.018 1.71E-3 1.028 9.06E-8 1.016 0.045

Quartile 1 Reference Reference Reference 

Quartile 2 0.976 0.81 1.066 0.42 1.062 0.59

Quartile 3 1.278 0.01 1.182 0.03 1.342 0.007

Quartile 4 1.280 0.01 1.393 2.0E-5 1.175 0.15

*Two-sided t-test
†Logistic regression model adjusted for age, gender, BMI, and the first 10 principal components
‡Risk score that includes ethnic-specific regional leading SNPs
§Risk score that includes cross-ethnic regional leading SNPs
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preliminary, we deem it unlikely that these known risk alleles are major 
contributors to race/ethnic differences in the incidence of CHD, as 
the incidence of CHD in Japanese is lower than that in the other two 
groups (45). Given that Japanese had a higher average GRS compared 
to other ethnic groups, but their population risk is lower, it is possible 
that functional variants within CHD susceptibility genes not included 
in our GRS disproportionally affect non-Japanese race/ethnic groups. 
Alternatively, environmental risk factors such as suboptimal diet and 
smoking may be less prevalent in Japanese and primarily responsible 
for the lower rates of CHD despite the higher genetic risk. It is difficult 
to directly compare the GRS distribution reported in this study to 
those in studies in European ancestry populations as the methods 
and number of selected SNPs vary (46–53). The vast majority of 
studies in European ancestry populations have observed statistically 
significant per allele relative risks of 1.02–1.12 and relative risks of 
1.5–1.9 in comparing the highest versus lowest quintile or quartile of 
the GRS. Our findings in African Americans and Latinos are generally 
consistent with these reports albeit smaller effect sizes were noted, 
perhaps due to differences in LD between the index and functional 
SNPs.

Our study has a number of limitations. First, the information 
used to define CHD cases and controls was based on a combination 
of health care claims data as well as self-report on questionnaires. 
Some of the Japanese cases from Hawaii may have been missed due 
to the lack of CHDD records. Of the 1,089 Japanese participants 
whose CHDD records were available (in California), 426 CHD 
cases were identified, with 103 classified as cases based solely on 
CHDD records. Given the same ratio, about 338 Japanese CHD 
cases from Hawaii where CHDD was not available, may have 
been misclassified as controls. Assuming an equal distribution of 
genotypes in these missed cases compared to recognized cases, 
this misclassification would result in effects being biased towards 
the null and a reduced power to detect associations. Similar 
misclassification may apply as Medicare or CHDD data were not 
available for all controls. In the sensitivity analysis, limiting controls 
to those with claims data, fewer SNPs reached nominal statistical 
significance (0.05) however effect sizes were relatively comparable 
to those observed in the entire control sample. In an attempt to 
increase specificity when using Medicare and CHDD claims, we 
only included CHD cases identified from the primary and the first 

figure 2 |  A comparison of the aggregate allele count risk score for cases and controls in each race/ethnic group.
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