
1 April  2018 | Volume 5 | Article 25Frontiers in Cardiovascular Medicine | www. frontiersin. org

Review
published: 04 April 2018

doi: 10.3389/fcvm.2018.00025

integrative Bioinformatics 
Approaches for identification of Drug 
Targets in Hypertension
Daiane Hemerich 1,2, Jessica van Setten 1, Vinicius Tragante 1 and 
Folkert W. Asselbergs 1,3,4,5*

1 Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands, 2 CAPES 
Foundation, Ministry of Education of Brazil, Brasília, Brazil, 3 Durrer Center for Cardiovascular Research, Netherlands Heart 
Institute, Utrecht, Netherlands, 4 Institute of Cardiovascular Science, Faculty of Population Health Sciences, University 
College London, London, United Kingdom, 5 Farr Institute of Health Informatics Research and Institute of Health Informatics, 
University College London, London, United Kingdom

High blood pressure or hypertension is an established risk factor for a myriad of 
cardiovascular diseases. Genome-wide association studies have successfully found over 
nine hundred loci that contribute to blood pressure. However, the mechanisms through 
which these loci contribute to disease are still relatively undetermined as less than 10% 
of hypertension-associated variants are located in coding regions. Phenotypic cell-type 
specificity analyses and expression quantitative trait loci show predominant vascular and 
cardiac tissue involvement for blood pressure-associated variants. Maps of chromosomal 
conformation and expression quantitative trait loci (eQTL) in critical tissues identified 
2,424 genes interacting with blood pressure-associated loci, of which 517 are druggable. 
Integrating genome, regulome and transcriptome information in relevant cell-types could 
help to functionally annotate blood pressure associated loci and identify drug targets.

Keywords: hypertension, blood pressure, epigenetic regulation, GwAS, data integration, functional annotation, 
drug target identification.

inTRoDucTion

Elevated blood pressure (BP) or hypertension is a heritable chronic disorder (1–3), considered the 
single largest contributing risk factor in disease burden and premature mortality (4). High systolic 
and/or diastolic BP reflects a higher risk of cardiovascular diseases (4). Genome-wide association 
studies (GWAS) have found association of 905 loci to BP traits (systolic - SBP, diastolic - DBP and 
pulse pressure -PP) to date (Table S1) (5–33). The use of larger sample sizes has helped to identify 
additional variants, as demonstrated by the most recent study including over 1 million people that 
has identified 535 novel BP loci (33). Still, this collective effort thus far has not entirely elucidated the 
complete genetic contribution to BP, estimated to be approximately 50–60% (34).

To add to this complexity, 90.7% of the 905 BP-associated index variants are located in intronic 
or intergenic regions (Table S1). Causal variants are also difficult to pinpoint because of linkage 
disequilibrium (LD) (35). There is now vast evidence that non-coding variants associated with 
disease interrupt the action of regulatory elements crucial in relevant tissues for that particular 
disease (36). BP loci are not only linked to cardiovascular disease but also to other diseases 
(Figure 1), suggesting that BP-associated variants can result in a wide range of phenotypes. Tissue 
specificity of genetic loci may be relevant for organ specific disease progression. For example, 
variants altering expression in heart may more likely affect disease progression through heart-
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mediated processes rather than kidney-mediated processes, and 
some patients may suffer of left ventricular hypertrophy while 
others may develop nephropathy. Thus, investigating the influence 
of BP variants in critical cell-types is essential in understanding 
disease risk and biology, and assessing the possible translation 
of an associated locus into a drug target. The public availability 

of regulatory annotations in several tissues by projects such as 
ENCODE (39), Roadmap (40) and GTEx (41, 42) has enabled 
integration of epigenetic modifications, expression quantitative 
trait loci (eQTLs) and –omics information with GWAS data. 
Integrative approaches are useful for prioritizing genes from 
known GWAS loci for functional follow-up, detecting novel 

FiGuRe 1 |  Circos plot showing the 10 traits from the GWAS catalog (37) with the largest number of loci also associated to BP, as identified by PhenoScanner 
(38) at p < 0.05 (Supplemental Methods). The outer ring represents the genomic/chromosomal location (hg19). The following inner rings show the associations to 
different traits. Beige: body measurements (height, body mass index (BMI), weight, waist/hip ratio, hip circumference, waist circumference. N = 358). Red: lipids 
(high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, total cholesterol. N = 226). Yellow: coronary artery disease (CAD)/myocardial infarction 
(MI) (N = 206). Blue: schizophrenia (N = 135). Orange: years of education attendance (N = 101). Light green: creatinine (N = 88). Light pink: rheumatoid arthritis (N = 
78). Purple: type II diabetes (N = 73). Light turquoise: neuroticism (N = 69). Light grey: Crohn’s disease (N = 67).
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gene-trait associations, inferring the directions of associations, 
and potential druggability (43–46).

Here we summarize the advances made in recent years towards 
unraveling the mechanisms of non-coding BP variants in disease 
progression with the resources mentioned above. We focus on 
integrative approaches that aim to prioritize BP-associated SNPs 
located in regulatory regions of the genome for follow-up studies 
(Figure 2). Genetic and molecular aspects of hypertension have 
been reviewed previously by others (47, 48).

inTeGRATive AppRoAcHeS uSinG –
oMicS DATA

Remarkable advances have been made recently towards a better 
comprehension of BP genetics, the biology of disease and translation 
towards new therapeutics, boosted by the widespread application of 
high-throughput genotyping technologies. At the same time, most 
BP-associated variants are non-coding, making the conversion of 
statistical associations into target genes a great challenge. SIFT 
(49, 50), PROVEAN (51), PolyPhen (52), CONDEL (53) and 
more recently CADD (54) are scoring algorithms developed for 

predicting the effect of amino acid changes. Only 98 out of the 
905 lead BP-associated SNPs reflect a CADD score above 12.37 
(Table S2), a threshold suggested by Kicher et al. as deleterious (54). 
However, the causal variant inside the locus might reflect a different 
CADD score than the lead SNP, and pinpointing the mechanisms 
disturbed by the variation remains a challenge. 

New strategies that make use of regulatory annotations in 
disease-relevant tissues have greatly expanded our ability to 
investigate the processes involved in BP. In particular, annotation 
of histone modifications and regions of open chromatin allow 
the identification of active transcription in specific-cell types. 
Similarly, maps of DNA variants affecting expression in a cell-
type specific manner will be integral in BP loci interpretation. A 
list of cardiovascular-related cell-types researched by the ENCODE 
Project is presented by Munroe et al. (55). Such data can be 
integrated with GWAS results using bioinformatics tools (56–58). 
For instance, FUMA provides extensive functional annotation 
for all SNPs in associated loci and annotates the identified genes 
in biological context (57). FunciSNP investigates functional 
SNPs in regulatory regions of interest (58). Ensemble's Variant 
Effect Predictor (VEP) determines the effect of variants on genes, 
transcripts, and protein sequence, as well as regulatory regions, 

FiGuRe 2 |  Diagram of analytical steps that can be followed for variant prioritization and translation of association to a potential drug target. Each step is 
accompanied by examples of publicly available data (green boxes on the left) and tools (yellow boxes on the right) that can be used.
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also outputting SIFT, Polyphen and CADD scores for each variant, 
among other information (59). Although such integrative tools 
are useful for variant prioritization and interpretation, not all 
take into consideration tissue specificity aspects. RegulomeDB, 
for example, is a database that annotates SNPs with known and 
predicted regulatory elements in the intergenic regions of the 
human genome, calculating a score that reflects its evidence for 
regulatory potential (60). However, the scoring procedure can 
only be performed across all available tissue types. In addition, 
several databases containing a broad range of tissues were made 
publicly available since the last update of RegulomeDB, that could 
be included in the tool. Together, these resources have been useful 
in prioritizing genes and variants in associated loci for functional 
follow-up experiments in many post-GWAS analyses, and can be 
implemented in interpretation of BP-associated loci.

Transcription Regulation: Histone 
Modifications and open chromatin
As genomic coordinates of active regulatory elements may be 
mapped using unique functions of chromatin, the characterization 
of chromatin changes in the genome in specific cell-types can be 
used to identify DNA variants disturbing active regulatory elements. 
The four core chromatin histones, H2A, H2B, H3 and H4, can suffer 
posttranslational modifications, such as acetylation or methylation 
(61). These histone modifications indicate active (euchromatin) 

or repressed (heterochromatin) chromatin structure, defining 
regulation and gene transcription (62, 63). Acetylation of histones 
H3 and H4, and H3 methylation at Lys4 (H3K4me3), for instance, 
correlate with gene transcription, whereas methylation at Lys9 
correlates with gene silencing (62, 64). These modifications provide 
a robust readout of active regulatory positions in the genome, and 
have been employed for annotation in several studies (23). Histone 
modifications influencing arterial pressure have been observed in 
many tissues, including vascular smooth muscle (65). An updated 
phenotypic cell-type specificity analysis of the 905 BP loci using 
H3K4me3 mark in 125 tissues is shown in Figure 3. The most 
significant cell-types are cardiovascular-related (Supplemental 
Methods, Table S3). Other tissues with high rank in specificity are 
smooth muscle, fetal adrenal gland, embryonic kidney cells, CD34 
and stem-cell derived CD56 +mesoderm cultured cells. These 
results are consistent with analyses using DNase I hypersensitivity 
sites (DHSs), which indicate likely binding sites of transcription 
factors. These results add more evidence that BP loci are enriched 
on regions of open chromatin (19, 20, 23, 33) (Figure S1), regulating 
transcription in a broad range of tissues.

Methylation
In addition to histone modifications that promote transcription, 
BP loci have also been studied for their enrichment on DNA 
methylation, known to have the opposite regulatory effect. The 

FiGuRe 3 |  Ranked tissues after phenotypic cell-type specificity analysis of 905 BP SNPs using 125 H3K4me3 datasets on human tissue (Supplemental 
Methods, Table S3).
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methylation of CpG sites, presented by CpG islands in promoters, 
affects binding of transcription factors, resulting in gene silencing 
(66, 67). Abnormal CpG methylation is found in hypertension 
(68–70), and in many other complex diseases (71, 72). Recently, 
Kato et al. identified a ~2 fold enrichment associating BP variants 
and local DNA methylation (19). The study also demonstrates that 
DNA methylation in blood correlates with methylation in several 
other tissues. These observations add to previous indications on 
the function of DNA methylation in regulating BP.

Measuring the impact of Bp Risk Alleles 
on Gene expression: eQTLs
Expression quantitative trait loci (eQTL) are regions harbouring 
nucleotides correlating with alterations in gene expression (73). 
Linking transcription levels to complex traits has been a follow-up 
step adopted by many studies (43, 74–76), driven by the increase in 
available data of expression patterns across tissues and populations 
(33, 46, 77–81). Warren et al. found that 55.1% of their identified 
BP-associated loci have SNPs with eQTLs in at least one tissue from 
GTex repository (41), with arterial tissue most frequently observed 
(29.9% of loci had eQTL in aorta and/or tibial artery) (21). A great 
enrichment of eQTLs in artery was also observed by Evangelou et 
al., who identified 92 novel loci with eQTL enrichment in arterial 
tissue and 48 in adrenal tissue (33). In summary, these studies also 
suggest that BP loci exert a regulatory effect mostly in vascular 
and cardiac tissues.

Finding the Targets: chromosome 
confirmation capture Techniques
Mapping variation to target genes is one of the greatest challenges in 
the post-GWAS era, and different strategies have been developed to 

this end (82). One approach is the use of chromosome confirmation 
capture [3C (83), 4C (84, 85), Hi-C (86, 87)]. These techniques 
capture chromosome interactions (88), resulting in networks of 
interacting genetic loci (84, 85).

Warren et al. made use of this resource to investigate the target 
genes of non-coding SNPs, using Hi-C data from endothelial cells 
(HUVECs). Distal potential genes were found on 21 loci, and 
these genes were enriched for regulators of cardiac hypertrophy 
in pathway analysis (20). Kraja et al. also explored long-range 
chromatin interactions using endothelial precursor cell Hi-C 
data (89, 90), finding the link between an associated loci and a 
gene known to affect cell growth and death (91). More recently, 
Evangelou et al. used chromatin interaction Hi-C data from 
HUVECs (92), neural progenitor cells (NPC), mesenchymal 
stem cells (MSC) and tissue from the aorta and adrenal gland (93) 
to identify distal affected genes. They found 498 novel loci that 
contained a potential regulatory SNP, and in 484 loci long-range 
interactions were found in at least one cell-type (33).

A list of human HiC data available on BP relevant tissues is 
presented in Table S4. An updated version of variant to gene 
mapping making use of this chromatin conformation data is shown in  
Table S5. Promoter regions of 1,941 genes were found to interact with 
the 27,649 candidate SNPs (905 BP associated SNPs and vicinity) 
(Supplemental Methods,  Figure  4). Integration with eQTL data 
on relevant tissues confirmed 209 of the genes mapped, and added 
additional 483 genes. One main goal of understanding biological 
mechanisms of GWAS associations and affected genes is to be able 
to therapeutically target them. Assessment of the druggability of a 
BP-associated locus depends on several factors, but overlap of these 
results with a recent effort on druggability suggests that 517 of these 
2,424 genes are druggable (94), and 35 mapped genes are also predicted 
to interact with common drugs for treatment of hypertension  
(Table S2, Figure 4, Supplemental Methods). Interestingly, 1,774 of 
the genes mapped are physically located outside BP-associated loci. 
These results support the hypothesis that BP GWAS loci act on tissue 
specific regulatory gene networks. Importantly, they also show that 
the use of long range chromatin interaction maps can reliably identify 
target genes even outside the risk locus.

DiScuSSion AnD concLuSionS

GWAS have pinpointed over 900 loci associated with BP, and 
increasing sample size has shown to be crucial to identify more 
signals (33). However, efforts are needed to translate these results 
into biological inferences on causal mechanisms and understanding 
of disease biology. The integration of data beyond the DNA 
sequence is crucial to identify genes involved in BP regulated by 
epigenetic mechanisms.

BP variants show eQTL, histone modification and open 
chromatin enrichment in a broad range of tissues, mostly vascular 
and cardiac-related. As the interplay of regulatory elements is highly 
cell-type specific, the study of changes that influence chromatin 
structure and accessibility needs to be extended to a broad range 
of tissues and conditions, including disease and its stages. Rosa-
Garrido et al. observed chromatin structural abnormalities when 
comparing healthy and diseased cardiac myocytes, concluding 

FiGuRe 4 |  Diagram illustrating the results of our integrative approach.
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that heart failure involves altered enhancer-gene interactions (95). 
Thus, alterations in chromatin structure underlying heart disease 
perturbs significant interactions that contribute to gene expression. 
This finding suggests that high resolution chromatin conformation 
and epigenetic data in disease state can help in understanding how 
regulatory variants confer risk to disease. The availability of data in 
different populations will also allow fine-mapping and functional 
annotation across ethnic groups.

By mapping of BP-associated variants to genes using maps of 
chromosomal conformation in specific cell-types, we identified 
1,941 genes, of which 209 show supported by eQTL mapping. 
Of all genes mapped (n = 2,424), 517 are predicted as druggable 
and 35 are predicted to interact with common antihypertensive 
drugs. These include successful cases such as APOB gene, 
predicted to be targeted by Ibersartan, an angiotensin II receptor 
antagonist used mainly for the treatment of hypertension (96). 
Interestingly, in this analysis we were also able to identify ABCC9 
gene on both eQTL and HiC mapping, a gene that interacts with 
Minoxidil. Although originally developed as an antihypertensive 
vasodilator, side effects provided limitations and currently its 
main application occurs topically for treatment of hair loss (97, 
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a target and need for extensive validation and trials. With in-silico 
experimental evidence supporting a plausible mechanism for 
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In summary, the integrative approaches presented in this 
review help understanding the underlying biology of GWAS 
loci by mapping SNPs to genes and determine cell and tissue-
specificity. The increase in availability of regulatory data in 
a broad range of tissues and disease states will expand the 
possibilities for integration and interpretation of association 
results. Studies validating the genes prioritized may identify new 
drug targets, enabling more effective prevention and treatment 
of hypertension and its consequences.
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