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LncRNAs: Proverbial Genomic 
“Junk” or Key epigenetic Regulators 
During Cardiac Fibrosis in Diabetes?
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Long non-coding RNAs (lncRNAs) are critical regulators in a multitude of biological 
processes. Recent evidences demonstrate potential pathogenetic implications of 
lncRNAs in diabetic cardiomyopathy (DCM); however, the majority of lncRNAs have 
not been comprehensively characterized. While the precise molecular mechanisms 
underlying the functions of lncRNAs remain to be deciphered in DCM, emerging data in 
other pathophysiological conditions suggests that lncRNAs can have versatile features 
such as genomic imprinting, acting as guides for certain histone-modifying complexes, 
serving as scaffolds for specific molecules, or acting as molecular sponges. In an effort 
to better understand these features of lncRNAs in the context of DCM, our review will 
first summarize some of the key molecular alterations that occur during fibrosis in the 
diabetic heart (extracellular proteins and endothelial-to-mesenchymal transitioning), 
followed by a review of the current knowledge on the crosstalk between lncRNAs and 
major epigenetic mechanisms (histone methylation, histone acetylation, DNA methylation, 
and microRNAs) within this fibrotic process.
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iNTRoDuCTioN

With the incidence of diabetic cardiomyopathy (DCM) increasing at an alarming rate, the need 
for broadening the therapeutic scope for disease management becomes fundamental. In order 
to develop new therapeutic agents to successfully impede the progression of DCM, a thorough 
understanding of the complex pathogenetic mechanisms implicated in DCM progression is an 
absolute requirement. There are currently several known metabolic pathway alterations that occur 
in a hyperglycemic environment; however, recent advances in genomic technology have identified 
that a significant number of epigenetic alterations contribute to the development and progression of 
DCM. Long non-coding RNAs (lncRNAs), which are involved in altering gene expression without 
modifying the underlying nucleotide composition of the genome, are beginning to emerge as key 
epigenetic regulators in various diseases (1). Despite possessing limited protein-coding potential 
and being greater than 200 nucleotides in length, lncRNAs can alter the dynamic configuration 
of the chromatin by interacting with several enzymes that facilitate chromatin remodeling and 
gene regulation (2). In the context of DCM, numerous lncRNAs have been identified to be 
aberrantly expressed in diabetic cardiac tissues (3); however, the majority of lncRNAs have not 
been comprehensively characterized (4). To fill some of the gap in knowledge, this review will 
first provide the necessary background behind DCM, extracellular matrix (ECM) proteins, and 
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fibrosis and then discuss the postulated roles of lncRNAs in major 
epigenetic modifications during DCM fibrosis.

DiAbeTiC CARDioMyoPAThy (DCM)

Cardiovascular complications are responsible for the majority of 
diabetes-related morbidity and mortality (5). Such complications 
include atherosclerosis, autonomic neuropathy and diabetic 
cardiomyopathy (DCM). The latter leads to an increased risk 
for the development of structural and functional changes in 
the myocardium independent of coronary artery disease and 
hypertension (6). Rubler and colleagues first described this 
ventricular dysfunction occurring in diabetic patients in 1972 
(7). Alterations in myocardial structure, calcium signalling 
and metabolism are primary signs that precede accelerated left 
ventricular hypertrophy and increase susceptibility to ischemic 
injury and overall heart failure (HF) (8). The myocardial tissue 
undergoes structural and functional modifications after diabetes, 
which is induced by hyperglycemia, hyperlipidemia and insulin 
resistance (9). A histological trademark of DCM is interstitial 
and perivascular fibrosis, characterized by increased deposition 
of collagen accompanied by crosslinking of these collagen fibers 
contributing to reduced ventricular compliance (7, 10, 11). 
Myocardial fibrosis is accompanied by an increase in left ventricle 
(LV) mass, also known as left ventricle hypertrophy (LVH). LVH 
has been linked to elevated markers of systemic inflammation 
such as fibrinogen, C-reactive protein and microalbuminuria 
(12). These structural changes are accompanied by functional 
alterations, namely diastolic and systolic dysfunction. Diastolic 
dysfunction is defined as defective ventricular relaxation leading to 
pressure increase and impairment in blood filling during diastole 
(9). During systolic dysfunction, the myocardium fails to eject 
adequate blood volume and is observed at later stages in DCM 
after diastolic dysfunction has been established in patients (13, 14). 
Early identification of these abnormalities is important to provide 
appropriate treatment and prevent advancement to HF.

Multiple mechanisms have been proposed to explain the 
pathogenesis of DCM. These include autonomic dysfunction, defects 
in lipid metabolism, abnormalities in ion homeostasis, alterations 
in structural proteins, increased oxidative stress, interstitial 
fibrosis and alterations in myocardial substrates and energy 
metabolism (15–20). As compensation for glucose assimilation, 
fatty acid transporters are increased to generate ATP through 
fatty acid (FA) degradation (19). However, excess FAs accumulate 
in the cytosol and cause lipotoxicity through the generation of 
diacylglycerol and ROS. Hyperglycemia also triggers ROS and 
advanced glycation end-product (AGE) production, culminating 
in cardiac glucotoxicity. Hence, the lack of fuel and the presence 
of lipotoxicity and glucotoxicity trigger cardiac inflammation, 
fibrosis and contractile dysfunction (21). In response, RAS and 
TGF-β systems that mediate cytokine/chemokine responses are 
significantly enhanced (22).

Currently, there is no single therapy for treating DCM. 
Treatment options revolve around dietary glycemic control, direct 
and indirect regulators of fatty acid metabolism, and inhibitors 
of factors that trigger heart failure symptoms (13, 23). Medical 

advancements and lifestyle interventions have contributed 
to reduction in cardiovascular mortality in diabetic patients. 
However, epidemiological studies show higher incidence of 
diabetic cardiomyopathy despite adjustments for hypertension, 
microvascular diseases, hypercholesterolemia, body mass index 
and other factors (24–26). Therefore, further insights into the 
pathological mechanisms behind the advancement of DCM are 
warranted and the characterization of these processes may open 
novel avenues for targeted therapies. Since increased extracellular 
matrix (ECM) protein deposition or cardiac fibrosis is a key event 
of DCM, we chose to focus on this area.

exTRACeLLuLAR MATRix (eCM) 
PRoTeiNs

Structural and functional alterations in the vasculature arise 
in the presence of chronic diabetes. Among these alterations, 
modifications to the extracellular matrix (ECM) and basement 
membrane (BM) are the structural hallmarks in target organs 
of diabetic complications (27). First recorded by Siperstein and 
colleagues in 1968, the disturbances of ECM are directly linked 
functional loss in target organs (28). ECM encompasses an insoluble 
network of collagens, fibronectin, elastins, structural glycoproteins, 
proteoglycan hyaluronans and integrins that provide cells with 
mechanical support and mediate multifarious interactions between 
other cells or the ECM of vascular tissues (29). The cardiac ECM 
consists of fibrillar collagen localized within myocardial interstitium 
and non-fibrillary collagen, as well as fibronectin and laminin in 
the myocyte basement membrane (30, 31). In the context of DCM, 
chronic hyperglycemic environments can initiate a cascade of 
signals that disrupt the balance between synthesis and breakdown 
of ECM components (shown in Figure  1); which, ultimately 
contributes to the development of LVH and hypertension-induced 
diastolic dysfunction (32–37). Prior to the development of cardiac 
dysfunction, excessive ECM protein deposition occurs in the 
heart muscles, accompanied by abnormal proliferation of cardiac 
fibroblasts, and this phenomenon is known as cardiac fibrosis 
(38). Cardiac fibrosis plays a critical role in the development of 
DCM and TGF-ß is one of the most studied mediators of this 
phenomenon (39, 40). Numerous studies have reported high-
glucose mediated elevation in the transcription of TGF-ß genes, 
thereby increasing the levels of the protein and its downstream 
signaling (41, 42). In addition to its role in the canonical SMAD 
signaling pathway, TGF-ß is also the key stimulator of three known 
MAP pathways: ERK, JNK and p38 pathways (43–45). Evidently, 
TGF-ß is the chief cytokine in the regulation of ECM protein 
synthesis and is responsible for stimulating the production of its 
components including proteoglycans, fibronectin and collagen, 
while blocking matrix degradation (46). Moreover, in addition 
to TGF-ß, hyperglycemia-induced damage of endothelial cells 
(ECs) can activate vascular endothelial growth factor (VEGF)-
mediated angiogenic responses that may further contribute to 
increased basement membrane (BM) thickening and ECM protein 
deposition (47–49).
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eNDoTheLiAL-MeseNChyMAL 
TRANsiTioN (eNDMT)

The entire circulatory system is lined by ECs, forming a boundary 
between circulating blood in the lumen and all vessel walls from the 
heart to small capillaries (50). ECs allow the blood to be pumped 
further by reducing turbulence of flow and are unambiguously 
known to play a critical role in maintaining overall homeostasis 
(50, 51). The endothelium secretes a number of factors that regulate 
coagulation, fibrinolysis, platelet aggregation and vascular tone 
(51). Hyperglycemia causes the endothelium to be exposed to a 
range of negative intracellular occurrences that promote endothelial 
dysfunction, where the endothelium loses its physiological 
properties (51). Fibrosis, or accumulation of fibrous connective 
tissue, and excess ECM in and around inflamed or damaged tissue 
that culminates in organ failure or death is a characteristic feature 
of endothelial dysfunction (52–55). Fibrosis involves proliferation 
of local fibroblasts and their differentiation into myofibroblasts 
(55). Myofibroblasts, in comparison to fibroblasts, have elevated 
α-smooth muscle actin (α-SMA) and an upregulated production 
of ECM proteins like type IV collagens (55, 56). Initially, the origin 
of these myofibroblasts were thought to be from local proliferating 
resident fibroblasts in response to factors like TGF-ß, but subsequent 
research suggests other cellular sources such as ECs that can form 

myofibroblasts (57, 58). ECs can adopt a mesenchymal phenotype 
and express markers characteristic of myofibroblast differentiation, 
which can include α-SMA, smooth muscle 22α (SM22α), vimentin, 
fibroblast-specific protein 1 (FSP1) and ECM proteins like 
fibronectin (FN) and collagen. As well, EC markers such as vascular 
endothelial cadherin (VE-Cadherin) and cluster of differentiation 
31 (CD-31) are downregulated in these mesenchymal-like ECs 
(58–60). ECs undergo this phenomenon known as endothelial-
mesenchymal transition (EndMT) to gain an altered differentiated 
phenotype and obtain invasive and migratory abilities in order to 
affect pathological processes in different ways (shown in Figure 2) 
(50). EndMT can be defined as loss of cell adhesion and actin 
reorganization to convert apical-basal polarity to front-end/back-
end polarity resulting in change from compact, well-structured 
cobblestone-like shape to less organized spindle-shaped cells (60, 
61). The major regulatory cytokines that stimulate EndMT are the 
TGF-ß superfamily of proteins including TGF-ß1 and TGF-ß2 (58, 
61–63). Importance of this major regulator in the activation of 
EndMT has been described previously (64). TGF promotes EndMT 
through Smad-dependent and Smad-independent pathways like 
protein kinase C (PKC) (62, 65). Moreover, several studies have 
shown that inhibition at TGF-signaling at different stages have 
reduced EndMT and fibrosis in animal models (62, 64, 66). TGF-
signaling play important roles in myofibroblast differentiation and 
ECM alterations, which favor myofibroblast transdifferentiation 
through altered responses to mechanical stress or transduction of 
growth factor signals (58). TGF is responsible for the induction 
of cardiac fibroblast transdifferentiation to myofibroblasts and 
promotes cardiac fibrosis by inducing ECM protein synthesis and 
reducing collagenase expression (67, 68). In general, TGF-signaling 
and EndMT are major contributors to generation of myofibroblasts 
that are key role players in the development of fibrotic diseases 
such as DCM.

The eMeRGeNCe oF ePiGeNeTiCs

Genetic factors are thought to be important for the development 
of diabetes and its various complications. In addition to genetics, 
environmental factors such as sedentary lifestyle, age and obesity 
are important for elevating the risk for the disease. In fact, there is 
considerable evidence indicating that the interaction between genes 
and the environment can influence an individual’s susceptibility 
to develop a chronic complication (69–71). The environmental 
factors can alter signaling pathways and alter gene expression 
through epigenetic modifications. Epigenetics can be defined as 
the study of heritable changes in gene expression that does not 
involve changes to the underlying DNA sequence. This represents a 
change in phenotype without a change in genotype that affects how 
cells read genes (72). The chromosomal DNA is tightly packaged 
into chromatin, and its status between transcriptionally “active” 
(euchromatin) and “inactive” (hetero-chromatin) in response to 
extracellular signals is a key aspect that can govern the expression 
of genes (73–75). The chromatin is composed of subunits known 
as nucleosomes. Each nucleosome has an octamer of histones, with 
two copies of histone proteins (H2A, H2B, H3 and H4), wrapped 
by 147 base pairs of chromosomal DNA. Post-translational 

FiGuRe 1 |   A chronic hyperglycemic environment causes excessive 
extracellular matrix protein deposition, which subsequently contributes to 
cardiac fibrosis and cardiac dysfunction. Legend: ECM = Extracellular matrix, 
and DCM = Diabetic cardiomyopathy.
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modifications of these histones (PTHMs) alter their interactions 
with DNA and represent one of the key epigenetic regulations (76, 
77). Epigenetic regulations can lead to non-heritable or heritable 
effects. Cells are able to respond fast to changing factors in the 
environment when effects are non-heritable (78). Heritable or long-
term epigenetic effects occur in response to long acting stimuli 
and can be transmitted to memory of the offspring cells (79, 80). 
PTHMs, along with DNA methylation, microRNAs (miRNAs) and 
lncRNAs regulate chromosomal function and gene expression.

iNTeRPLAy oF LNCRNAs AND oTheR 
ePiGeNeTiC MeChANisMs iN CARDiAC 
FibRosis

With the emergence of genome-wide association studies (GWAS) 
in the early to late 2000s, nearly 88% of trait/disease-associated 
single nucleotide polymorphisms were identified to reside in non-

protein coding regions (81); which, suggests that alterations in 
lncRNAs may be implicated in the genetic susceptibility of DCM.

LncRNAs
LncRNAs are defined as transcripts that are greater than 
200 nucleotides in length and do not possess protein-coding 
potential (82). Based on their genomic localization, lncRNAs 
can be categorized as sense, anti-sense, bidirectional, enhancer, 
intronic, and intergenic lncRNAs (82, 83). Moreover, studies 
within the last decade, have provided unique insights behind 
the involvement of lncRNAs in a number of biological processes 
that include genomic imprinting (epigenetic regulation), 
enhancer activation, scaffold and guide for transcription and 
epigenetic factors, molecular sponges, and cell-cycle control 
(4, 82–87). In fact, the localization of the lncRNA transcript 
can govern its functional capabilities. For example, nuclear 
lncRNAs can influence gene activation by interacting with 
chromatin-remodelling complexes that initiates histone or DNA 

FiGuRe 2 |  A schematic depicting some of the factors involved in endothelial-to-mesenchymal transition in the capillary lumen during diabetic cardiomyopathy. 
Legend: ECM = Extracellular matrix, EndMT = Endothelial to-mesenchymal transition, and TGF-β = Transforming growth factor-beta.
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modifications (4, 82–86). Whereas, cytoplasmic lncRNAs are 
capable of secluding miRNAs (miRs) to indirectly impact protein 
expressions (4, 82–86).

LncRNAs and Their implications in the 
heart
Following the findings from GWAS, recent transcriptomic 
analyses revealed that lncRNA expression profiles differed 
considerably between failing and non-failing human hearts (88). 
In fact, out of the 18,480 total lncRNAs detected in the human 
heart, nearly 1249 lncRNAs (from ischemic and non-ischemic 
origins) were differentially expressed with heart failure (88). 
These findings, along with transcriptomic profiling from other 
studies (89, 90), opened the door for lncRNA research in cardiac 
pathologies. To date, there has been a multitude of lncRNAs 
identified in cardiovascular complications (summarized in 
Table 1); however, their exact mechanisms in cardiac fibrosis 
still require further characterization. Nevertheless, emerging 
studies are beginning to provide insight into some of the roles 
of lncRNAs in influencing other epigenetic mechanisms such as 
DNA methylation, histone methylation, histone acetylation and 
miRs in fibrosis. We will discuss some of the specific lncRNAs 
and their roles in DCM. However, it is to be noted that lncRNAs 
can interact and regulate multiple other epigenetic mechanisms 
such as methylation, acetylation, and miR alterations (shown in 
Figure 3). A concerted effort of all these pathways ultimately 
regulates gene expression and increased ECM production. 
Outlined below is a discussion of these mechanisms and their 
interactions with lncRNAs.

DNA Methylation
DNA methylation is a critical epigenetic mechanism that involves 
the interaction between DNA methyltransferases (DMNTs) and 
DNA demethylases. Typically, gene silencing, via the elevated 
activity of DMNTs, is associated with aberrant methylation patterns 
of CpG dinucleotide clusters (CpG islands) in certain genes (104). 
In the context of cardiac fibrosis, Watson and colleagues have 
previously demonstrated in vitro that global DNA hypermethylation 
and elevated activities of DMNTs (DNMT1 and DMNT3B) were 
associated with hypoxic and pro-fibrotic human cardiac fibroblasts 
(105). In fact, silencing DMNT3B by small interfering RNAs 
(siRNAs) or administering the pan-DMNT inhibitor, 5-aza-2’-
deoxycytidine, resulted in significant downregulations of α-SMA, 
collagen 1, and subsequently suppressed the pro-fibrotic effects of 
TGF-β (105). On the other hand, Pan et al. specifically analyzed 
CpG sites in the collagen type 1 alpha 1 chain (COL1A1) promoter 
of rat cardiac fibroblasts following TGF-β treatment and observed 
significant reductions in DNA methylation and DMNT activity 
(106). They conclude that TGF-β is capable of promoting collagen 
type I expression through inhibition of DMNTs in the COL1A1 
promoter of cardiac fibroblasts. Moreover, Xu et al. have previously 
demonstrated that TGF-β also evokes aberrant methylation 
patterns in the promoter of the Ras-GTPase RASAL1, which in turn 
hinders the expression of RASAL1 (107). The subsequent reduction 
in RASAL1 expression allows for heightened Ras-GTP activity, 
which enhances EndMT and contributes to cardiac fibrosis (107). 
Xu and colleagues have also documented similar observations in 
fibrotic cardiac tissues from patients and mice (107, 108). Overall, 
these findings suggest that pathological stimuli can impact overall 
DNA methylation activity and ultimately influence the activation 
of pro-fibrotic genes in cardiac fibrosis.

Although the link between DNA methyltransferases and 
lncRNAs in cardiac fibrosis has not been made clear, previous 
evidence in lung fibrosis suggests that miRs (a group of small non-
coding RNAs; sncRNAs) exhibit a complex regulatory relationship 
with DMNTs (109). In fact, Dakhlallah and colleagues revealed that 
several miRNAs from the miR-17 ~92 cluster targeted DNMT-1 
expression and this ultimately produced a negative feedback loop 
(109). They also identified reduced miR-17 ~92 expressions, and 
increased DNMT-1 expression and promoter methylation of 
miR-17 ~92 in fibrotic lung tissues. Furthermore, when looking 
at lncRNAs, there are several evidences in neural differentiation, 
skeletal myoblast differentiation, colon cancer, and somatic cell 
reprogramming that document the capability of lncRNAs to 
modulate DNA methylation through direct or indirect interactions 
with various DMNTs (110–113). Whether these mechanistic 
actions of lncRNAs are present during cardiac fibrosis, requires 
further exploration.

histone Methylation
Histone methylation involves the transfer of methyl groups from the 
methyl donor S-adenosyl methionine (SAM) to amino acid residues 
(lysine, arginine and histidine) by histone methyltransferases 
(114, 115). Methylation at the arginine and lysine residues leads 
to either activation or repression of transcription. Arginine 
residue methylation results in only activation, while methylation 

TAbLe 1 |  List of the prominent lncRNAs implicated in cardiac complications.

LncRNAs Cells Role in Cardiac Complica-
tions

Ref

Chaer EFs*, VMs*, and HT* Induces cardiac hypertrophy 
and CD*

(91)

Mhrt Cardiomyocytes Protects heart from hypertrophy 
and failure

(92)

MIAT Cardiac Fibroblasts Induces cardiac fibrosis and 
sponges miR-24

(93)

MALAT1 LVT* Regulates inflammatory 
cytokines

(94)

CHRF Cardiomyocytes Regulates cardiac hypertrophy (95)
ROR Cardiomyocytes Promotes cardiac hypertrophy (96)
H19 Cardiomyocytes Negative regulator of cardiac 

hypertrophy
(97)

LIPCAR Plasma Associated with heart failure (98)
ANRIL PBTL* Correlates with atherosclerosis 

risk
(99)

CARL Cardiomyocytes Prevents mitochondrial fission 
and sponges miR-539

(100)

NRF Cardiomyocytes Regulate necrosis and sponges 
miR-873

(101)

Wisper Cardiac Fibroblasts Controls cardiac remodeling and 
fibrosis

(102)

PRL CFs and CMs Induces cardiac fibrosis and 
sponges let-7d

(103)

PBTL*, Peripheral blood T-lymphocyte; CFs, Cardiac Fibroblasts; CMs, 
Cardiomyocytes; LVT*, Left ventricular tissues; EFs*, Embryonic fibroblasts; VMs*, 
Ventricular myocytes; HT*, Heart tissues; CD*, Cardiac dysfunction.
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at lysine can lead to activation or repression of transcription. 
Generally, H3K4 (histone 3 methylated at lysine 4), H3K36 and 
H3K79 are associated with transcriptional activation and H3K9, 
H3K27 and H4K20 are seen in repressed regions(76). To add to 
the complexity of this regulation, lysine residues can be mono-
methylated (m1), di-methylated (m2) or tri-methylated (m3). 
Furthermore, the specific actions of methyltransferases and 
demethylases controls chromatin accessibility to transcriptional 
enzymes and therefore influences protein expression. The arginine 
and lysine methyltransferase enzymes are part of three protein 
families: the protein arginine methyltransferase family, the SET-
domain-containing protein family of lysine methyltransferases 
and the non-SET-domain DOTI-like protein (116). A recent study 
has demonstrated that human ECs transiently exposed to high 
glucose induced transcriptional activation of NFκB (p65), followed 
by the overexpression of inflammatory factors. These alterations 
were attributed to Set7-dependent monomethylation of H3K4 
(117, 118). Reversal of oxidative stress through overexpression 

of ROS-scavenger enzymes prevented both NF-κB activation and 
vascular inflammation. Hence, oxidative stress plays a critical 
role in chromatin remodelling and gene alterations during 
diabetes (117, 118). Furthermore, evidences suggest involvement 
of important histone modifications in gene regulation that are 
associated with the pathogenesis of DCM. For example, the 
H3K79 methyltransferase DOT1L is downregulated in DCM 
patient samples and may regulate pathologic cardiac remodelling 
that ultimately contributes to eccentric hypertrophy and reactive 
fibrosis (119). Our lab has also described regulatory roles of tri-
methylation at lysine27 (H3K27me3) catalyzed by H3K27me3 
transferase EZH2 (PRC2 component) in diabetic complications 
(120). EZH2 is part of the polycomb repressive complex 2 (PRC2), 
which is a multimeric complex known to negatively regulate 
expression of genes including miRs. Other components of PRC2 
are EED, SUZ12 and RpAp46/48 (121). This complex has been 
widely studied in tumor biology, where increased EZH2 promoted 
VEGF stimulation and subsequent angiogenesis by inhibitory 

FiGuRe 3 |  A simplified visual representing the interplay of many epigenetic processes that enhance endothelial-to-mesenchymal transition in diabetic 
cardiomyopathy. Legend: PRC2 complex = Polycomb repressive complex 2, HDAC = Histone acetyltransferases, DMNTs = DNA methyltransferases, LncRNA = 
Long non-coding RNAs, miRNA = microRNA, 3’ UTR = three prime untranslated region, mRNA = messenger RNA, and EndMT = endothelial to-mesenchymal 
transition.

https://www.frontiersin.org/journals/Cardiovascular_Medicine#articles
http://www.frontiersin.org/journals/Cardiovascular_Medicine
https://www.frontiersin.org


Biswas et al.

7 April  2018 | Volume 5 | Article 28Frontiers in Cardiovascular Medicine | www. frontiersin. org

LncRNAs in Fibrosis During DCM

methylation of anti-angiogenic factor vasohibin1 (vash1) (122). 
Additionally, Zhu et al. have demonstrated that miR-214–3 p is 
capable of targeting and reducing the expressions of EZH1 and 
EZH2, which subsequently attenuated the expressions of Col1a1 
and Col3a1 (extracellular matrix genes in cardiac fibrosis) in mice 
myofibroblasts (123). On the other hand, the enforced expressions 
of EZH1 and EZH2 significantly contributed to elevated levels 
of Col1a1 and Col3a1 in myofibroblasts (123). Accumulating 
evidences in renal and hepatic fibrosis suggests that EZH2 plays a 
critical role in fibrotic development through the downregulation of 
PPAR-γ, Smad7 and PTEN to further enhance pathways implicated 
in profibrotic signalling (124, 125).

Within the last decade, various cancer- and inflammatory-based 
studies have identified several lncRNAs that bind to chromatin 
modification complexes, such as PRC2, to regulate gene expression 
(126–128). In the context of the heart, the lncRNA Fendrr is 
known to bind to both PRC2 and TrxG/MLL complexes in order 
to facilitate proper cardiac development (129). With this in mind, 
studies depicting the relationship between lncRNAs and chromatin-
remodelling complexes in facilitating cardiac fibrosis are slowly 
beginning to emerge. For example, the lncRNA Chaer (cardiac-
hypertrophy-associated epigenetic regulator) directly interacts 
with EZH2 to alter PRC2 targeting, which ultimately inhibits 
H3K27me3 at the promoter regions of genes implicated in cardiac 
hypertrophy (130). Klattenhoff and colleagues demonstrate that the 
lncRNA Bvht interacts with SUZ12 of PRC2 to mediate epigenetic 
regulation of cardiovascular lineage commitment (131). While, 
Mhrt is a cardioprotective lncRNA that is capable of protecting the 
heart from hypertrophy and failure by sequestering a stress-induced 
chromatin-remodelling factor (Brg1)— this factor is then unable to 
activate aberrant gene expressions (92). Moreover, in the context of 
lung cancer and epithelial-mesenchymal transition, Terashima and 
colleagues have shown through chromatin immunoprecipitation 
that the lncRNA MEG3 can transcriptionally repress miR-200 family 
genes by recruiting EZH2, and histone H3 methylation to these 
specific regulatory regions (132). Whether similar mechanisms 
exist in EndMT during DCM still remains elusive; however, 
previous researches have already documented unique lncRNAs 
in cardiovascular complications: MIAT (93), MALAT1 (94), CHRF 
(133), ROR (96), H19 (97), LIPCAR (98) and ANRIL (99). Using 
this information, identifying the chromatin-lncRNA interactions 
will provide additional mechanistic/functional insight behind these 
unique lncRNAs in cardiac fibrosis. We have previously shown that 
ANRIL regulates glucose-mediated upregulation of VEGF through 
its interactions with EZH2 and p300 (a histone acetyltransferase) 
in glucose-treated ECs (134). Nevertheless, of note, EZH2 can 
also act as a platform for the recruitment of DMNTs and directly 
control DNA methylation (135)—which alludes to the importance 
of understanding epigenetic mechanisms in its entirety.

histone Acetylation
Histone acetylation involves either the addition or removal of 
acetyl groups to lysine residues, which is facilitated by histone 
acetyltransferases (HATs) and histone deacetylases (HDACs), 
respectively (136, 137). The interplay between HATs and HDACs 
can govern gene regulation in which elevated acetylation at specific 

lysine residues (lysines 9, 14, 18 and 56 in histone H3 and lysines 
5, 8, 13 and 16 in histone H4) allows for chromatin relaxation 
and heightened transcription factor recruitment—contributing 
to gene activation (70, 138). As well, HATs and HDACs can also 
directly modify regulatory proteins and transcription factors (138). 
Previous work by our lab demonstrated that the transcriptional 
coactivator and HAT, p300 was markedly expressed in the diabetic 
animal heart and an increase in p300 activity led to an upregulation 
of VEGF, endothelin-1 (ET-1), and FN—molecules that are 
implicated in DCM (139, 140). In fact, silencing p300 prevented 
the diabetes-induced expression of VEGF, ET-1, and FN (139, 
140). Our findings also demonstrated that p300 had an increased 
binding to ET-1 and FN promoters in large vessel ECs cultured 
with high glucose, which was also associated with augmented 
histone acetylation, H2AX phosphorylation, activation of several 
transcription factors, and mRNA expressions of ECM proteins 
and vasoactive factors (139). Similarly, Ghosh and colleagues 
have further indicated that p300 is an essential coactivator of 
pro-fibrotic signalling and is dramatically elevated during cardiac 
EndMT (141). Moreover, in the context of histone deacetylases, 
silent mating type information regulation 2 homolog (SIRTs) are 
important NAD-dependent deacetylases that are involved in a 
number of cellular processes such as apoptosis, and fatty acid and 
glucose metabolism (142–144). In vitro and in vivo findings from 
our lab have previously demonstrated that SIRT1 (a type III HDAC) 
activity is significantly reduced under chronic hyperglycemic 
environments in ECs and the subsequent reduction of SIRT1 drove 
the formation of reactive oxygen species (ROS), which is mediated 
by FOXO1(forkhead box protein O1) acetylation through elevated 
p300 activity (145). SIRT1 is also capable of regulating TGF-β1 and 
ET-1 expressions by p300, while SIRT1 overexpression can prevent 
diabetes-induced FN upregulation (146). Rizk and colleagues have 
also shown similar findings where elevating SIRT1 levels, with 
the administration of L-arginine, significantly prevented diabetes-
induced myocardial fibrosis in male Wistar rats (146). Along with 
their histopathological findings, Rizk and colleagues observed a 
reduction in the expression of cardiac fibrotic markers (FN, TGF-
β, brain naturetic peptide, and connective tissue growth factor) 
following SIRT1 upregulation (146). Other studies are also in 
agreement that SIRT1 activation protects against cardiovascular 
damage (147–149).

Although lncRNAs such as ANRIL (134) and Khps1 (150) have 
been shown to interact with p300 in microvascular ECs and cancer 
cell lines, respectively, this form of interaction has not yet been 
documented in cardiac fibrosis. However, our lab has previously 
identified that miR-200b (a sncRNA) is capable of mediating 
EndMT and VEGF through direct targeting of p300 in heart and 
retinal tissues of diabetic mice and rats (151–153). Additional 
work by Shehadeh and colleagues have reported the ability of 
miR-20a to bind to the 3’ untranslated region (UTR) of p300 and 
directly repress the expression of p300—subsequently reducing 
pro-angiogenic gene expressions implicated in cardiac hypertrophy 
(154). As for interactions between SIRTs and lncRNAs, recent 
evidence suggests that the Sirt1 antisense (AS) lncRNA can inhibit 
muscle formation by activating Sirt1 and impeding the function of 
miR-34a by competitively interacting with the 3’ UTR of the Sirt1 
transcript (130). On a similar note, several miRs that are capable 
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of modulating SIRT1 activity have been documented previously 
(155). Nevertheless, further follow-up is required for the role of 
Sirt1 AS lncRNA in cardiac fibrosis.

miRNAs (MiRs)
As previously mentioned, miRs belong to the class of small non-
coding RNAs that are ~20–25 nucleotides in size (156, 157). MiRs 
are synthesized by RNA polymerase II, processed to precursors in 
the nucleus by RNAse III Drosha and DiGeorge syndrome critical 
region 8 (DGCR8) and then exported into cytoplasm by exportin 
5 (157, 158). Dicer further processes miRs in the cytoplasm into 
functionally active miRNAs (159). From there, with the help of 
argonaute proteins, active miRNAs are incorporated into the 
RNA-induced silencing complex (RISC) (157–159). Following the 
complete formation of RISC, miRs are then capable of binding to 
complementary sequences within the 3’ UTR of targeted mRNAs, 
which subjects these transcripts to degradation or repressed 
translation—ultimately, inhibiting protein expression (157–159). 
From our lab, we have previously reported hyperglycemia-induced 
alterations of miRs in ECs and in numerous tissues impacted by 
chronic diabetes: miR-1, miR-133a, miR-146a, miR-195, miR-200b 
and miR-320 (120, 152, 153, 160–164). Earlier findings from our 
previous reports also demonstrate a novel regulation mechanism 
between PRC2 and miRNAs through histone methylation in diabetic 
complications (120, 153). As well, we show that the repression of 
miRs-146a and 200b plays an integral role in enhancing glucose-
induced EndMT (152, 162). Moreover, within the last decade, a 
multitude of studies have emerged that investigate the regulatory 
capabilities of miRNAs in diabetes and its complications (165–167), 
and explore the changes of miRNAs upon various treatments (168–
170). In the context of the heart, miRs-1, 22, 29, 31 101, 133, and 
489 are few examples of the many miRs that may be functioning 
as inhibitors of cardiac fibrosis and hypertrophy (133, 171–175). 
Whereas, miRs- 21, 34, 132, 199b, 208a and 212 have been reported 
to enhance cardiac complications (87, 176–180).

One of the important functions of lncRNAs is to act as a 
molecular sponge to certain miRs, which can ultimately hinder 
the expression of these small non-coding molecules (181). For 
instance, the cardiac-apoptosis related lncRNA (CARL) has 
been shown to block the actions of miR-539 by acting as an 
endogenous sponge that consequently augments the expression 
of PHB2 (a miR-539 target) and prevents cardiomyocyte 
apoptosis and mitochondrial fission (133). Similarly, the 
lncRNA NRF (necrosis-related factor) can regulate necrosis in 
cardiomyocytes by sponging miR-873, which is an important 
miR implicated in the translational repression of RIPK1/RIPK3 
(130). Furthermore, in cardiac fibroblasts, MIAT (myocardial 
infarction associated transcript) can block the actions of miR-
24 (a critical regulator in TGF-β1 activation) by its sponging 
capabilities, and induce cardiac fibrosis (182). The findings from 
the study by Qu and colleagues identified and characterized 
MIAT as the first profibrotic lncRNA involved in cardiac fibrosis. 
Moreover, a recent study by Liang et al. has demonstrated that the 
pro-fibrotic lncRNA (PFL) can act as a competitive endogenous 
RNA for miR let-7d (103). Specifically, the overexpression of 
PFL stimulated proliferation, fibroblast-myofibroblast transition 

and fibrogenesis in mice cardiac fibroblasts by reducing the 
activity and expression of let-7D (103). Micheletti and colleagues 
have also recently shown that the lncRNA Wisper can regulate 
cardiac remodeling and fibrosis; however, whether Wisper can 
interact with miRs remains to be determined (102). Additional 
characterization of other profibrotic lncRNAs will provide 
significant insight behind the pathogenetic mechanisms of 
cardiac pathologies. Therefore, establishing a database with the 
fibrotic capabilities of previously documented lncRNAs in other 
diseases could help achieve this. For example, in the context of 
liver fibrosis, Hotair has been shown to act as an endogenous 
sponge for miR-148b to facilitate DMNT1 expression (183). 
Further follow-up on the sponging capabilities of Hotair in a 
cardiac-specific context may provide important information 
behind the precise nature of these regulatory mechanisms behind 
fibrosis and other cardiac complications.

FuTuRe DiReCTioN

Our review summarized the key epigenetic mechanisms implicated 
in DCM fibrosis; as well, we have provided unique insights behind 
lncRNAs and their impact on DNA methylation, histone modifications, 
and miRs. Although direct evidence for the mechanisms of lncRNAs 
is still limited in the context of cardiac fibrosis, emerging studies 
are beginning to provide further understanding of the regulatory 
capabilities of lncRNAs during DCM. Moreover, the critical 
implications of lncRNAs in a multitude of biological processes make 
it a valuable target for therapeutic applications, which necessitates 
the need for additional research behind lncRNA and epigenetic 
protein interactions. Therefore, understanding these epigenetic 
mechanisms for lncRNAs in cardiac fibrosis will not only provide 
critical information behind the intricate gene network, but it will 
also facilitate the development of better-targeted treatment strategies 
that take into account the regulatory gene network in its entirety. We 
hope that our review will allow for critical discussions and further 
experimentation that will extend the current findings of these 
epigenetic mechanisms on lncRNAs during cardiac fibrosis in DCM.
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