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Periodontitis (PD) is a common gingival infectious disease caused by an over-aggressive 
inflammatory reaction to dysbiosis of the oral microbiome. The disease induces a 
profound systemic inflammatory host response, that triggers endothelial dysfunction 
and pro-thrombosis and thus may aggravate atherosclerotic vascular disease and its 
clinical complications. Recently, a risk haplotype at the ANRIL/CDKN2B-AS1 locus 
on chromosome 9p21.3, that is not only associated with coronary artery disease / 
myocardial infarction (CAD/MI) but also with PD, could be identified by genome-wide 
association studies. The locus encodes ANRIL - a long non-coding RNA (lncRNA) 
which, like other lncRNAs, regulates genome methylation via interacting with specific 
DNA sequences and proteins, such as DNA methyltranferases and polycomb proteins, 
thereby affecting expression of multiple genes by cis and trans mechanisms. Here, we 
describe ANRIL regulated genes and metabolic pathways and discuss implications of 
the findings for target identification of drugs with potentially anti-inflammatory activity 
in general.
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inTRoDuCTion

Periodontitis (PD) is an inflammatory disease that involves the osseous, connective, and epithelial, 
tissues surrounding the teeth (1). Bacteria attached to the teeth along the gingival margin form a 
biofilm, which may trigger an immune response in the adjacent gingival tissue. If the biofilm is not 
removed and persists, it can induce gingivitis characterized by swelling, redness and bleeding (2). 
If the bacterial biofilm and the accompanying inflammatory reaction migrate apically along the 
root surface and penetrate into the tooth supporting structures the gingival inflammation becomes 
PD (3), which exists in two forms, chronic periodontitis (CP) and a more severe, early onset form 
called aggressive periodontitis (AgP) (4). In the US almost 50% of adults aged 30 years or above 
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have CP, including 30% with moderate and 8.5% with severe PD 
(5). Compared with CP, AgP is less frequent (prevalence: <0.1%). 
PD is a complex inflammatory disease, which is influenced 
considerably by interactions between environmental, lifestyle 
and genetic factors. Some individuals develop PD at young age, 
although they have similar lifestyle habits and environmental 
context compared to individuals who do not develop the disease. 
Therefore, it is considered that early-age of disease onset often 
indicates a genetic predisposition (6). The genetic susceptibility 
to PD has been examined extensively by GWAS (7–10) and 
seven common variants were identified, three of which met 
the genome-wide significance thresholds. Of the latter three, 
one (GLT6D1, glycosyltransferase 6 domain containing 1) is 
specific for AgP, whereas the other two (SIGLEC5, sialic acid 
binding Ig like lectin 5; DEFA1A3, defensin alpha 1/alpha 3) are 
associated with both AgP and CP (8, 10, 11). However, to date 
no associations that met the genome-wide significance threshold 
for common and rare alleles could be identified for CP alone. 
It is considered that these not signnificant findings are caused 
by the small sample sizes that were employed. Yet, some loci 
give suggestive evidence for association with PD. This evidence 
is based on independent replication in samples of the same 
disease phenotype with sufficient statistical power, independent 
validation of the associations in samples of different disease 
manifestations, like AgP and CP, and independent identification 
through different unbiased systematic approaches. According to 
these criteria, the following loci in addition to GLT6D1, SIGLEC5 
and DEFA1A3 may currently be considered to be associated 
with CP and/or AgP: ANRIL (antisense noncoding RNA in the 
INK4 locus), NPY (neuropeptide Y), PF4 (platelet factor 4), PLG 
(plasminogen), VAMP3 (vesicle associated membrane protein 
3) (10, 12–20).

Results obtained from longitudinal epidemiological studies 
support that CAD and CP are associated with each other (21), 
although the causative relationship between CAD and CP has 
remained ambiguous (22). Interestingly, variants at ANRIL, PLG 
and VAMP3 were reported to be associated with periodontal 
phenotypes and also with CAD [recently reviewed in ref. (23)]. 
Of these, ANRIL is the most significant risk locus of CAD and 
the association of ANRIL with PD was replicated repeatedly. In 
this narrative review, we summarize recent publications on the 
impact of this locus on chronic inflammation and to discuss 
potential approaches and strategies to identify new drug targets 
related to anti-inflammatory therapies in general.

The ChR.9p21.3 RiSK Region iS 
ShAReD BeTween peRioDonTiTiS AnD 
CAD/Mi AnD AffeCTS gene 
expReSSion of MuLTipLe geneS in 
DiffeRenT CeLL TypeS

The 9p21.3 risk haplotype at ANRIL/CDKN2B-AS1 had initially 
been identified by GWAS of CAD (24), and was shortly later 
identified by Schaefer et al. as one of the first genetic risk factors 
of AgP (17, 25–27) [see  (Table  1)  for a comparison of the 
association statistics of the relevant 9p21.3 lead SNPs related to 
AgP and coronary heart disease].

The core risk haplotype of ~50 kb, that is shared between CAD/
MI and PD encodes the 3’end of a long ncRNA called “antisense 
non-coding RNA in the INK4 locus (ANRIL)” (also designated 
CDKN2BAS) (17, 25). Its sequence is oriented antisense relative 
to cyclin-dependent kinase inhibitor 2B (CDKN2B), which is 
located adjacent to the core CAD/PD region. Together with 
CDKN2A, which is located further upstream of ANRIL, this 
region harbors a hotspot for multiple complex human diseases 
and traits (28). Adjacent is a tightly linked locus for diabetes 
(29) which is neither associated with CAD (29) nor PD (17).

Given the extended region of high linkage disequilibrium 
at the 9p21.3 locus and the large number of transcriptional 
regulatory elements that are present in the CAD risk region, 
it is currently not entirely clear whether the risk of CAD and 
PD is mediated solely by ANRIL or whether its neighbors, 
CDKN2B and CDKN2A - two well-known tumor suppressor 
genes involved in cell cycle arrest and malignant transformation 
in certain cancers (30) - contribute to the mechanism. Knockout 
mice lacking CDKN2B do not only develop a cancer-related 
phenotype but also advanced aneurysms, accelerated smooth 
muscle cell apoptosis and medial arterial thinning (31), suggesting 
a potential involvement of CDKN2B not only in cancer but also 
in vascular disease. CAD risk SNP rs1537373 affects CDKN2B 
expression in human coronary artery smooth muscle cells, 
aorta and the mammary artery (32), and CDKN2B has been 
shown to regulate inflammatory cytokine production and the 
clearance of smooth muscle cell-derived apoptotic bodies during 
atherosclerosis (33). Miller et al. (32) recently investigated the 
role of SNP rs1537373 in the expression of ANRIL. This variant 
resides in a large haplotype block of linked variants including 
the highly replicated CAD SNP, rs4977574 and the CAD and 
PD lead SNP rs1333049 (17, 34). Although rs1537373 does not 
affect a known transcription factor binding motif, it is located at 

TABLe 1 |  Summary of the Chromosome 9p21.3 Locus Associated with Coronary Artery Disease and Periodontitis.

Snp oR (Agp) oR (ChD) p (Agp) p (ChD) Ci 95% (Agp) Ci 95% (ChD) n (Agp) n (ChD)

rs2891168 1.44 1.42 4.4 E-3 1.1 E-6 1.12–1.86 1.23–1.64

159/736 1,104/736 rs1333042 1.44 1.42 4.8 E-3 1.2 E-6 1.12–1.85 1.23–1.64

rs1333048 1.48 1.39 2.5 E-3 7.6 E-6 1.15–1.92 1.20–1.60

Association statistics of tree haplotype tagging SNPs at the relevant chromosome 9p21.3 risk region, multiplicative model adjusted for smoking, diabetes, and gender in a logistic 
regression model. AgP: aggressive periodontitis (generalized), CHD, coronary heart disease (disease onset <55 years), OR: odds ratio, CI: confidence interval, P: P-value obtained 
from a Wald test, N: number of cases/controls. Data extracted from ref. (17).
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a site of accessible chromatin. Allele-specific transcription factor 
binding and histone H3 lysine 27 acetylation around rs1537373 
indicated that the native chromatin structure may be affected by 
the genotype, which was consistent with the observed cis eQTL 
affecting CDKN2B rather than ANRIL in aortic tissues (32). 
It appears noteworthy in this context that SNP rs1537373 was 
earlier demonstrated to be also strongly associated with coronary 
artery calcification (35). If bone marrow lacking murine Cdkn2a 
was transplanted to the atherosclerosis prone Ldlr(-/-) mouse 
model, the Cdkn2a-deficient recipients exhibited accelerated 
atherosclerosis, a higher number of pro-inflammatory monocytes, 
and increased monocyte/macrophage proliferation compared to 
controls (36). Thus besides CDKN2B, also CDKN2A has some 
plausibility for being involved in the pathogenesis of vascular 
inflammation [see the review by Hannou et al. (37) for further 
information].

The location of the core risk haplotype of CAD/MI and PD at 
the 3’end of ANRIL implies that the encoded long ncRNA is a prime 
functional candidate involved in the risk mediating mechanism(s). 
ANRIL is a lowly expressed gene consisting of 20 exons whose 
transcripts could be detected in a wide variety of cell-types and 
tissues, including smooth muscle cells, endothelial cells, and cells of 
the immune system that are known to be involved in atherogenesis 
(29, 38, 39). Originally, two splice variants were demonstrated in 
normal human testis and signals using PCR with primers derived 
from exons 14–16 were also obtained in a range of other tissues 
(40). Subsequently, many additional splice variants could be 
identified in various cell-types (38, 41, 42). ANRIL is subject to 
a complex pathway of alternative splicing which may differ from 
tissue to tissue and which may be influenced by the presence of 
SNPs interfering with the function of splice signals.

ANRIL expression was reported to be tightly linked to the 
ANRIL genotype due to disruption of an inhibitory STAT1 
binding site in risk allele carriers (43), which would be expected 
to impair the IFNγ signaling response. However, results published 
by Almontashiri et al. argued against an involvement of IFNγ in 
the mechanism underlying the association of the 9p21.3 genotype 
with CAD risk (44). The CAD risk allele of SNP rs564398, which is 
one of the SNPs most strongly correlated with ANRIL expression, 
was predicted to disrupt a Ras Responsive Element Binding protein 
(RREB) 1 binding site in the 9p21.3 locus (45, 46). RREB may be 
involved in up-regulating CDKN2B in a Ras-dependent manner by 
down-regulating ANRIL. Besides stimulating VSMC senescence, 
Ras has also been implicated to contribute to atherogenesis 
by affecting vascular inflammation (47). The local functional 
influence of variants in the 9p21.3 region on gene expression 
has been examined by many other studies in a variety of tissues 
and cells (41, 45, 48–52). The results confirmed that the CAD 
risk variants in the 9p21.3 region are strongly associated with 
ANRIL expression and also with expression of the adjacent loci 
(CDKN2A, CDKN2B), albeit much more moderately. However, 
there is some inconsistency concerning the direction of the effect. 
Earlier studies suggested associations between CAD risk variants 
and lower ANRIL expression in vascular smooth muscle cells, 
whole blood cells and purified peripheral blood T-cells (49, 53, 
54). In contrast, the study by Holdt et al. (51), in which specifically 
the long ANRIL transcript (ENST00000428597) was measured, 

demonstrated that the CAD risk haplotype was associated with 
higher ANRIL expression in whole blood cells and peripheral blood 
mononuclear cells. Also Zhao et al. found higher expression of 
this transcript in transformed beta-lymphocytes collected from 
genotyped donors who carried the CAD risk variant rs7865618 
(55). In the latter study, all CAD risk variants assayed in the study 
were associated with the same directions of the effects.

In addition to the linear form of ANRIL, there also exists a 
circular ANRIL RNA form (38). Recently, Holdt et al. (56) showed 
that circular ANRIL may be athero-protective by regulating rRNA 
maturation. In their model, pescadillo homologue 1 (PES1, a 
60S-preribosomal assembly factor) binds to circular ANRIL, which 
impairs ribosome biogenesis and exonuclease-mediated pre-rRNA 
processing. The resulting nucleolar stress induces activation of 
p53, which triggers apoptosis and inhibits proliferation, thereby 
preventing the accumulation of vascular smooth muscle cells and 
foam cells at the sites of the atherosclerotic lesion. The balance 
between atherogenic linear and athero-protective circular ANRIL 
may be critical for the impact of ANRIL on disease progression. 
Conversely, a recently published study came to the opposite 
conclusion, namely that circular ANRIL may be pro-atherogenic 
(57). In this study, circular antisense ANRIL was used to investigate 
the inflammatory response of vascular endothelial cells in vivo 
in a rat model of coronary atherosclerosis which was established 
by injecting rats on a high fat diet with vitamin D3 (57). Circular 
antisense ANRIL lowered circular ANRIL in vascular endothelial 
cells along with the levels of several pro-atherogenic markers 
(serum cholesterol, triglycerides, LDL, IL-1, IL-6, MMP-9, CRP, 
cANRIL, Bax, caspase-3) and the rates of endothelial cell apoptosis, 
while HDL levels and bcl-2 expression were increased. In contrast, 
induction of circular ANRIL expression promoted atherosclerosis 
by increasing pro-inflammatory properties in vascular endothelial 
cells and by raising serum lipid and pro-inflammatory cytokine 
levels. These results were consistent with the hypothesis, that 
inhibiting circular ANRIL expression would be anti-inflammatory 
and would reduce vascular endothelial cell apoptosis, which in 
turn would protect against atherosclerosis in this animal model.

In earlier studies, it could be demonstrated that the epigenetic 
silencer polycomb repressive complexes 1 and 2 (PRC1 and PRC2) 
and PRC-associated activating proteins RYBP and YY1 can bind to 
ANRIL (58, 59), suggesting that ANRIL may be able to modulate 
epigenetic regulation of target gene expression in cis and trans. It 
could be demonstrated in vitro by inducible knock-down approaches 
in T-Rex 293 HEK cells that silencing of two proximal ANRIL 
transcripts altered expression of ADIPOR1, VAMP3 and TMEM258 
(60) (see Table 2 for a list of genes regulated by ANRIL). ADIPOR1 is 
a high-affinity receptor for globular adiponectin, which is involved, 
amongst others, in PPARα (peroxisome proliferator activated 
receptor alpha) and AMPK (AMP-activated protein kinase) 
signaling (62). PPARα activation could prevent experimentally 
induced bone-loss in animal studies (63). AMPK and PPARα act 
as key regulators of glucose and fatty acid metabolism in the liver. 
Adiponectin levels are inversely correlated with BMI, body fat and 
severity of CAD (64). Globular adiponectin also increases insulin 
sensitivity by stimulating cellular glucose uptake via increasing 
recruitment of glucose transporter 4 (GLUT4) to the plasma 
membrane and inducing GLUT4 expression (65). Besides these 
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metabolic roles, adiponectin also has anti-inflammatory activity 
by activating tissue inhibitors of metalloproteinases, IL-10, and 
by suppressing lipopolysaccharide-activated TNF (tumor necrosis 
factor) expression and phagocytic activity (66, 67). The effect of 
ANRIL on VAMP3 expression (Table 2) may be important, because 
VAMP3 belongs to the VAMP/synaptobrevin family involved 
in phagocytosis and trafficking of TNF-α-containing secretory 
vesicles to the cell surface required for TNF-α secretion (68).

Genome-wide cis and trans effects of the variants in the 9p21.3 
region on gene expression were recently studied by Zhao et al. 
(55), who employed the SNP-set (Sequence) Kernel Association 
Test [SKAT, (69)] on genotyped transformed beta-lymphocytes 
collected from 801 participants from the Genetic Epidemiology 
Network of Arteriopathy (GENOA) study. The results demonstrated 
a significant association between the CAD and PD risk variants in 
the region with the expression of the long linear ANRIL transcript 
containing the coding information of all 20 exons except exon 
13. In addition to this cis-regulatory effect, several trans eQTLs 
could also be identified (Table 2). The affected genes were DUT 
(Deoxyuridine Triphosphatase also known as UTPase), EIF1AY 
(Eukaryotic Translation Initiation Factor 1A, Y-Linked), CASP14 

(Caspase 14), ABCA1 (ATP-binding cassette transporter A1), and 
DHRS9 (Dehydrogenase/Reductase 9) (Table 2) (55).

The DUT gene product is an essential enzyme of nucleotide 
metabolism, which is required for the hydrolysis of dUTP into 
dUMP and inorganic pyrophosphate. The enzyme plays an 
important role in controlling the relative cellular levels of dUTP/
dTTP (70). Lack or inhibition of dUTPase result in elevated levels 
of uracil in the DNA, which triggers DNA repair and may induce 
the formation of DNA double strand breaks, somatic mutations, 
and apoptosis (71).

CASP14 is involved in cell apoptosis and is over-expressed in 
skin, the oral epithelium, bone, heart, and epithelial tumors (72). 
EIF1AY encodes a translation initiation factor which seems to be 
required for maximal rate of protein biosynthesis (73) and DHRS9 
is involved in retinol and steroid metabolism (74). ABCA1 plays 
a well-known role in atherosclerosis (75); but its contribution to 
PD is unclear. It was proposed that LPS from P. gingivalis, which 
is the most important pathogen involved in PD, may suppress 
ABCA1 expression during periodontitis via miRNA-mediated 
mechanisms (76). To further investigate the potential biological 
implications of the trans-effected genes, Zhao et al. (55) performed 

TABLe 2 |  ANRIL-Regulated Genes

gene Mode gene description Tissue / cell type Disease Ref.

ANRIL cis ANRIL, long ncRNA
PBMC, atherosclerotic 
plaque CAD, PD (39)

CDKN2A cis

Cyclin-dependent kinase 
Inhibitor 2A, tumor 
suppressor

ANRIL knock-down in 
VSMC Cancer (45)

CDKN2B cis

Cyclin-dependent kinase 
Inhibitor 2B, tumor 
suppressor

ANRIL knock-down in 
VSMC Cancer (45)

ADIPOR1 trans
Adiponectin receptor 1, 
glucose, lipid metabolism

inducible ANRIL knock-
down in T-Rex 293 HEK 
cells Diabetes, CVD (13)

VAMP3 trans

Vesicle-associated 
membrane protein 3,
IL-6, TNFα secretion

inducible ANRIL knock-
down in T-Rex 293 HEK 
cells Inflammation / cancer (13)

C11ORF10 trans
TMEM258,
N-glycosylation

inducible ANRIL knock-
down in T-Rex 293 HEK 
cells Unknown (13)

DUT trans

Deoxyuridine 
Triphosphatase, nucleotide 
metabolism Transformed B cells Unknown (55)

EIF1AY trans

Eukaryotic translation 
initiation factor 1A (Y-chr.), 
mRNA Translation Transformed B cells Unknown (55)

CASP14 trans
Caspase-14,
Inflammation, apoptosis Transformed B cells Psoriasis (55)

ABCA1 trans

ATP binding cassette 
transporter A1, sterol 
transport Transformed B cells CAD/MI (55)

DHRS9 trans
Dehydrogenase reductase 
9, retinol metabolism Transformed B cells Unknown (55)

CARD8 trans
Caspase recruitment 
domain 8, inflammasome

ANRIL knock-down / over-
expression in HUVEC, 
HepG2 cells Inflammation (61)

CAD, coronary artery disease; CVD, cardiovascular disease; HUVEC, human umbilical vein endothelial cells; IL, interleukin; PBMC, peripheral blood mononuclear cells; VSMC, 
vascular smooth muscle cells
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gene enrichment analysis on basis of the KEGG Pathway databank. 
The enriched pathways included “retinol metabolism”, “TGF-β 
signaling”, and “N-glycan biosynthesis”. Retinol metabolism was 
at the top of the list of enriched pathways, in which LRAT (lecithin 
retinol acyltransferase), ADH1 (alcohol dehydrogenase 1), DHRS9, 
DHRS4L2 (dehydrogenase/reductase 9 and 4 like 2), and CYP26B1 
(cytochrome P450 retinoid metabolizing protein) were significantly 
associated. The importance of TGF-β signaling in the pathogenesis 
of PD is well-known, since anti-TGF-β antibodies can inhibit the 
recruitment of leukocytes and the destruction of cartilage and bone 
at the periodontal lesion sites during periodontitis (77). Another 
reported downstream target regulated by ANRIL is CARD8 
(caspase recruitment domain-containing protein 8) (Table  2) 
(61). The CARD8 SNP rs2043211 is significantly associated with 
ischemic stroke; but its involvement in PD is unclear. The CARD8 

gene product is a component of the inflammasome together with 
other proteins. ANRIL is induced by pro-inflammatory factors, 
such as TNFα and IFN-γ, via activation of NF-κB (Figure 1) (78). 
The transcription factor Yin yang 1 (YY1) can bind to ANRIL and 
the ANRIL-YY1 complex interacts with the promoter of IL6/8 to 
activate IL6 and IL8 expression, two cytokines with well established 
roles in CAD/MI and PD.

Taken together, these findings seem to suggest that ANRIL exerts 
its effects through epigenetic regulation of a great variety of target 
genes. The common theme seems to be its involvement in expression 
regulation of genes that play important roles in inflammation, 
immunity, cell apoptosis and survival, cell proliferation, and 
metabolism. Many of the reported trans regulated genes clearly 
have plausible roles in CAD and PD as well. Nevertheless, at this 
stage, we find it premature to formulate a unifying theory that 

figuRe 1 |  Hypothetical roles of linear and circular ANRIL lncRNA in regulating inflammation and cell survival in human vascular endothelial cells and potential 
drug targets. TNF-α triggers NF-κB activation, which induces ANRIL transcription (66). Linear ANRIL can be converted to circular ANRIL (38). Linear ANRIL interacts 
with the transcription factor yin yang-1 (YY1) to form a functional complex that binds to and regulates expression of target genes such as IL-6/8. Circular ANRIL 
interacts with pescadillo homologue 1 (PES1) to form a complex with the pre-ribosomal assembly complex, that impairs ribosome biogenesis, leading to activation 
of p53 and a subsequent increase in apoptosis and decrease in the proliferative rate (41). This pathway may promote atheroprotection by eliminating over-
proliferating cells in atherosclerotic plaques. Neither TNFα nor NF-κB antagonists do seem suitable for wide-spread use in anti-inflammatory therapies of PD or 
CAD, because of their serious side effects. Since ANRIL is located downstream of TNFα and NF-κB, ANRIL or its downstream targets may be better suited as drug 
targets to inhibit the pro-inflammatory activities linked to this signaling pathway [modified according to ref. (78)].
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