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Mendelian randomization (MR) is a framework for assessing causal inference using cross-
sectional data in combination with genetic information. This paper summarizes statistical 
methods commonly applied and strait forward to use for conducting MR analyses 
including those taking advantage of the rich dataset of SNP-trait associations that 
were revealed in the last decade through large-scale genome-wide association studies. 
Using these data, powerful MR studies are possible. However, the causal estimate may 
be biased in case the assumptions of MR are violated. The source and the type of this 
bias are described while providing a summary of the mathematical formulas that should 
help estimating the magnitude and direction of the potential bias depending on the 
specific research setting. Finally, methods for relaxing the assumptions and for conducting 
sensitivity analyses are discussed. Future researches in the field of MR include the 
assessment of non-linear causal effects, and automatic detection of invalid instruments.
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intRoduCtion

Observational epidemiological studies made important contributions to our understanding of 
common diseases by identifying important risk factors. Although causal inference is of major interest 
as it builds a basis for intervention and prevention, it is difficult to perform using observational data 
from cross-sectional studies. Supposed causality was often revised e.g., by randomized controlled 
trials (RCTs) (1). Possible reasons for these contradicting findings include unobserved confounding, 
reverse causation and selection bias in the observational studies (2–4).

On the other hand, RCTs are often subject to long duration and ethical problems. Furthermore, 
confounding and selection bias is still a problem after the initiation of a RCT. This includes compliance 
problems or missing of follow-up information depending on treatment effect which may induce 
missing not at random problems.

During the last decade, huge efforts were undertaken searching for genetic risk factors underlying 
common traits and diseases. Genome-wide association studies (GWAS) revealed thousands of genetic 
associations predominantly based on single nucleotide polymorphisms (SNPs) including more than 
950 related to cardiovascular diseases and measurements (by April 2018) and were made publically 
available (5). The effect sizes of these associations were often quite small (6–8), and thus their direct 
clinical relevance might be questioned. However, these genetic associations may help drawing causal 
inferences. This approach in which SNPs are used as instrumental variables (IVs) for specific exposures 
is called Mendelian randomization (MR) (9). By the Mendelian laws, alleles of SNPs segregate and are 
randomly inherited from parents to offspring. This principle can be seen analogously to the randomized 
treatment assignment in a RCT resulting in an unconfounded exposure-outcome relationship. Within 
an MR approach, the exposure represents a continuous or dichotomous risk factor of a disease, and 
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the outcome is the disease or a disease-related trait. These traits 
may e.g., be blood pressure defining hypertension, or estimated 
glomerular filtration rate (eGFR) defining the status of chronic 
kidney disease. Using the MR approach, causality between exposure 
and outcome can be tested. During recent years, the number of MR 
studies to assess causality increased substantially which includes 
also the field of cardiovascular diseases and nephrology (10–14). 
Furthermore, MR analyses revealed causal effects of blood lipids 
on coronary heart disease (15) as well as of alcohol consumption 
on cardiovascular traits (16). However, given the number of 
potential genetic instruments and statistical methods available 
nowadays, there is potential for assessing causality of many more 
traits by conducting successful MR analyses. Nevertheless, some 
important assumptions have to be fulfilled to be able to estimate 
an unconfounded and unbiased exposure-outcome relationship 
thus allowing drawing causal inference. This review describes the 
assumptions of MR and potential biases caused by violation of 
these assumptions, and provides an overview of commonly applied 
statistical methods for conducting MR analyses using individual 
level data as well as using GWAS meta-analyses results.

estimation of the Causal effect
The general aim of the MR approach is the estimation of a causal 
effect of an exposure X on an outcome Y using (one or more) 
genetic instruments Z for X (Figure 1). Basically, the causal effect 
will be obtained by two sequential steps. First, the exposure is 
estimated from its instruments. By using valid instruments, the 
estimated exposure will be independent of any confounders. 
In the second step, the outcome is regressed on this estimated 
exposure thus obtaining an unconfounded and therefore causal 

effect estimate. The instrument Z is usually coded by 0, 1 and 2 
per individual according to its number of coding (e.g., exposure 
increasing) alleles.

2-Stage Least Squares estimator
Given a continuous outcome Y and assuming linear effects between 
X and Y without interaction, the causal estimate of the exposure 
X on Y can be estimated through a 2-stage least squares (2SLS) 
regression. This method performs both steps described before 
implicitly. In the first step, the exposure X̂   which is independent of 
the confounders is estimated via the genotypes of the instruments 
by calculating the fitted values from the regression of X on Z. In the 
second step, the causal effect estimate  βX̂Y   is obtained by regressing 
Y on X̂  . As both steps are performed in a single model instead of 
two separate regressions, the variation of both Z and X̂   is taken 
into account which is required for obtaining correct standard 
errors (SE) of  βX̂Y   (17). The 2SLS regression can be calculated by 
standard methods in statistical software packages like R (18) using 
the function tsls of the package SEM, or by the STATA software 
(https://www. stata. com/) using the command ivregress. The 2SLS 
was included in an MR of testosterone with cardiometabolic risk 
factors, but the single study analysis limited the statistical power 
substantially (19).

Ratio estimator
Alternatively, the causal effect can be estimated by triangulation 
without the need of calculating  βX̂Y   from the exposure-outcome 
association directly. The principle of this method is illustrated 
through Figure  1: the standard approach (including 2SLS) for 

FiGuRe 1 |  Directed acyclic graph showing the effects  β of the genetic instrument Z, the exposure X, the outcome Y and the (unobserved) confounder U for 
illustrating the Mendelian randomization (MR). The dashed line represents the estimated causal effect  βX̂Y   using the instrumented exposure. The dotted lines show 
violations of the MR assumptions 2 (lower line) and 3 (upper line), and are marked by a red cross. The  αZY   represents the effect of the instrument that affects the 
outcome not via the exposure in case of violating the exclusion restriction assumption. In contrast to  αZY  , the gray line illustrates the SNP-outcome association 
with its effect  βZY   that is used to calculate the two-sample MR given a valid instrument.
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obtaining the causal effect  βX̂Y   follows the path from the instrument 
Z via X to Y. In this case, the direct effect  βZY   of the instrument on 
the outcome Y equals the product of effects underlying the path 
mediated by the exposure, i.e., βZY = βZX · βX̂Y  . By rearranging 
this equation, the causal effect can be estimated through dividing 
the effect of the IV on the outcome ( βZY  ) by the effect of the IV on 
the exposure ( βZX  ): βX̂Y = βZY/βZX  . As the triangulation approach 
calculates the causal effect (and its SE for testing significant deviation 
from null) by the ratio of the two IV based effect estimates, it is 
also known as ratio estimate or Wald estimate. It is important for 
the computation that both IV based effect estimates refer to the 
same allele of the IV. Furthermore, the same requirements as for 
the 2SLS apply. The SE of  βX̂Y   has to be estimated via the delta-
method which is based on a Taylor series expansion, and can be 
approximated as (20):
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of the two effect estimates. This term will vanish if the effect estimates 

are obtained from distinct samples. That concise approximation 
can be easily implemented for significance testing in statistical 
software packages like R or STATA.

In contrast to the 2SLS which has to be performed using data 
of a single sample (one-sample MR), different sample sets can be 
used for conducting the triangulation: the effect estimates of the 
IV on exposure X and outcome Y can be obtained from genetic 
association studies with either disjunct or overlapping samples 
(two-sample MR). By this means, genetic associations revealed 
through large-scale GWAS meta-analyses can be used as  βZX   
and  βZY  . These association results are often publically available 
for a variety of traits.

The triangulation method can also be applied if the outcome Y 
is dichotomous, i.e., an indicator of a disease status. In this case, 
log-linear effects without interaction on Y and an approximately 
normal distribution of X are required. Causal effect estimates 
on the odds ratio (OR) scale can be calculated by performing a 
logistic regression analysis using the disease as outcome. This 
model was also applied in most GWAS. To estimate causal OR 
using triangulation, the rare disease assumption (i.e., prevalence 
<10%) has to be fulfilled. Alternatively, estimates of a causal risk 
ratio may be calculated using a log-linear model instead of a logistic 
regression (21). The SE of the  βX̂Y   (i.e., the log causal OR) will be 
estimated by the same formula as applied in the case of a continuous 
outcome. An application of the ratio estimator is provided by the 
MR on cystatin c and cardiovascular disease (22).

Control Function estimator
Another method for estimating the causal effect on a dichotomous 
outcome is provided through the control function estimator (21) 
which is a two-step approach. In the first step, the exposure X is 
regressed on the instruments Z. The residuals of the regression 

correspond to the non-instrumented part of the exposure and 
may therefore correlate with a (unobserved) confounder U of 
the exposure-outcome association. In the second step, a logistic 
regression of the outcome Y on X is performed, adding the residuals 
of the first step as a covariate to the model. By adding the residuals of 
the first step into the model, the effects of U on Y will be controlled. 
Thus, the effect of X on Y of the second regression corresponds to 
the causal effect estimate. In case a linear regression is conducted 
in the second step (i.e., for a continuous outcome), the control 
function estimator is equivalent to the 2SLS estimator (21). This 
type of MR was conducted for assessing the causal effect of blood 
lipids on coronary heart disease (15).

Assumptions of the instrumental variables
SNPs have several properties predisposing them for instruments 
of the exposure. The inherited alleles are not changed by a disease 
or trait and thus also do not change over time. The random 
inheritance of the SNP alleles makes the genotype distribution 
mostly independent from socio-economic and lifestyle factors (1, 
23). Nevertheless, specific assumptions still need to be fulfilled to 
ensure the validity of the genetic variant as an instrument. There 
are three core assumptions for MR (24–26):

1. The genetic variant is associated with the exposure
2. The genetic variant is independent of the outcome given the 

exposure and all confounders (measured and unmeasured) of the 
exposure-outcome association

3. The genetic variant is independent of factors (measured and 
unmeasured) that confound the exposure-outcome relationship

The first condition is required because within the MR the 
(unconfounded) exposure will be estimated using the allele 
distribution of the IVs. This assumption can be easily tested, and 
is considered as fulfilled if the SNP-exposure association has an 
F-statistic >10 (21, 27).

The second assumption, which is also known as exclusion 
restriction, is equivalent to the condition that an IV does not have an 
effect on the outcome when the exposure remains fixed. In general, 
this assumption is hard to validate as there may be pleiotropic effects 
of SNPs or SNPs in linkage disequilibrium correlated with genes 
that have effects on the outcome independently of the exposure. 
Even without considering the linkage disequilibrium, using SNPs of 
the pleiotropic gene GCKR exemplarily as instruments for kidney 
function to assess a causal effect on blood pressure would result 
in an invalid IV as there are effects of GCKR on blood pressure 
likely that are independent of kidney function, e.g., by the known 
associations of GCKR with serum lipid levels. Another violation 
would occur if the sample consists of a population substructure 
with different allele distributions, and which is also associated with 
the outcome. In this case, the substructure would be a common 
cause of both SNP and outcome opening a pathway from SNP 
to outcome not mediated by the exposure. Several examples of 
different scenarios violating the exclusion restriction are provided 
in the work of Glymour et al. (24).

The third assumption is also hard to validate. Similar problems 
due to pleiotropy and population substructure as described in the 
exclusion restriction may occur but affecting confounders of the 

https://www.frontiersin.org/journals/Cardiovascular_Medicine#articles
http://www.frontiersin.org/journals/Cardiovascular_Medicine
https://www.frontiersin.org


4 May  2018 | Volume 5 | Article 51Frontiers in Cardiovascular Medicine | www. frontiersin. org

Teumer MR Methods Review

exposure-outcome relationship instead of the outcome directly. 
In an example of assessing causality of kidney function with heart 
disease, using GCKR as an instrument would violate the third 
assumption because these SNPs are also associated with blood 
pressure being a confounder of the association of kidney function 
and heart disease.

weak instrument Bias
Until today, more than 50,000 SNP-trait associations were 
revealed by GWAS and are usually accessible through public 
repositories like the GWASCatalog (5). These SNPs can be 
considered as potential instruments for MR analyses. Because 
the majority of these SNPs explain only a small proportion (i.e. 
<1%) of the phenotypic variance, GWAS with sample sizes of 
more than 10,000 or 100,000 individuals were required to unravel 
these associations at the level of genome-wide significance. 
However, the small effect sizes of the SNPs on the exposure 
result in weak instruments when using smaller sample sizes 
(28). Weak instruments tend to lead estimated causal effects 
towards the observational association (27). The reason for this 
bias is originated in using finite sample sizes. Although the IVs 
are asymptotically independent of confounders, there might be 
still an association by chance in finite samples. Increasing the 
sample size or the strength of the instruments will reduce the 
weak instrument bias. To illustrate the origin and the effect of the 
bias, let  βUX   and  βUY   be the effects of the confounder U on the 
exposure and the outcome, respectively (Figure 1). Furthermore, 
let  ∆U   be the (by chance) difference in U depending on the 
instrument Z. The estimated causal effect  βX̂Y   can then be 
computed by the following sum of effects (27):

 βX̂Y = βcausal +
βUY∆U

βZX+βUX∆U  , where  as  βcausal   is the true 
causal effect, and the mean( ∆U  ) =0 because Z is an instrument 
(assumption 3). This leads the bias term towards zero with 
increasing sample size resulting in βX̂Y = βcausal  . The estimated 
causal effect is also close to the true causal effect in case the effect 
of the IV on the exposure  βZX   is relatively large compared to the 
by-chance difference in U on the exposure ( βUX∆U  ). However, if 
 βZX   is small compared to  βUX∆U   (in case of a weak instrument), 
the estimated causal effect will be biased towards the ratio of the 
effect of the confounder on the outcome and the effect of the 
confounder on the exposure, i.e., 

βUY
βUX  .

Multiple instruments Approach
Using multiple valid instruments will help to address the 
weak instrument bias. Adding multiple uncorrelated (linkage 
equilibrium) SNPs into a 2SLS model can increase the statistical 
power but might also increase the relative bias if weak instruments 
are added (28).

Alternatively, an allele score can be generated from 
the instruments and included as a single variable in the 
association model. This allele score Z is calculated per 
individual as the weighted or unweighted sum of the number 
of risk or trait increasing alleles Zi of each SNP i, whereas 
the effect  βZiX   of each SNP on the exposure X is used as  
weight: Z = βZ1XZ1 + βZ2XZ2 + · · · + βZkXZk . In case of an 

unweighted score where all  βZiX   are set to 1, the allele score of 
an individual simplifies to the sum of its risk alleles. By using 
an allele score, the F-statistics increases because of the smaller 
degrees of freedom in the model. However, it has been shown 
that the unweighted score has lower power than adding multiple 
IVs into the 2SLS, but using an appropriately weighted allele 
score performs similarly. The causal effect is a little less biased 
when using a weighted allele score but might have a slightly 
lesser precision (and power) compared to the multiple IV 2SLS 
estimator. In general, effects obtained from external studies 
should be used as weights (28).

A third method for taking advantage of multiple IVs is to 
combine ratio estimates (triangulation) of single instruments 
using inverse variance weighting (29, 30). The method for 
combing the results is the same as used for meta-analyses, and is 
for example implemented in the R package metafor. Alternatively, 
the following simplification of this calculation can be used 
(31–33):
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SE
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, where 

the sum runs over the SNP specific estimates. This method is 
implemented in the R package gtx.

However, it is crucial that the effects of all IVs used in the 
calculation are corresponding to the allele referring to the same 
effect direction on the exposure (e.g., the trait increasing allele). 
In theory, problems of missing data may occur especially when 
using multiple IVs. Nowadays well established methods for 
imputing missing genotypes based on the linkage disequilibrium 
structure of the human genome are available to circumvent this 
problem (34–36).

Bias by violation of the Assumptions  
2 and 3
Importantly, valid instruments need to be included in the MR 
analyses. In case the assumptions are not fulfilled, different 
types of bias can occur leading to invalid causal effect estimates. 
Violation of the second assumption (the exclusion restriction) 
implies that there is at least a partial effect of the instrument on the 
outcome not mediated by the exposure, i.e.  αZY ̸= 0  (Figure 1). 
Depending on the direction and strength of these pleiotropic 
effects, the causal effect will be over- or underestimated. As 
shown within the principle of triangulation, the estimated 
causal effect  βX̂Y   is the sum of the true causal effect  βcausal   and 
a bias term:  βX̂Y = βcausal +

αZY
βZX   (26). The bias increases due 

to larger pleiotropy (larger absolute  αZY   in the nominator) or 
weaker instruments (smaller absolute  βZX   in the denominator). 
Violation of assumption 3 leads to a bias similar to the weak 
instrument bias. In this case, the effect of the confounder U on 
exposure and outcome will not vary by chance but systematically 
because of the non-zero effect of the instrument Z on U. Thus, 
an increasing sample size will not remove the bias because  
mean( ∆U  ) ≠ 0.
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inSide Condition and egger MR
Pleiotropic effects  αZY   of each IV will also be included in the 
model when applying the multiple instruments approach. 
However, in this scenario it is possible to substitute the exclusion 
restriction by a weaker assumption as explained below. If 
the ratio estimates of multiple instruments are combined via 
2SLS or inverse variance weighting, equation (1) will result in 

 
βX̂Y = βcausal +

∑
βZXαZYvar

(
βZY

)−1
∑

β2
ZXvar

(
βZY

)−1
 
 , where  βcausal  equals the 

right side of (1) and 
 

∑
βZXαZYvar

(
βZY

)−1
∑

β2
ZXvar

(
βZY

)−1
 
 is a bias depending on 

 αZY   and  βZX  . Thus, an unbiased causal effect will be obtained if 
the assumption 2 is true, i.e., all direct effects  αZY   of each IV on the 
outcome Y are zero. However, it will be sufficient for the bias term 
to equal zero if all pleiotropic effects  αZY   of all genetic IV cancel 
out. As shown below, this cancellation is sufficiently fulfilled if the 
correlation between direct genetic effects  αZY   on the outcome and 
their effects  βZX   on the exposure X (i.e., the strength of the IV) 
is zero. This independence between the genetic effects  αZY   and 
 βZX   is called InSIDE condition (Instrument Strength Independent 
of Direct Effect). If the InSIDE condition holds together with 
assumptions 1 and 3, an adaption of the Egger regression can be 
used to obtain a consistent causal estimate even for specific cases 
in which the exclusion restriction criteria is violated. The Egger 
regression for MR is an implementation of the meta-regression 
where the (total) SNP-outcome effect  Γ = βZXβcausal + αZY   for each 
SNP is regressed on the corresponding SNP-exposure effect  βZX  : 
 Γ ∼ β0E + βEβZX   where the slope  βE  is the bias-reduced causal 
estimate (Figure 2). The principle behind this regression is that 

Γ is proportional to the strength of the instrument  βZX   with the 
intercept  β0E = 0  for valid instruments, whereas under the InSIDE 
condition (i.e.,  αZY  and  βZX   are uncorrelated) stronger instruments 
are expected to have a relatively small bias and thus are on average 
closer to the true causal effect than weak instruments. As the slope 
of the Egger MR can be calculated by the least squares estimator 

 
βE = cov

(
Γ,βZX

)
var

(
βZX

) = βcausal +
cov

(
βZX,αZY

)
var

(
βZX

)
 
 , the bias term will be 

zero if  αZY   and  βZX   are uncorrelated, which is the case under the 
InSIDE assumption. A non-zero intercept  β0E  indicates an overall 
directional pleiotropy of the IVs (26).

Considering Statistical Power
The statistical power of an MR strongly depends on the 
proportion of variance of the exposure that is explained by the 
IV. The use of multiple IVs, either by direct inclusion or as an 
allele score in the model, may therefore increase the power as 
more variance of the exposure is explained. However, the validity 
of these instruments has to be ensured (37). Two-sample MR 
additionally provide a possibility to increase statistical power if 
published GWAS meta-analyses of both the exposure and the 
outcome are available. In this case, effect estimates based on large 
sample sizes of independent studies can be used to estimate the 
causal effect. Formulas for performing power calculations of MR 
using single instruments or allele scores are provided in the study 
of Burgess (37). Brion et al. (38) discusses the statistical power 
in case of single IV and continuous outcomes for 2SLS MR, and 
provide an online power calculator for both continuous and 
binary outcomes which is available at http:// cnsgenomics. com/ 
shiny/ mRnd/. A tool for estimating statistical power of complex 
MR settings based on simulations is MR_predictor (39), whereas 
the PERL scripts required to run the estimator are available via 
GitHub.

Measurement unit of the Causal effect 
estimates
When conducting two-sample MR, the causal effect corresponds 
to the unit of the outcome on a per unit change of the exposure 
that was used in the respective genetic association study of the 
IV with the corresponding trait (32). Some GWAS were meta-
analyzed using the sample-size weighted z-score method (40) 
and thus do not provide effect estimates that can be directly 
included in a two-sample MR. However, it is possible to estimate 
the effect  ̂β  for each SNP in Hardy-Weinberg equilibrium using 
its minor allele frequency MAF, its (large) GWAS sample size N, 
and its z-statistics z (which can be calculated from the inverse of 
the standard normal distribution using the association p-value 
and the corresponding effect direction) through the formula 
(41): 

 
β̂ ≈ z · σ√

N·2·MAF·
(
1−MAF

)
 
, whereas the corresponding 

 
SE

(
β̂
)
= β̂

z  
. The SD σ of the trait can be set to 1 for standardizing 

the phenotype (i.e., the effect corresponds to a change of one SD of 
the trait unit). If the outcome is a binary trait, e.g., a disease with 
prevalence p in the sample, then  σ =

√
p ·

(
1− p

)
 .

FiGuRe 2 |  Plot of the SNP-outcome (Γ ) on the y-axis vs. the SNP-
exposure ( βZX  ) regression coefficients of potential genetic instruments (i.e., 
SNPs) of a Mendelian randomization analysis on the x-axis. The true causal 
effect represented by the slope  βcausal  is shown by a dotted line, the inverse 
variance weighted (IVW) causal estimate  βX̂Y   by a red line, and the MR Egger 
regression estimate  βE  by a dark blue line. The total SNP-outcome effect Γ is 
proportional to  βZX   for valid instruments. In case of invalid instruments but 
when the InSIDE assumption holds, stronger instruments are on average 
expected to be closer to the true causal effect (i) than weak instruments (ii). 
The intercept  β0E  represents the overall directional pleiotropy of the 
instruments. The figure was adapted from the publication of Bowden et al., 
Int J Epidemiol. 2015;44(2):512–525 (26) (Creative Commons CC BY license). 
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