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Coronary artery disease (CAD) and myocardial infarction (MI) remain among the leading

causes of mortality worldwide, urgently demanding a better understanding of disease

etiology, and more efficient therapeutic strategies. Genetic predisposition as well as

the environment and lifestyle are thought to contribute to disease risk. It is likely that

non-linear and complex interactions occur between these multiple factors, involving

simultaneous pathological changes in diverse cell types, tissues, and organs, at multiple

molecular levels. Recent technological advances have exponentially expanded the

breadth of available -omics data, from genome, epigenome, transcriptome, proteome,

metabolome to even the microbiome. Integration of multiple layers of information across

several -omics domains, i.e., the so-called multi-omics approach, currently holds the

promise as a path toward precision medicine. Indeed, a more meaningful interpretation

of genotype-phenotype relationships and the development of successful therapeutics

tailored to individual patients are urgently needed. In this review, we will summarize recent

findings and applications of integrative multi-omics in elucidating the etiology of CAD/MI;

with a special focus on established disease susceptibility loci sequentially identified in

genome-wide association studies (GWAS) over the last 10 years. Moreover, in addition

to the autosomal genome, we will also consider the genetic variation in our “second

genome”—the mitochondrial genome. Finally, we will summarize the current challenges

in the field and point to future research directions required in order to successfully and

effectively apply these approaches for precision medicine.

Keywords: cardiovascular disease, multi-omics, genomics, transcriptomics, metabolomics, gut microbiome

INTRODUCTION

In the current era of high-potency statin therapy it becomes increasingly clear that even
individuals with normal LDL-cholesterol levels without any conventional risk factors may develop
atherosclerosis (1). The most pertinent manifestation of atherosclerosis is coronary artery disease
(CAD), a highly complex disease, influenced by both multiple genetic risk variants and lifetime
exposure to an atherogenic environment (2). A better understanding of the etiology of CAD
and directions toward hitherto therapeutically not addressed disease mechanisms are urgently
demanded (3). During the last 10 years, the genetic risk has been thoroughly explored in numerous
genome-wide association studies (GWAS), leading to identification of >300 chromosomal loci
which all significantly affect the risk of CAD (4–15). More than 90% of these common disease
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risk variants are located outside the protein-coding regions
and have modest effect sizes (2, 16). Collectively they explain
only ∼25% of the overall disease heritability. This suggests that
genetic variation may contribute to disease risk in a non-linear,
interactive and complex way (17), leading to pathological changes
in diverse cell types, tissues, and organs, at multiple molecular
levels (18).

Recent technological advances have exponentially expanded
the breadth of available -omics data (17). High-throughput
monitoring of the abundance of various biological molecules and
determination of their variation between different conditions on
a global scale has become possible, promoting a paradigm shift
in the way we approach biomedical problems (19). At the same
time, it has been increasingly recognized that no single type of
data can fully capture the intricacy of most complex molecular
traits that manifest collectively as disease phenotypes (20–22).
Rather, it is the integration of multiple layers of information
across several -omics domains, i.e., the so-called multi-omics
approach [also referred to as integromics or panomics (19)], that
holds the promise for precision medicine (Figure 1) (19).

Of note, integrative analysis across multiple-omics layers can
be conducted in two ways (Figure 2): pair-wise data integration
and multi-dimensional i.e., network-based integration (22).
Furthermore, pair-wise integrations can be divided into genetic
and non-genetic correlations (22). In the first case, DNA variants
(i.e., allelic distributions of single-nucleotide polymorphisms;
SNPs) are tested for association with down-stream omics
markers such as transcriptomic alterations, protein, metabolite
or methylation levels or quantitative and qualitative measures
of microbiome, via the so called quantitative trait loci
(QTL) mapping. In the second scenario, one would explore
correlations between down-stream omics data, e.g., correlation
of CpG methylation levels to transcript expression or between
metabolome and gut microbiome, however it may be difficult
to infer causal relationships in such case (22). Considering
the largely unexplored role of the established CAD risk loci
from GWAS (23) and the central dogma that genetic variations
control the transcriptome, which in turn affects e.g., the proteome
(20), and metabolome (Figure 2, middle panel), our main
focus will be pair-wise integrations linking genetic variation
related to CAD risk to other down-stream omics layers such as
epigenome, transcriptome, proteome or metabolome. Although
multi-dimensional integrations have been widely used in the field
of cancer research, their application in the context of CAD has
so far been limited (22). Moreover, in addition to the autosomal
genome, we will also consider the genetic variation in our “second
genome”—the mitochondrial genome and its contribution to
CAD.

INTEGRATING GENETIC VARIATION AND
EPIGENOME

Epigenomic signatures reflect various DNA modifications and
may affect gene regulatory mechanisms that do not involve
changes in the DNA sequence per se. Thereby, epigenomics
may become a critical mediator of environmental influences

and risk factors acting on the genome (20, 24). Three
unique, but highly interrelated, epigenetic processes can be
distinguished: DNA methylation, histone modifications (e.g.,
methylation, acetylation, phosphorylation, DP-ribosylation, and
ubiquitination) and RNA-based mechanisms (e.g., microRNAs,
long non-coding RNAs or lncRNAs, small interfering RNAs)
(20, 24). Although, technically non-coding RNAs belong to the
epigenome (20), we will discuss them in the next section, as the
respective omics data are acquired via transcriptome profiling
(RNA-seq).

DNA methylation and histone modifications are the best
understood of the epigenetic mechanisms thus far and have been
widely suggested to regulate gene expression and affect CAD risk
factors including atherosclerosis, inflammation, hypertension
and diabetes (25). DNA methylation consists of the covalent
methylation of the C5 position of cytosine residues, when they
are followed by guanine residues (CpG dinucleotides). It is partly
heritable but it is also a dynamic process related to environmental
stimuli and life style factors (26). Hedman et al. (27) analyzed
epigenetic changes associated with lipid concentrations and
identified a number of meQTLs, enriched in signals from
GWAS on lipid levels and CAD. For example, genome-wide
significant variants (rs563290 and its proxies), associated with
LDL cholesterol and CAD at APOB, were meQTLs for a LDL
cholesterol-related differentially methylated locus (Table 1 and
Figure 3).

Furthermore, the CDH13 (T-cadherin) locus may present an
interesting example in the context of epigenetics and CAD. Putku
et al. (39) reported several genetic variants in the promoter of
CDH13 as meQTLs in hypertension patients (Table 1), several
of them being also associated with high molecular weight
adiponectin, a known ligand for CDH13, the binding of which
results in increased proliferation and migration of endothelial
cells (39). Moreover, recently Nelson et al. (13) identified a
genetic variant in the intron of CDH13, which affects expression
of this gene in vascular tissues, and is genome-wide significantly
associated with CAD (28) (Table 1). Interestingly, the expression
levels of CDH13 and lncRNAs from the same locus showed
positive correlations, suggesting a functional link, as lncRNAs
are known to display correlations with the expression of their
neighboring protein-coding target genes (48).

An exciting field of future research will be studies conducting
parallel profiling of genetic variation with histone modifications
and Hi-C and ChIA-PET-based chromatin contact maps to
uncover local and distal histone quantitative trait loci (hQTLs)
(49) in CAD patients.

Overall, considering the critical role of epigenetic
modifications as a critical mediator of environmental influences
on the genome (20, 24), we urgently need more investigations
studying DNA methylation and other epigenetic modifications
genome-wide and in large enough cohorts, ideally also
elucidating the differences between tissues and cells in healthy
vs. CAD patients. Moreover, this should be supplemented with
careful documentation of multiple environmental and lifestyle
factors over time, i.e., the envirome, as well as comprehensive
clinical information to draw a link between the environment and
CAD.
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FIGURE 1 | Multi-omics approach for precision medicine. Multi-omics (i.e., genome, epigenome, transcriptome, proteome, metabolome, microbiome, and envirome)

data are collected from patients and integrated to create their individual molecular signatures (i.e., complex biomarkers), which are then used to select an appropriate

drug for a particular patient, thus improving the treatment efficiency and reducing the possible side effects.

FIGURE 2 | Multi-omics (i.e., autosomal and mitochondrial genome, epigenome, transcriptome, proteome, metabolome, microbiome, and envirome) data integration

can be conducted in two ways: pair-wise integrations, which can be further divided into non-genetic (left panel) and genetic correlations (middle panel). In the first

case, one would examine the correlation patterns between the down-stream omics layers (e.g., metabolome and gut microbiome), whereas the second is achieved

via the so called quantitative trait loci (QTL) mapping, linking genetic variation to methylation levels (meQTLs) or histone modifications (hQTLs), transcriptome

(expression QTLs; eQTLs), protein (pQTLs), metabolite (mQTLs) or measures of microbiome (mbQTLs). Alternatively, multi-dimensional i.e., network-based integration

approaches (right panel) exist, however their application in the context of CAD has so far been limited (22).

INTEGRATING GENETIC VARIATION AND
TRANSCRIPTOME

Transcriptomics reflect genome-wide measures of RNA levels,
both protein-coding RNA as well as the non-coding RNAs
(i.e., microRNAs, lncRNAs, and small interfering RNAs) under
specific conditions or in a specific cell. Moreover, the transcript
levels are examined both qualitatively (i.e., which transcripts
are present, identification of novel transcripts, splice sites, and
RNA editing sites) and quantitatively (quantification of transcript
abundance) (21).

Protein-Coding RNAs
Parallel assessments of genetic variation and transcriptome
profiles across disease-relevant tissues, i.e., via mapping
expression quantitative trait loci (eQTLs) to identify

susceptibility genes (mainly protein-coding), has been the
most commonly applied approach (28, 29, 50–52). Björkegren
et al. have performed a number of integrative network
analysis, linking CAD risk variants and transcriptome data
in seven disease-relevant vascular and metabolic tissues,
collected from up to 600 CAD patients during coronary artery
bypass surgery (28, 29, 53, 54). From these investigations,
visceral abdominal fat has emerged as an important gene-
regulatory site for blood lipids. Several risk SNPs for
HDL-, LDL-, and total cholesterol levels, as well as for CAD
demonstrated significant eQTL effects in visceral abdominal fat
(28, 29).

Huan et al. (30) also used integrative analysis to investigate
the molecular mechanisms of blood pressure regulation and
identified a blood pressure associated SNP (rs3184504) in
SH2B3, also associated with the expression (eQTL) of several
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TABLE 1 | Genetic variation related to CAD/MI risk that has been associated with other down-stream omics layers such as transcriptome (mRNA, microRNAs and

lncRNAs), epigenome, proteome or metabolome.

Data type Tissue Phenotypic Trait SNP Omics-Marker Refernces

Transcriptome:

mRNAs

Visceral abdominal fat HDL cholesterol level rs4148008 ABCAB/ABCA5 Franzén et al. (28)

rs11869286 STARD3

Total cholesterol level rs751557 EVI5

rs174546 TMEM258

LDL cholesterol level rs12046679 PCSK9

CAD rs892006 G3BP1 Foroughi Asl et al. (29)

rs6908994 PSORSIC3

rs9930148 FLYWCH1

Internal mammary artery,

atherosclerotic aortic root

rs7500448 CDH13 Nelson et al. (13)

Blood Blood pressure Rs3184504 SH2B3,ALDH2,NAA25

(cis) and IL8,TAGAP (trans)

Huan et al. (30)

Transcriptome:

microRNAs

Circulating leukocytes,

human coronary artery

smooth muscle cells

(HCASMC)

CAD rs12190287 miR-224: TCF21 Miller et al. (31) Bastami

et al. (32)

The effect of diet on plasma

lipid levels

rs13702 miR-410:LPL Richardson et al. (33)

CAD rs989727(rs7808424) miR-202-5p:ASZ1 Bastami et al. (34)

rs41269915(rs2229238) miR-485-5p:UBE2Q1

rs15563 hsa-miR-130a-5p:UBE2Z Brænne et al. (16)

rs3088442 hsa-miR-130a-

5p:SLC22A3

rs2266788 hsa-miR-4722-5p:APOA5

rs72932707 hsa-miR-4722-5p:ICA1L

HDL,LDL, and total

cholesterol,triglycerides

rs2370747(rs7115089 miR-100-5p,miR-125b-5p
Huan et al. (35)

CAD rs11042699 (rs6578985) miR-483-3p-IGF2

Platelet count rs4905998 rs(7149242) miR-127-3P, miR-134,

miR-370, miR-376a-3p,

miR-382-5p, miR-431-5p,

miR-433, miR-329,

miR-409-3p, miR-494,

miR-411-3p, miR-654-5p,

miR-668, miR-543,

miR-323a-3p,

miR-337-3p

3p/5p ratio rs13064131 miR-28:LPP Civelek et al. (36)

Transcriptome:lnc

RNAs

Internal mammary artery,

atherosclerotic aortic root

CAD rs1333045 FPKM1_group_33469_

transcript_1

Ballantyne et al. (37)

MI rs1333049 FPKM1_group_33469_

transcript_2

T2D rs2383208 FPKM1_group_33469_

transcript_6

Early MI rs10757274 ANRIL McPherson et al. (38)

Epigenome:DNA

methylation

Hypertension rs113460564, rs12443878,

rs12444338, rs62040565,

rs8060301

CDH13 Putku et al. (39)

Diastolic blood

pressure,serum high-density

lipoprotein,high molecular

weight adiponectin

rs8060301 Cg09415485(CDH13)

(Continued)
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TABLE 1 | Continued

Data type Tissue Phenotypic Trait SNP Omics-Marker Refernces

High molecular weight

adiponectin

rs2239857, rs77068073 CDH13

Smoking(no assosciation) rs75509302 cg23576855(AHRR)

LDL cholesterol level rs563290 (rs515135,

rs562338)

Cg05337441(APOB) Hedman et al. (27)

Proteome Blood plasma CAD rs12740374 Granulin(CELSR2/SORT1) Chen et al. (40)

rs867186 Protein C (PROCR) Howson et al. (14)

rs1050362 apolipoprotein L1 (DHX38)

Metabolome Blood plasma CAD rs715 CPS1,urea cycle

metabolites,plasma

glycine

Hartiala et al. (41)

Blood plasma rs10450989(USP3),

rs2228513(HER-

C1)rs930491,rs11827377

(STIM1), rs3853422(SEL1L),

rs1869075(F-BXO25),

rs9591507,

rs17573278,

rs894840,

rs9285184(SUGT1)

Circulating short-chain di-

carboxylacylcarnitine(SC-

DA)

Kraus et al. (42)

Multi-OMICS Low HDL and inflammatory

pathways

rs241437 TAP2 Laurila et al. (43)

rs9272143 HLA-DRB1,HLA-DQA1

Mitochondrial

Genome

Blood Hypertension m.8701A>G MT-ATP6 Zhu et al. (44)

CAD Haplogroup T Kofler et al. (45)

m.16189T>C Mueller et al. (46)

m.15927G>A Jia et al. (47)

genes, including SH2B3, in the genetically inferred causal blood
pressure gene sets (Table 1 and Figure 4). Some of these genes
were also perturbed in Sh2b3−/− mice, demonstrating blood
pressure-related phenotype (30). Rs3184504 has been previously
also associated with CAD risk (9).

Much less investigated are non-coding RNA transcripts,
such as micro-RNAs (miRNAs) and long non-coding RNAs
(lncRNAs). Recent evidence suggests that at least some of these
may play a role in CAD (55–58). Although, technically non-
coding RNAs belong to the epigenome (20), we will discuss them
in this section, as the respective omics data are acquired via
transcriptome profiling (RNA-seq).

Micro RNAs
MiRNAs are involved in the transcriptional control of all
main cell types participating in atherosclerosis progression,
including endothelial cells, vascular smooth muscle cells, and
macrophages (32, 59). Several studies have investigated the
differential expression patterns of miRNAs in plasma/serum,
microparticles, whole blood, platelets, blood mononuclear
intimal, and endothelial progenitor cells in CAD vs. non-CAD
patients, as summarized by Malik et al. (60). In majority of
cases, up-regulation of different miRNA in CAD patients was
observed (60). Moreover, growing body of evidence suggests that
genetic variations in the miRNA targetome may lead to major

deleterious outcomes (61, 62). For example, Miller et al. (31)
have shown that an established CAD risk variant (rs12190287)
resides in the 3′ untranslated region of a transcription factor
TCF21 and alters the seed binding sequence for miR-224.
Moreover, allelic imbalance studies in circulating leukocytes and
human coronary artery smooth muscle cells have demonstrated
a significant imbalance of the TCF21 transcript levels, which
correlated with genotype at rs12190287, consistent with this
variant contributing to allele-specific expression differences (31).
Richardson et al. (33) have reported that a variant (rs13702)
in the 3’-UTR of lipoprotein lipase (LPL) disrupts the binding
of miR-410 and modulates the effect of diet on plasma lipid
levels (33). Recently, Bastami et al. (34) performed a more
systematic computational screening, by mapping the established
CAD risk variants to the miRNA targetome, identifying several
links between SNPs and miRNAs (Table 1; https://www.ebi.ac.
uk/gwas/). In a recent study from our group (16), we also
mapped CAD risk variants from the CARDIoGRAMplusC4D
GWAS meta-analyses (9), to 3′ UTR regions of genes to
assess their overlaps with predicted target miRNA binding sites.
Interestingly, the 3′ UTR region of MRAS was predicted to
be targeted by 29 miRNAs and 23 miRNAs were predicted to
bind more than one candidate CAD gene (Table 1). Thus far,
there have been relatively few studies investigating genome-
wide miRNA eQTLs (miR-eQTLs). Huan et al. (35) identified a
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FIGURE 3 | Hedman et al. (27) identified SNP (rs515135) in an intron of APOB

to be associated with LDL-C. Its proxy was also associated with CAD.

Interestingly, this SNP represents a cis-meQTL. Black arrows indicate

association findings. Red arrows indicate the presumed functional cascade

leading to CAD.

FIGURE 4 | Huan et al. (30) uncovered a blood pressure associated SNP

(rs3184504) in SH2B3, which also associates with the expression (eQTL) of

several genes, including SH2B3 itself, in the genetically inferred causal blood

pressure gene sets. Rs3184504 has been previously also associated with

CAD risk. (9) Black arrows indicate association findings. Red arrows indicate

the presumed functional cascade leading to CAD.

genetic variant (rs2370747) associated withmiR-100-5p andmiR-
125b-5p expression, a proxy SNP of which was also associated
with lipid traits (HDL-, LDL-, and total cholesterol as well
as triglycerides). Moreover, it was found that both miRNAs
were also differentially expressed in relation to HDL cholesterol
(35).

FIGURE 5 | Civelek et al. (36) demonstrated a significant association of the

SNP rs13064131 with the 3p/5p ratio of miR-28, encoded from the LPP gene.

The miRNA processing and strand selection was adapted from (65).

Civelek et al. (36) examined the genetic regulation of human
adipose miRNA expression and its consequences for metabolic
traits. Interestingly, this study showed, how genetic variation
might influence the processing of miRNAs, i.e., the ratio of
miRNA expression from the 3p and 5p arms. It is known that a
miRNA precursor can give rise to two mature miRNAs from the
3p and 5p arm, one of which usually having higher expression
than the other. The 3p/5p ratios of several miRNAs have been
shown to be significantly different among various healthy tissues
(63) and altered in pathological conditions compared with
healthy controls (64). Civelek et al. demonstrated a significant
association of the SNP rs13064131 with the 3p/5p ratio of
miR-28, encoded from the LPP gene (Figure 5) (36). However,
the SNP was not associated with the expression levels of the
LPP transcript itself or with the abundance of miR-28-3p or
miR-28-5p, suggesting that its effect on the 3p/5p ratio may
be independent of transcription, possibly via degradation or
stabilization mechanisms.

Long Non-Coding RNAs
The recent discovery of an extensive catalog of lncRNAs—
i.e., long RNA transcripts that do not code for proteins—has
opened a new perspective on the importance of the RNA-based
mechanisms in gene regulation (24). LncRNAs are emerging as
important regulators of various cellular processes, with many
possible implications in cardiovascular disease pathophysiology
(57, 58). In fact, the most prominent CAD risk locus at
Chr9p21 (66, 67) harbors the lncRNA—ANRIL (Antisense Non-
coding RNA in the INK4 Locus, CDKN2B antisense RNA).
From these, rs10757274 is the strongest genetic predictor of
early MI and is not associated with established CAD risk
factors such as lipoproteins or hypertension, making ANRIL
a key candidate (38). Interestingly, ANRIL is found both as
a linear lncRNA (linANRIL), the transcript levels of which
are known to positively correlate with disease severity (68),
and is also capable of forming RNA circles (circANRIL)
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FIGURE 6 | Recently, Holdt et al. (69) demonstrated that circANRIL regulates

the maturation of precursor ribosomal RNA (pre-rRNA), by this impairing

ribosome biogenesis and inducing nucleolar stress and apoptosis in vascular

smooth muscle cells and macrophages. Moreover, carriers of the

CAD-protective haplotype at 9p21 showed significantly increased expression

of circANRIL.

(69). Recently, Holdt et al. (69) demonstrated that circANRIL
regulates the maturation of precursor ribosomal RNA (pre-
rRNA), by this impairing ribosome biogenesis and inducing
nucleolar stress and apoptosis in vascular smooth muscle cells
and macrophages (Figure 6). Carriers of the CAD-protective
haplotype at 9p21 showed significantly increased expression of
circANRIL (69).

Currently, there have not been many large-scale studies on
lncRNAs in the context of CAD, though. Ballantyne et al.
(37) recently conducted a genome-wide interrogation of long
intergenic non-coding RNAs (lincRNAs) that associate with
cardiometabolic traits in GWAS, including CAD and also
identified a number of CAD/MI and type 2 diabetes associated
SNPs at Chr9p21 that overlapped lincRNA transcripts (Table 1)
(37). In STARNET (28), 5.4% of the identified cis-expression
quantitative trait loci (eQTLs) were related to the expression
of lncRNAs, however these have not been further explored, so
far. Overall, more studies focusing on non-coding RNAs in
different CAD relevant tissues in large enough cohorts will be
required to yield insights into the possible functional roles of
this portion of transcriptome and its genetic determinants, in
healthy and disease states. Moreover, considering that lncRNAs
are generally found to be more lowly-expressed, sufficient depth

of coverage for RNA-seq experiments will need to be guaranteed
(21).

INTEGRATING GENETIC VARIATION AND
PROTEOME

Proteomics uses high-throughput approaches (mainlyMS-based)
to quantify protein abundance, post-translational modifications
and interactions (e.g., using phage display and yeast two-hybrid
assays) in a tissue, cell or fluid compartment, such as plasma
or urine (21). Considering that the transcriptome is not linearly
proportional to proteome, that proteins are the biomolecules
that execute cellular functions, and that many human diseases
ultimately result from alterations in the proteome (70), such
studies are urgently needed to facilitate the explorations of CAD
etiology. However, proteome studies are still rare in relation to
CAD, mostly due to the complex methodology involved. There
have been some investigations in the past few years, aiming at
characterizing the proteomes of several CAD-related tissues and
cell types, including human arterial smooth muscle cells (71),
platelets (72), as well as body fluids such as urine (73).

Only few studies (14, 40) have analyzed genetic variants that
modify protein levels, i.e., the so-called protein quantitative
trait loci (pQTLs) (Table 1). Chen et al. (40) assayed a pre-
selected set of plasma proteins, identifying several pQTLs
that overlapped with CAD risk SNPs and also explained a
substantial proportion of inter-individual variation in protein
abundance. For example, rs12740374 at the CELSR2/SORT1
locus, a variant associated with lipids and CAD, explained
15% of inter-individual variation in plasma granulin levels
(Figure 7). Interestingly, progranulin binds to SORT1 and Sort1
knockout mice show markedly elevated levels of progranulin
(40). Recently, it was also demonstrated that progranulin is
involved in lysosomal homeostasis and lipid metabolism (74).

As the proteomics technologies improve over time (21),
more genome-wide investigations of CAD-related alterations in
proteome and also phosphorpoteome in increasing numbers
of disease relevant tissues are expected to be conducted in
the near future. However, as proteins are more sensitive to
their environment (21), caution will have to be taken during
sample preparation steps to obtain accurate and reproducible
results.

INTEGRATING GENETIC VARIATION AND
METABOLOME

An important additional functional layer in mutli-omics data
integration is the metabolome, as it represents an integrated
state of all genetic, epigenetic and environmental factors,
thus providing a link between genotype and phenotype (75).
Metabolomics is an omics field that systematically identifies and
quantifies multiple small molecule (typically <1,500 Daltons)
types, such as amino acids, fatty acids, carbohydrates and
biochemical intermediates, i.e., metabolites (21). A plethora of
metabolites in blood and urine have been associated with CAD
and subsequent cardiovascular events (76–79) and have been
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FIGURE 7 | rs12740374 at the CELSR2/SORT1 locus, (40) a variant

associated with lipids and CAD, was recently found to display pQTL effects on

plasma granulin levels, and pro-granulin is known to bind to SORT1. More

recently, it was also demonstrated that progranulin is involved in lysosomal

homeostasis and lipid metabolism (74).

demonstrated as promising biomarkers discriminating CAD
vs. non-CAD subjects (78), as well as between thrombotic
MI and stable CAD cases (80). Kraus et al. (42) recently
identified several genetic loci demonstrating associations with
blood plasma metabolites (i.e., metabolomic quantitative trait
loci; mQTLs), the strongest findings being for the circulating
short-chain dicarboxylacylcarnitine (SCDA) metabolite levels
with variants in genes that regulate components of endoplasmic
reticulum (ER) stress (Table 1 and Figure 8) (42).

Besides blood and urine, metabolomic profiles of vascular
and metabolomic tissues such as subcutaneous fat will need
to be generated, ideally in conjunction with other omics layer
data. Especially, gut microbiome would be of utmost interest,
considering the close link between the two (81).

However, of note, metabolic profiles are even more prone to
variability affected by sample preparation and storage conditions,
as well as by several other factors including patient heterogeneity
(21). Hence, the required sample size has to be carefully
considered, to inspire confidence in the generated results.

INTEGRATING GENETIC VARIATION AND
MICROBIOME

Microbiomics investigates all the microorganisms of a given
community, including bacteria, viruses, and fungi, collectively
known as the microbiota (and their genes constituting the
microbiome) (21). The human microbiome is enormously
complex and there are substantial variations in microbiota
composition between individuals resulting from seed during
birth and development, diet and other environmental factors,

FIGURE 8 | Kraus et al. (42) performed a pathway-level integrative analyses

and observed associations of circulating short-chain dicarboxylacylcarnitine

(SCDA) with variants in ER stress genes, whereof several genetic variants in

FBXO25 and SUGT1 genes also demonstrated evidence of cis-regulation in

expression quantitative trait loci (eQTL) analyses and independently predicted

CAD events.

drugs and age (21). Thousands of different bacterial species
make up the human microbiomes, from which there is a
small number of abundant species and a large number of rare
or low abundance species, the differential functions of which
remain poorly understood (82). Currently, several large scale
initiatives are emerging including the American Gut Project
http://americangut.org/ and the British Gut Project http://
britishgut.org/, which are expected to produce a rich collection
of anonymised human gut samples and lifestyle information for
medical researchers.

Gut microbiome has emerged as another rich source of
information and as a possible new player contributing to
the CAD/MI pathogenesis (82–84). It has long been known
that bacteria activate inflammatory pathways, and recent data
demonstrate that the gut microbiome may also affect lipid
metabolism and influences the development of obesity and
atherosclerosis (84), suggesting that gut microbiota could be used
as a diagnostic marker for CAD (85). The most investigated
is the association between gut microbiota and fasting plasma
trimethylamine N-oxide (TMAO) levels, a gut microbiota-
dependent metabolite, previously also associated with CAD
and stroke (81, 86). Org et al. (81) demonstrated that certain
blood plasma metabolites strongly correlated with gut microbial
community structure and that some of these correlations may
be specific for the pre-diabetic state. LeChatelier et al. (84)
used qunatitative gut microbiome information to distinguish
between individuals with “high bacterial richness” and “low
bacterial richness,” were the latter were characterized by increased
adiposity, insulin resistance and dyslipidemia in addition to a
more pronounced inflammatory phenotype. Le Chatelier Fu et al.
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(84) and Fu et al. (87) reported that gut microbiota richness
and diversity were negatively correlated with triglycerides and
positively correlated with HDL levels, however this effect was
independent of age, sex and host genetics. So far, genome-
wide mapping of the so-called microbiome quantitative trait
loci (mbQTLs) (88) in the context of CAD has not been
performed and is definitely next in line, ideally in conjunction
with comprehensive profiling of metabolome in several tissues
and body fluids in large enough cohorts.

INTEGRATING GENETIC VARIATION AND
MULTIPLE OMICS DATASETS

An integrative analysis of genetic variation and transcriptome
with additional high-throughput measurements may greatly
improve the predictive power of disease networks. Zhu et al.
(89) However, the number of studies conducting multi-omics
integrations in the context of CAD is limited so far. Miller et al.
(90) integrated genetic variation with investigations of chromatin
state, enhancer activity and TF binding in human coronary
artery smooth muscle cells and demonstrated, for example, that
one of the lead candidate variants, rs17293632, located within
an intergenic region of the SMAD3 gene, overlaps an open
chromatin region. Moreover, it was observed that the major risk
C allele was more associated with open chromatin and resided in
a canonical AP-1 motif, which was effectively destroyed by the
minor protective T allele. Preferential AP-1 binding to the risk
C allele was experimentally validated using allele-specific ChIP
analyses. Miller et al. (90) and Kraus et al. (42) performed a
pathway-level integrative analyses, linking genetics, epigenetics,
transcriptomics, and metabolomics profiles and implicating
the ubiquitin proteasome system in cardiovascular disease
pathogenesis. This study observed associations of circulating
short-chain dicarboxylacylcarnitine (SCDA) with variants in
ER stress genes, whereof several genetic variants (Table 1 and
Figure 8) in FBXO25 and SUGT1 genes also demonstrated
evidence of cis-regulation in expression quantitative trait loci
(eQTL) analyses and independently predicted CAD events
(42). Moreover, two other genes from the same ER stress
pathway—BRSK2 and HOOK2—were identified as differentially
methylated, when comparing individuals with high and low
SCDA levels. Subsequently, experimental validation using culture
of human kidney cells in the presence of levels of fatty acids
found in individuals with cardiometabolic disease, demonstrated
induced accumulation of SCDA metabolites in parallel with
increases in the ER stress marker BiP (42).

Shu et al. (20) investigated shared genetic regulatory
networks for CAD and type 2 diabetes (T2D) and their key
intervening drivers in multiple populations of diverse ethnicities
by performing an integrative analysis of five multi-ethnic
GWAS for CAD and T2D, eQTLs, ENCODE, as well as tissue-
specific gene network models (both co-expression and graphical
models) from disease-relevant tissues. This study identified
pathways regulating the metabolism of lipids, glucose and
branched-chain amino acids, as well as pathways governing
oxidation, extracellular matrix and immune response as shared

pathogenic processes for both diseases and identified 15 key
drivers including HMGCR, CAV1, IGF1, and PCOLCE, whose
network neighbors collectively accounted for ∼35% of known
GWAS hits for CAD and 22% for T2D (20). Laurila et al.
(43) applied a combined approach using both QTLs and
canonical pathway analysis to link genomics and transcriptome
analysis from the subcutaneous adipose tissue and plasma HDL
lipidomics profiling, highlighting change in HDL particle quality
toward putatively more inflammatory and less atheroprotective
phenotype in subjects with low HDL, due to their reduced
antioxidative capacity. Within the HLA region, this study found
two significant, dose-dependent cis-eQTL associations with low
HDL and inflammatory pathways: rs241437 in the intron of
TAP2 and rs9272143 between HLA-DRB1 and HLA-DQA1, the
latter also being associated with down-regulation of antioxidative
pathways in HDL particles (43).

The application of multi-omics integrations in the field of
CAD has so far been limited (22). Obviously, one of the main
reasons for this is the current lack of appropriate data in
large enough cohorts. However, considering the great promise
such studies hold for precision medicine, it is expected that
parallel measurements on multiple omics layers will be rapidly
collected during the next couple of years, allowing also a
comprehensive comparison, validation and improvement of the
existing computational integration methods.

MITOCHONDRIAL GENETIC VARIATION
AND DOWNSTREAM OMICS DATASETS

Dysfunction of mitochondria has been increasingly associated
with obesity-related cardiometabolic diseases and CAD (91).
Thus, genetic variation in the mitochondrial DNA (mtDNA),
which codes for the 37 OXPHOS genes as well as further >1000
nuclear-coded genes imported into mitochondria constituting
essential components for their proper functioning, needs
exploration for a better understanding of CAD genetics.
The mitochondrial haplogroup T (45) and mtDNA variants
m.16189T>C (46) and m.15927G>A (47) have been associated
with CAD in different ethnic groups. Another mitochondrial
variant, m.8701A>G, has been associated with hypertension (44).
This variant is located in MT-ATP6 (ATP synthase/complex V
F0 subunit 6) gene, which is part of the ATP synthase enzyme,
responsible for the final step of oxidative phosphorylation, and,
on the functional level, using transmitochondrial hybrid cells
(cybrids), it has been shown that it alters mitochondrial matrix
pH and intracellular calcium dynamics (Figure 9) (92).

Similarly, other mitochondria-related omics data
investigations could be of interest in the context of CAD, as
Baccarelli et al. (93) reported that ATP synthesis genes including
protein-encoding cytochrome c oxidase genes (MT-CO1, MT-
CO2, and MT-CO3) and MT-TL1 were hypermethylated in
platelets of CAD cases as compared to healthy controls (93).
Using eQTLs in seven CAD relevant vascular and metabolic
tissues (53) in conjunction with established CAD risk loci from
GWAS (9) and time-resolved transcriptome data in the aortic
arch in mice with reversible hypercholesterolemia (94, 95) we
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FIGURE 9 | Mitochondrial variant m.8701A>G is located in MT-ATP6 (ATP

synthase/complex V F0 subunit 6) gene, which is part of the ATP synthase

enzyme, responsible for the final step of oxidative phosphorylation and has

been associated with hypertension. (44) On the functional level, using

transmitochondrial hybrid cells (cybrids), it has been shown that it alters

mitochondrial matrix pH and intracellular calcium dynamics (92).

recently demonstrated a massive down-regulation of nuclear-
encoded mitochondrial genes (96), specifically at the time of
rapid atherosclerotic lesion expansion and foam cell formation,
which was largely reversible by genetically lowering plasma
cholesterol. Both mitochondrial signature genes were supported
as causal for CAD in humans, as eQTLs representing their genes
significantly overlapped with disease risk SNPs. In line with
this, the STARNET (28) study recently examined mitochondrial
(i.e., mtDNA-derived) gene expression and a markedly lower
expression of mitochondrial genes in the atherosclerotic aortic
arterial wall as compared to non-atherosclerotic arterial wall.

Furthermore, genetic variation of mitochondrial metabolome
has remained largely unexplored. Hartiala et al. (41) searched
for genetic factors associated with plasma betaine levels
and determined their effect on CAD risk. This resulted
in the identification of two significantly associated loci on
chromosomes 2q34 and 5q14.1. The lead variant on 2q24—
rs715—localized to carbamoyl-phosphate synthase 1 (CPS1),
which encodes a mitochondrial enzyme that catalyzes the first
committed reaction and rate-limiting step in the urea cycle.
Rs715 was also significantly associated with decreased levels
of urea cycle metabolites and increased plasma glycine levels.
Finally, rs715 yielded a strikingly significant and protective
association with decreased risk of CAD in women (41).

Finally, in recent years, it has become increasingly evident
that the gut microbiome produces metabolites that influence

mitochondrial function and biogenesis (97), hence the ancestral
gut microbiome-mitochondrion connection and its relation to
CAD might need to be explored in the near future, as well.

Resent progress in next-generation sequencing (NGS)
techniques has set a scene for a second “gold rush” in
mitochondrial genomics and mtDNAs are presently the
most sequenced type of eukaryotic chromosome (98). At the
same time, multi-omics investigations in mitochondria, mapping
the genomes, transcriptomes, proteomes, and metabolomes
in parallel, apart from yeast (99) have not been conducted
yet. Hence, although, mitochondrial dysfunction has been
associated with many human diseases, the respective proteins
and pathways are not well-characterized (99), presenting an
exciting future field of investigation, especially considering the
fact that mitochondria play a key role in plasticity and adaptation
to environmental change, including adaptation to physiological
stress (100).

CONCLUSIONS AND FUTURE
DIRECTIONS

Given that CAD like other common complex disorders develops
over time and involves both genetics and environment, full
mechanistic insight will require coordinated sets of several-
omics data at multiple time points, collected from many disease
relevant tissues and body fluids in large enough cohorts (20, 21).
Environmental risk factors can interact with the genome and
perturb the epigenome to further modulate the transcriptome
and proteome (20). Therefore, comprehensive monitoring and
careful documentation of multiple environmental and lifestyle
factors over time, i.e., the envirome, will be indispensable to yield
significant insights into the complex etiology of CAD. Moreover,
imaging and electronic health record data also will need to be
considered. As more-omics and other data are generated, novel
methods for efficient data integration, modeling, visualization
and interpretation will be urgently needed to efficiently cope
with this multi-dimensional data (101), and translate it into
actionable precision medicine tools. Although, there has been
major progresses in the development of multidimensional data
integration algorithms and tools, the field is still in its infancy and
the flexibility, effectiveness and robustness of data integration
to extract biological insights is still restricted, especially when
clinical outcomes (e.g., stable CAD vs. MI) need to be modeled
(22, 101). In addition we still face a number of technical
challenges related to patient sampling and profiling. For example,
as already recognized by Hasin et al. and others (20, 21)
human studies are often affected by various confounding factors,
which are difficult or even impossible to control for (e.g.,
diet and medications). Clearly, also the available sample size
will play an important role for the multi-omics approach to
produce meaningful insights into CAD (21) and allow the
generation of reliable prediction models for more efficient design
of therapeutics, tailored to individual needs. According to Hasin
et al. an underpowered study may not only miss true signals,
but is also more likely to produce false positive results (21).
Furthermore, already before and during data collection, careful
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attention has to be paid to data analysis requirements, e.g.,
sufficient depth of coverage for RNA-seq experiments (21).
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