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An emerging theory is that macrophages are heterogenous; an attribute that allows them

to change behavior and execute specific functions in disease processes. This review

aims to describe the current understanding on factors that govern their phenotypic

changes, and provide insights for intervention beyond managing classical risk factors.

Evidence suggests that metabolic reprogramming of macrophages triggers either a

pro-inflammatory, anti-inflammatory or pro-resolving behavior. Dynamic changes in

bioenergetics, metabolome or influence from bioactive lipids may promote resolution or

aggravation of inflammation. Direct cell-to-cell interactions with other immune cells can

also influencemacrophage activation. Both paracrine signaling and intercellular molecular

interactions either co-stimulate or co-inhibit activation of macrophages as well as their

paired immune cell collaborator. More pathways of activation can even be uncovered by

inspecting macrophages in the single cell level, since differential expression in key gene

regulators can be screened in higher resolution compared to conventional averaged gene

expression readouts. All these emerging macrophage activation mechanisms may be

further explored and consolidated by using approaches in network biology. Integrating

these insights can unravel novel and safer drug targets through better understanding of

the pro-inflammatory activation circuitry.
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INTRODUCTION

In the last few decades, accumulating evidence has supported modulation of inflammatory
signals, and regulation of immune cell to cell interactions in atherosclerosis are key therapeutic
strategies for atherothrombotic disease (1–3) The recent Canakinumab Antiinflammatory
Thrombosis Outcome Study (CANTOS) trial, involving over 10,000 patients, show conclusive
proof that reduction of inflammation, specifically targeting the interleukin-1β (IL-1β) pathway
activation, independent of LDL cholesterol lowering, can significantly lower coronary artery
disease (CAD) morbidity and mortality. Antagonizing the IL-1β signaling resulted in marked
reduction of plasma high-sensitivity C-reactive protein (hs-CRP) levels among patients
with elevated hs-CRP levels and history of myocardial infarction, which eventually led
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to decreased major adverse cardiac/CV events (MACE and
MACE+) (4) hs-CRP is a predictive marker of the severity
of atherosclerosis and extent of future cardiovascular events
(5, 6). Success of anti-inflammatory drug trials are reliant
on rigorous basic science research, integrating a plurality of
approaches. These include analyses of pathologic specimens,
tightly controlled in vitro experiments and extensive use of
pre-clinical small animal models to gather basic mechanistic
information about the disease. In the context of chronic
inflammation in cardiovascular disease, basic science research in
macrophage biology has undoubtedly been the guiding compass
for pursuing this anti-inflammation focus of atherosclerosis
therapy.

MACROPHAGE ACTIVATION IN VASCULAR
INFLAMMATORY DISEASE

Both acute and chronic forms of vascular inflammation are
typified by the multitude of vasculitides and atherothrombotic
pathologies. CAD, peripheral artery disease, vein graft
failure, and arterio-venous fistula failure have seen various
macrophage subtypes playing crucial roles. They either drive
disease progression or cessation, or promote vessel repair and
healing (7). Understanding the various phenotypes that allow
macrophages to be categorized into subclasses with stereotyped
behavior and function is crucial. This helps design strategies to
precisely modulate immune signaling in vascular inflammation
(1–3, 8). By limiting cellular subpopulations promoting plaque
development, intimal cell proliferation, and tissue damage may
be mitigated. This may also spare the subpopulation deemed
beneficial for achieving disease control and resolution to allow
return to homeostasis. In addition, understanding the profound
adaptability, and plasticity of macrophages is key to knowing
how to trigger phenotypic and functional changes within these
cells and how far they can be reprogrammed.

What we have learned from the past is that both in vitro
modeling of human and mouse primary macrophages
complemented by experiments on small animal models of
vascular disease have been important in elucidating mechanisms
of macrophage activation and their role in the progression of
the atherothrombotic lesions in CAD (9, 10). It is known that
majority of the release of matrix metalloproteinases, MMPs, in
human atherosclerotic plaques may derive from macrophages
and foam cells, and to a lesser extent from smooth muscle cells
(SMCs) and endothelial cells (ECs) (11). Excessive activation
of proteases in the lesion lead to increased degradation of
fibrillar collagen. This determines plaque integrity, leading
to friable and unstable lesions. This may also lead to adverse
remodeling prompting rupture and embolism of plaque debris,
often seen in plaques (12, 13). Our preclinical studies used
genetically-altered mouse strains to demonstrate that MMP-
collagenases, major macrophage products, indeed promote
the paucity of plaque collagen (14, 15). In vein grafts, MMP-
2 and MMP-9 may play important roles in degrading the
basement membrane which leads to enhanced infiltration of pro-
inflammatory monocyte and macrophage populations (16, 17).
These unstable plaque features are also most prominent among

CAD patients with elevated low density lipoprotein (LDL)
cholesterol levels (18), elevated lipoprotein (a) [Lp(a)] (19)
and other metabolic derangements, reiterating a close interplay
between inflammation and dysregulation of lipid handling
(and other metabolic syndromes). LDL modifications, LDL
cholesterol efflux and reverse cholesterol efflux all contribute to
how cholesterol crystals instigate initial stages of atherosclerosis.

The process begins with recruiting monocytes from the
circulating blood, followed by several processes including their
differentiation into macrophages, foam cell formation and
activation of the NOD-like receptor-pyrin domain (PYD)-
containing-3 (NLRP3) inflammasome complex. Cholesterol
crystals may cause phagolysosomal damage in macrophages
priming them to activate NLRP3. Activation of NF-κB induces
macrophages to produce pro-IL-1β and a pro-form of NLRP3.
Upon activation of NLRP3, activated caspase-1 cleaves the
pro-IL-1β releasing IL-1β, which amplifies the cascade of
inflammatory signals (20, 21) including IL-6, tumor necrosis
alpha (TNF-α) and pro-thrombotic initiators such as tissue
factor (coagulation factor III). Clinical relevance for this is
reflected in patients with typically high serum LDL cholesterol
levels having increased incidence and severity of CAD and
subsequent MACE sequelae. This paved way for the extensive use
of statins in aggressively lowering elevated LDL cholesterol levels.
Eventually, aggressive lipid lowering therapy indeed improved
survival rates, as well as MACE/MACE+ outcomes as shown in
clinical studies (22–25). However, certain patient populations did
not benefit much due to having a baseline coronary atheroma
predominantly dictating their prognosis (MACE) (26, 27). This
leads to the burgeoning field of statin related research focused on
elucidating mechanisms of statins that mitigate inflammation in
cardiovascular disease, independent of their cholesterol lowering
action.

For recalcitrant cases, LDL cholesterol levels can be further
lowered by increasing availability of hepatic clearance via
LDL receptors. Here, reduction of proprotein convertase
subtilisin/kexin type 9 (PCSK9) activity and circulating levels
have been quite effective, as seen in the success of drugs like
evolucumab (Repatha) (28) and alirocumab (Praluent) (21, 29).
Whether these inhibiting antibodies can reduce macrophage
activation in coronary lesions remains to be proven. Interestingly,
with successful reduction of LDL cholesterol levels in the at-risk
population, physicians have inevitably selected for and identified
a subpopulation of patients with considerable CAD morbidity
despite sufficiently lowered LDL cholesterol levels. Since then,
multiple points of evidence recognize inflammation, beyond
hyperlipidemia, as a key regulatory hub by which CAD risk
factors, co-morbid metabolic disease, and cardiovascular adverse
events intersect (5, 30).

MECHANISMS FOR MACROPHAGE
ACTIVATION

Traditional Thoughts on Macrophage
Inflammatory Pathways in CAD
For years, many thought of resting macrophages as being
activated in disease states into polarized subclasses that are
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diametrically opposed. Either they are “classically-activated”
or pro-inflammatory, designated as “M1” and “alternatively-
activated” or non/anti-inflammatory/pro-resolving “M2.”
However, with much utilization of techniques allowing for
multiple parametric assessments like single cell assays (FACS,
etc), -OMICs profiling, and networks medicine approach, a
more recent multi-dimensional model has emerged (31–35).
Unsurprisingly, many authors have shied away from the M1
and M2 designations. Our recent study used single cell gene
expression analysis to reveal that interferon gamma (INFγ)-
induced “classically-activated” human primary macrophages
remain largely heterogeneous, which is not consistent with a
traditional “polarization” theory (36).

Acknowledging that macrophage subclasses fall into a
spectrum of activation that is beyond bi-directional is the
currently accepted paradigm. However, it may be still helpful,
from a drug development and therapeutic research stand
point, to think of macrophages in CVD to be either pro-
inflammatory state(s) or any state(s) that is otherwise, most likely
either immunosuppressive or pro-resolving (2, 37), (Figure 1A)
because cause-effect relations are clear in these systems. So-called
M1 macrophages are the ones that generate pro-inflammatory
cytokines like TNF-α, inducible nitric oxide synthase (iNOS),
and IL-6 (38). INFγ or lipopolysaccharide (LPS) is used to
promote the pro-inflammatory phenotype in vitro (32) by
triggering toll-like receptor (TLR)4 signaling associated pathways
NF-κB, Notch, and INFγ/STAT-1. The NF-κB and NLRP3
inflammasome pathways are enhanced in pro-inflammatory
macrophages. As stated above, experiments in small animal
models reveal microscopic cholesterol crystals that activate the
NLRP3 inflammasome resulting in the secretion of interleukin
1 family of cytokines (20). In another pathway, Delta-like
4 ligand (Dll4)-triggered Notch signaling can activate the
NF-κB pathway to induce pro-inflammatory mediators such
as iNOS, IL-1β, and CCL2/MCP-1, while Dll4 suppression
reduce expression of pro-inflammatory factors of so-called M1
macrophages (8, 39–41). More recently, we demonstrated that
the interplay between ADP-rbosylation enzymes PARP9 and
PARP14 regulates the balance of pro- vs. anti-inflammatory
macrophages (36).

The loosely characterized anti-inflammatory or alternatively
activated type of macrophages (traditionally called M2-like cells)
is a general designation to refer to different subclasses that
generate molecules that either suppress activity of the M1-like
cells, initiate efferocytosis or promote resolution of inflammation
(31) (Figure 1A). In mouse models, unlike in humans, these
M2-like cells are identified with markers including arginase 1,
mannose receptor C type 1, Ym1 and Fizz1 (38, 42). Although
these markers do not identify M2-like macrophages in humans,
information gleaned from using these murine M2-like cells
may yield genes and proteins that are present and crucial in
human macrophages for controlling inflammation. To produce
M2-like phenotype in vitro, resting or activated macrophages
need to be stimulated with any of the following chemokines:
IL-4, IL-13, and IL-10, (42, 43) in contrast to the LPS or IFNγ

stimulated M1-like cells. To avoid confusion, recent guidelines
for macrophage subclass nomenclature propose to call these

in vitro stimulated cells M(LPS), M(IFNγ), M(IL-4) or M(IL-10)
(32).

IL-4 polarization of macrophages involve the Krüppel-like
factor-4 (KLF-4) pathway and the IL-4/STAT-6 pathway. Paucity
of KLF-4 in macrophages produce elevated expression of pro-
inflammatory genes iNOS,and TNFα (44). MCP-1-induced
protein (MCPIP) generated by KLF4 inhibits M1 activation.
Likewise, it also promotes an M2-like phenotype. Furthermore,
IL-4 triggered STAT6 induction promotes KLF4 expression,
which mediates M2 activation through MCPIP activity as stated
above (45). Peroxisome proliferator-activated receptors (PPARs)
are also considered to be promoters of an anti-inflammatory
phenotype (46). IL-4 and STAT-6mediate transcription of several
metabolism-related genes and regulators including PPARγ (47).
Furthermore, absence of PPARγ in macrophages fail to induce
oxidative metabolism and are also unable to exhibit M2-like
phenotype (48). Independent from IL-4, IL-10 has recently
been identified to promote mitochondrial fitness during pro-
inflammatory activation of macrophages by mitigating the
mitochondrial damage caused by reactive oxygen species (ROS)
after iNOS activation, essentially paving the way for control, and
resolution of inflammation (43).

Position along the macrophage phenotype/activation
spectrum may simply be a function of the balance or imbalance
of pro-inflammatory vs. anti-inflammatory factors present in
every macrophage. Macrophages modeled in vitro are inherently
heterogenous (Figure 1B). This means that although most of
every single macrophage may be sitting at or near the extremes
of the M1/M2 spectrum, some will remain near or at the
median of the spectrum. The state of activation for groups of
macrophages accumulating in local areas of the chronically
inflamed tissue may be a function of the combined effect of
the activation states of each macrophage single cell state. It
is tempting to simplify that attenuating any and all M1-like
macrophage populations will attenuate inflammatory burden.
Disease state can therefore be reverted back to homeostasis.
However, reducing pro-inflammatory activation without
balancing the pro-resolving macrophage population and/or
leaving a “patrolling” subpopulation might foreseeably lead to a
more vulnerable immune system (8). That is why aggressive anti-
inflammatory therapy targeting only macrophage accumulation
and activation may increase incidence of severe infections.
Calibrating the overall balance may lead to the development of
efficient and safe therapies with minimal risk for unfavorable
immunologic consequences. For example, inhibiting a specific
signaling mechanism such as the Dll4-Notch pathway may
suppress damaging macrophage products while promoting
protective factors (39–41, 49).

Mechanisms Through Metabolic
Reprogramming
Glycolytic Energy Preference of the Activated

Macrophage
Evidence suggests that metabolic pathways are vital regulators
of macrophage activation (50). As early as 1963, researchers
recognized how metabolism affects monocyte and macrophage
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FIGURE 1 | Mechanisms of macrophage activation through deeper subpopulation profiling. (A) Conventional characterization of macrophages. Macrophages and

foam cells in atherosclerotic lesions comprise a mixture of phenotypes and different activation states. The balance of proinflammatory, and

anti-inflammatory/pro-resolving states may determine the fate of the plaque whether it will be stable or prone to rupture. The balance of inflammatory signaling

molecules, metabolic states and presence of SPMs, among others, may influence the level of macrophage activation in distinct local regions within the atherosclerotic

plaque. (B) Macrophage heterogeneity and expanded subclassification. The balance of factors within the macrophages may depend on the number and size of

subpopulations with distinct functional phenotypes as revealed by single cell analysis. One or more subset populations within a specifically activated macrophage

population and a disproportional balance of any one subset may drive the outcome of disease progression. Identifying the driver population(s) may be the key to

identifying regulators of the disease.

physiology. Based on experimental findings, alveolar
macrophages, and circulating monocytes tend to have better
physiologic function when energy is being fueled by aerobic
respiration. Moreover, the macrophages were noted as capable of
aerobic respiration in greater magnitudes than neutrophils and
monocytes, and that inhibiting part of oxidative phosphorylation
(OXPHOS) had a depressive impact on phagocytic activity (51).
Later, G.C Hard showed that peritoneal macrophages from
immune mice (activated) challenged by injecting a virulent
strain of C. ovis intraperitoneally, had higher production of lactic
acid compared to peritoneal macrophages from non-immune
mice (resting macrophages). It was not clearly distinguished
whether the peritoneal macrophages from the non-immune mice
were truly differentiated and not an admixture of macrophages
and patrolling monocytes in the peritoneal cavity. Still, his
findings are among the first to show enhanced glycolysis
through increases in lactate production along with decreased
O2 uptake in immune activated primary macrophages (52).
After more than a decade, experiments with thioglycolate-
elicited mouse peritoneal macrophages show surprisingly high
amounts of hexokinase, glucose-6-phosphate dehydrogenase

and 6-phosphogluconate dehydrogenase implying further
glycolytic induction in activated macrophages. In contrast,
resting macrophages from saline injected mice showed less than
10% activity of 6-phosphofructokinase, complementing the
prior observation that glycolytic rate is increased dramatically
during phagocytosis or increased secretory activity (53). These
early studies into macrophage metabolism research have
broaden an entire field for mining biological mechanisms
that allow us to appreciate immune activation as a reflection
of metabolic state. Pivotal insights on macrophage metabolic
reprograming came when it was reported that pro-inflammatory
type polarization of macrophages with either LPS or INFγ could
switch bioenergetic preferences of macrophages from OXPHOS
to the glycolytic route (54, 55), a phenomena many observed
to be reminiscent of the Warburg phenomenon happening
in cancer cells (56–58). Other evidence supporting this,
demonstrates that stimulation of TLRs by LPS increase PFKFB3
(6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3)
expression, resulting in an increase of the key glycolytic allosteric
regulator fructose 2,6-bisphosphate and a glycolytic flux
(59).
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Role of Metabolites in Classical Activation
of Macrophages
Afterwards, work done in the lab of Luke O’Neill showed how
metabolite key players in the glycolytic pathway, tri-carboxylic
acid cycle (TCA) and OXPHOS play important roles in
determining inflammatory activation states of immune cells like
macrophages (56). They confirm that LPS causes macrophages
to switch their core metabolism from OXPHOS to glycolysis.
Inhibiting glycolysis could also suppress LPS mediated IL-1β
secretion, albeit not TNFα, in mouse macrophages. While
LPS does decrease expression of mitochondrial genes, there
is a concomitant increase on levels of the TCA intermediate
succinate. Their findings show that succinate: (1) stabilizes
HIF-1α which support IL-1β release; (2) increases succinylation
of several proteins; and (3) reduces desuccinylation of Sirt5 (60),
a known epigenetic regulator of metabolism and inflammation.
This Warburg-like phenomenon in macrophages implicate
reprogramming at the epigenetic level through changing
levels of acetyl-CoA potentially affecting increased acetylation
and decreased deacetylations of histone proteins (61) Pro-
inflammatory macrophages also have increased glucose
transporter 1 (GLUT1) expression and availability to drive
glucose uptake. This causes both hyper inflammatory proteome
and transcriptome seen in RAW264.7 cells overexpressing
GLUT1, leading to elevated secretion of inflammatory mediators,
increase in reactive oxygen species (ROS) production and
oxidative stress intracellularly (62) LPS-stimulated TLR4
increases mammalian target of rapamycin (mTOR) signaling,
which induces the expression of lactate dehydrogenase and
hypoxia induced genes (63, 64). Both events shunt acetyl-CoA
away from TCA consumption. Moreover, this activation also
leads up to elevated levels of an isoform of PFKFB3 favoring
glycolysis (63–65).

Metabolic Changes in Anti-inflammatory
Type of Macrophages
On the other hand, anti-inflammatory conditioning of
macrophages have an opposite effect of promoting OXPHOS
while reducing preference for glycolysis (66). IL-4 for instance
promotes OXPHOS resulting in elevated oxygen consumption
rate (OCR) in RAW264.7 cells. Extracellular acidification
rate (ECAR), a measure of lactate production (anaerobic
glycolysis) is also lower compared to pro-inflammatory LPS
stimulated RAW264.7 cells (67). But as a caveat, LPS and/or
IFNγ-polarized macrophages may not repolarize into an anti-
inflammatory phenotype (IL-4 re-stimulation) if there is too
much mitochondrial dysfunction brought out by LPS-induced
hyper-glycolysis and nitric oxide production (68). This results
in inhibition of OXPHOS in the mitochondria (66). This also
prevents plasticity of LPS+IFNγ conditioned macrophages to
convert into an anti-inflammatory phenotype (66) underlying
the importance of OXPHOS in the resolution of inflammation
or the direction of macrophage activation. In this case of
proinflammatory macrophages resistant to phenotype switching,
IL-10 may be the key signaling molecule that may aid IL-4 and
accomplish the phenotype switch.

Arguably considered an anti-inflammatory chemokine, IL-10
could increase clearance of dysfunctional mitochondria through
mitophagy. IL-10 activates STAT3 signaling which in turn
activates DDIT4 transcription factor leading to inhibition of
the NLRP3 inflammasome activated mTORC1 pathway, thereby
releasing the restraint against autophagy. DDIT4 itself promotes
clearance of ROS-damagedmitochondria by mitophagy while IL-
10 maintains membrane gradient potential of mitochondria of
primary macrophage promoting organelle integrity and fitness
during macrophage activation. This allows for rapid resolution
of inflammation (43). All these changes in bioenergetics during
macrophage polarization may be accompanied by a changing
metabolome and specifically, a shift in the lipidome as well.

Lipidome Changes in Proinflammatory
Macrophages and the Pro-Resolving
Factors
E. Dennis’ group did important work on macrophage lipidomics
having contributed to the LIPID MAPS consortium to
develop quantitative methods for evaluating the composition,
biosynthesis, and function of all macrophage lipids. In one of
their findings, they identified endotoxin Kdo2-Lipid A (KLA,
a defined form of LPS) of E.coli activates macrophages via
TLR4 similar to “regular” LPS. Prostaglandin D2 (PGD2) is the
predominant eicosanoid produced after KLA—proinflammatory
stimulation of RAW264.7 cells (> 120 ng/106 cells), with
almost nil 11-HETE production in contrast. PGE2 and PGD2
increase in a dose dependent manner with both LPS and
KLA stimulation. PGE2 and PGD2 increase in a more potent
but similar fashion to TNFα chemokine after LPS or KLA
stimulation (69). Using RAW264.7 cells, their laboratory again
assessed mouse macrophage lipidome changes with KLA
treatment vs. drug perturbations like statins which are clinically
relevant as statins inhibit cholesterol biosynthesis pathway and
are able to reduce further inflammation in CAD of patients
with high LDL profile (70). KLA tended to increase almost all
categories of sphingolipid analyzed, cholesterol esters, and some
glycrophospholipids. Statins like mevastatin (or compactin),
a parent compound of pravastatin promote lipid changes
intracellularly in these macrophages. Expectedly, statins blocked
KLA induced increases in desmosterol and other components
of the sterol biosynthetic pathway yet had no effect on actual
intracellular cholesterol levels per se (71).

Still, there is more to uncover regarding metabolome
and lipidome changes during the phenotypic differentiation
by activated macrophages. With large metabolomic/lipidomic
datasets, a systems approach to analysis may be the key to
uncover comprehensive understanding of the dynamics of lipid
and non-lipid metabolite pathways in the macrophage. This
initial characterization in the mouse system is a first step to
finding desirable therapeutic targets (71). However, there is
still need to further elevate these studies to clinical relevance
by using human samples. To this end, Tabas et al. further
advanced the utility of mass-spectrometry lipidomic profiling
(6) for atherosclerosis therapeutics by demonstrating specialized
pro-resolving lipid mediators (SPMs) in atherosclerotic plaques.
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SPMs are generally essential fatty acids-derived autacoids (2)
They found that bioactive lipid derivative resolvin D1 (RvD1)
levels were low relative to pro-inflammatory lipid leukotriene
B4 (LTB4) in vulnerable plaques of the human carotid artery.
This was further confirmed in hyperlipidemic mouse models by
showing that administration of RvD1 increases plaque stability,
lowers oxidative stress and necrosis, and thickens fibrous caps.
Their findings support a–omics assisted mechanistic rationale for
SPM therapy in CAD to mitigate plaque vulnerability (37).

Another set of SPMs, the maresins which are studied
extensively by the Serhan group, are macrophage derived and are
produced via 14-lipoxygenation of docosahexaenoic acid (DHA)
that is either converted by enzymes into mediators with two-
OH groups or into autacoids that are peptide-lipid conjugates,
called maresin conjugates. These SPMs promote the uptake
and clearance of apoptotic cells by macrophages. Maresins also
regulate portions of tissue repair (2) therefore, resolution of the
inflammatory damage. SPMs can potentially influence switching
of macrophage function.

Macrophage Crosstalk With Other Immune
Cells
Not only are macrophages known for their plasticity, these
cells have the ability to influence and be influenced by other
immune cells like T cells that results in a similar macrophage
phenotype switching as above. The reciprocity of T cells and
macrophages through either paracrine signaling or molecular
interactions may dictate the direction of inflammation. It may
either drive well into a vicious cycle of unmitigated chronic
pro-inflammatory atherosclerotic events or toward inflammation
resolution (72). Several reports have already shown that these
macrophages communicate with other immune cells via specified
protein pairs on their cell surfaces. Pairs can be co-stimulatory or
co-inhibitory, whereby molecular interaction between these pairs
triggers downstream biomolecular cascades that may promote
or limit macrophage activation in atherosclerosis (73). Oncology
researchers took advantage of this T cell-macrophage crosstalk,
in order to combat cancer cells (74). Immunologists have coined
the term immune checkpoints to identify these pairs of proteins
that interact to either promote a pro-inflammatory activation or
an anti-inflammatory one (75).

One of these pairs of co-stimulatory proteins are CD40 and
CD40L (ligand) which are expressed in macrophages among
other cell types found in atherosclerotic vessels (76). Both
CD40 and CD40L are expressed highly in atherosclerotic lesions
(77) and plasma which may predict patients with features
of high-risk atherosclerotic lesions corroborated with MRI
(78). Abrogating CD40L activity effectively reduces release of
pro-inflammatory factors together with reducing activation of
macrophages by activated T cells in vivo using mouse models
of atherosclerosis. Deletion of either CD40 or CD40L has
atheroprotective effects by mitigating macrophage activation
(73). CD80/B7-1 and CD86/B7-2 are a pair of recognized M1-
like markers for macrophages are also expressed in dendritic cells
(DCs) in atherosclerotic plaques. They co-stimulate and bind to
CD28 on T cells, B cells, and other macrophages (79). CD80

and CD86 double deficiency in hyperlipidemic LDL receptor-
deficient (LDLr−/−) mice results in lesser atherosclerotic burden
(80) Other co-stimulatory immune checkpoint proteins found
in human atherosclerotic lesions and in pre-clinical models that
tend to skewmacrophages and DCs to the pro-inflammatory end
of the spectrum are: OX40-OX40L, CD137-CD137L, and CD30-
CD30L (81) Immune checkpoint and co-inhibitory proteins
PD-1 and PD-L1/2 inhibit T cell immune response resulting
in a beneficial atheroprotective effect. Stimulation of PD-L1
expression in vitro could attenuate the stimulatory ability on
allogeneic T cell proliferation and its cytokine production,
including IFNγ (82). Such effect, however, is detrimental to
immune clearance of tumor cells in cancer, hence the success of
the anti-PD-1 immunotherapy oncologic drug pembrolizumab
(83). CD27-CD70 is a another possible co-inhibitory pair
since CD27 paucity on mice models show markedly increased
atherosclerotic burden. In addition, CD27 is demonstrated
to be essential in maintain a healthy pool of regulatory T
cells (Tregs), preventing increased apoptosis of Tregs (84).
CD70 promotes macrophage function and viability, and is
important for effective efferocytosis and extrusion of oxLDL.
CD70 deficiency results in more advanced atheroma (85). These
are just a few of the immune checkpoints that affect macrophage
behavior. Other proteins include, though not limited to, CTLA-
4, ICOS-ICOSL, GITR-GITRL, and TIM (81). Other potential
macrophage checkpoints are CD47 and signal regulatory
protein alpha, SIRPα. In cancer, activation of SIRPα by CD47
on macrophages suppress both phagocytosis and respiratory
burst (74). Therefore, as expected in mouse atherosclerotic
models, blockade of CD47 exerts anti-atherosclerotic effects,
halting lesion progression and preventing plaque rupture
and restores phagocytosis/efferocytosis (86). A more recently
studied immune regulator is the V-domain containing Ig
Suppressor of T cell Activation (VISTA, aka PD-1H, DD1α;
gene name DIES1). VISTA is both a receptor and a ligand
with immunosuppressive effects on IFNγ, and TNFα with
T cells and macrophages (74). In fact, majority of VISTA+
macrophages have the anti-inflammatory M2-like phenotype
(87). Other proteins that can potentially act as immune
checkpoints by control macrophage behavior via T cell and other
immune cell 2-way interaction include: T cell immunoglobulin
and ITIM domain (TIGIT) and indoleamine-2,3-dioxygenase
(IDO). More studies are, however, required to clarify their
roles in the macrophage inflammatory phenotype spectrum
(74).

A summary comparison of these biomolecular signatures of
atherosclerosis, as evidenced by findings in studies of mouse vs.
human macrophages is enumerated in Table 1.

Macrophage Heterogeneity in
Atherosclerosis
Advances in single cell analysis provided insights of how
heterogenous human primary macrophages are. Single cell
qPCR reveals how heterogenous resting macrophages, M0
or M(-), are. Yet after a pro-inflammatory polarization
by IFNγ activation, M(IFNγ) macrophages even have a
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TABLE 1 | Comparison of the effects of some biomolecular markers of macrophage activation as seen in mouse in vitro & pre-clinical models of atherosclerosis vs.

human atherosclerosis (including in vitro studies).

Biomolecular markers of

macrophage activation

Effect on pro-inflammatory

activation of macrophages

(+/- mouse models of

atherosclerosis)

References Effect on pro-inflammatory

activation of

macrophages/expression in

plaques of clinical atherosclerosis

References

NLRP3 inflammasome

Cholesterol crystals

↑ (20) ↑ (88)

IL-1β ↑ (20, 89) ↑ (4)

IL-6, TNF-α ↑ (38) ↑ (90, 91)

TLR2/TLR4 ↑ (92, 93) ↑ (94)

iNOS ↑ (95) ↑ (96, 97)

INFγ/STAT1 signaling ↑ (36) ↑ (98)

CCL2/MCP1 ↑ (38) ↑ (99, 100)

IL-4, IL-13 signaling ↓ (42) ? (101)

IL-10 signaling ↓ (43) ↓ (102)

Dll4/Notch1 signaling ↑ (38, 41, 103) ↑ (39)

Ym1 ↓ (104) No correlation (105)

Fizz1 ↓ (104) ↑ ? (106) (107)

PPAR-α/-γ ↓ (46) ↓ (predicted for PPAR-α)? (108)

CD40 –CD40L ↑ (109) ↑ (76)

CD80-CD86 ↑ (80) ↑ (in vitro, DC only) (110)

OX40-OX40L ↑ (103) (111)

CD137-CD137L ↑ (112) ↑ (monocytes) (113)

CD30-CD30L ↑ (CD30L only in LPS-RAW264.7

cells)

(114) ↑ (CD30) (81, 115)

PD1-PD-L1/2 ↓ by PD1 (Chen)/

↑ by PD-L1/2 (Gotsman)

(116) (117) ↓ (myeloid DC) (82)

CD27-CD70 ↓ (CD70) (84) ? No definitive

consensus

Hyperglycolysis ↑ (56) ↑ (118)

GLUT1 ↑ (119) ↑ (in vitro only) (120)

OXPHOS ↓ (56) ? No evidence

Citrate ↑ (56) ? No evidence

Succinate ↑ (60) ? No evidence

Itaconate ↑ (56) ? No evidence

Prostaglandin D2 ↑ (69) ↑ (121)

Prostaglandin E2 ↑ (69) ↑ (122)

Resolvins ↓ (1, 37, 123) ↓ (124)

Maresins ↓ (123) ↓ (125)

DC, dendritic cells; OXPHOS, oxidative phosphorylation pathway.

further heterogenous response showing subpopulations that
are more responsive to pro-inflammatory signals, even as
some populations remain resistant and reticent, maintaining an
unstimulated phenotype (35, 36). As cited earlier, identifying
these macrophages and contrasting them vs. the highly
responsive ones may help filter out by enrichment of key
regulatory genes. These genes may promote phenotype switching
thereby unraveling them to be desirable therapeutic targets.
These targets or pathways may be otherwise hidden when
examining an average transcriptomic readout from “bulk”
macrophage populations processed from conventional qPCR or
mRNAseq assays instead of the high resolution readouts of single
cell analysis.

FUTURE PERSPECTIVES: NEW
PARADIGMS OF DISCOVERY SCIENCE
AND DRUG DEVELOPMENT IN VASCULAR
INFLAMMATION

With the multitude of mechanistic perspectives that make up

the macrophage behavior in atherosclerosis, there are many

aspects to consider when designing effective therapies with the

highest potential of leaping from the laboratory bench to clinical
translation. Consolidating these various angles intelligently, in

order to arrive at a viable drug target in the fastest possible

way, is an attractive goal for the medical science community.
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FIGURE 2 | Comparison of tradional drug development vs. proposed integrated drug discovery research (A) The conventional model of drug development Target

discovery and validation studies are often done by academic researchers who usually have insufficient expertise and resources to conduct such studies resulting years

of development. After characterizing a potential drug target, many academic investigators struggle to translate their finding into the pharmaceutical space due to a

natural disconnect between academia and industry. In rare instances, academic investigators may manage to cross the roadblock and transfer their breakthroughs to

industry, followed by a lengthy process of drug design, compound testing and animal studies before the drug will be considered for human studies. (B) A new

paradigm for drug development Left) A fully integrated drug discovery research in our laboratory involves close collaboration between academic and pharmaceutical

industry scientists. Right) Use of multi-omics approach to disease characterization with systems approach analysis for faster target discovery and prioritization and

drug design. A right panel was reproduced from Iwata et al. (36). Trans-OMICs: genomics, transcriptomics, proteomics, epigenomics, metabolomics, lipidomics, etc.

However, due to limited resources, insufficient funding, and
lack of expertise, many academic investigators may fail to
develop and deliver their target discovery beyond the laboratory
space (126, 127). Despite the evident strengths of pharmaceutical
industry in drug development, its recent tendency to avoid
investing in early, high-risk projects appears to have enhanced
this gap in translation of academic target discovery into
the clinic (128, 129). These roadblocks often pre-maturely
remove the possibility of an otherwise promising target from
being transferred to pharmaceutical development and eventually
becoming a novel, even first-in-class, drug. (Figure 2A). Arriving
at the most cost effective strategy for pharmaceutical translation
requires a balancing act of carefully prioritizing the targets
discovered with very rational and discreet management of

resources for target(s) validation while still within the hands of
the academic researcher (130).

Close collaboration between academia and industry will foster
faster exchange of expertise and resources that could lead
to mutually beneficial research outputs (130, 131). In such a
model established in our laboratory (Figure 2B, left panel),
drug development is facilitated when effectively combining
the exploratory nature of innovative academic research and
the extensive expertise in drug design and the rigor and
resource intensive validation from pharmaceutical industry.
Much advancement in computational biology and networks
medicine, as well as steadily declining costs and time required
for—omics experiments and single cell experiments also help
to speed the transition of academic target discovery into
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drug development. It is easier now to consolidate various
biological mechanisms that define macrophage activation,
and use an intergrated approach to arrive at viable targets
in a more comprehensive and unbiased manner. A typical
workflow of target discovery research in our laboratory
is demonstrated in Figure 2B (right panel). We expect that
paired with an ever-expanding knowledge base and expertise
in performing these–omics experiments, as well as use of
machine learning approaches, a more solid understanding
of pathways that drive macrophage activation will emerge.
Novel pathways of activation may be uncovered when we
actively use network science to incorporate comprehensive
readouts from–omics and single cell experiments. With all
these innovative large-scale approaches in biological research
and data analyses, pairing with synergistic efforts from
academic and industry scientists and cell and computational
biologists, more effective and better defined drugs may arrive
to the market sooner. Better understanding of biological

mechanisms for macrophage activation and heterogeneity
through big data, particularly of clinical samples, and integrated
analysis, may also lead to safer drugs that target specific
subsets of populations as opposed to a more generalized
approach.
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