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Cardiovascular disease (CVD), despite the advances of the medical field, remains one

of the leading causes of mortality worldwide. Discovering novel treatments based on

cell therapy or drugs is critical, and induced pluripotent stem cells (iPS Cells) technology

has made it possible to design extensive disease-specific in vitro models. Elucidating

the differentiation process challenged our previous knowledge of cell plasticity and

capabilities and allows the concept of cell reprogramming technology to be established,

which has inspired the creation of both in vitro and in vivo techniques. Patient-specific

cell lines provide the opportunity of studying their pathophysiology in vitro, which can

lead to novel drug development. At the same time, in vivo models have been designed

where in situ transdifferentiation of cell populations into cardiomyocytes or endothelial

cells (ECs) give hope toward effective cell therapies. Unfortunately, the efficiency as well

as the concerns about the safety of all these methods make it exceedingly difficult to

pass to the clinical trial phase. It is our opinion that creating an ex vivo model out of

patient-specific cells will be one of the most important goals in the future to help surpass

all these hindrances. Thus, in this review we aim to present the current state of research

in reprogramming toward the cardiovascular system’s regeneration, and showcase how

the development and study of a multicellular 3D ex vivo model will improve our fighting

chances.

Keywords: reprogramming, vascular cells, regeneration, cardiovascular system, induced pluripotent stem cells

(iPS Cells)

INTRODUCTION

The cardiovascular or circulatory system (CVS) consists of the heart, the blood vessels and almost
5 l of blood that continuously gets pumped throughout the body transferring everything that
is needed to maintain homeostasis of nutrients, wastes and gases. A severely damaged CVS is
incompatible with life making its successful treatment, especially at an early stage, crucial as each
year passes. When one or more of its components are malfunctioning the end-result is complicated
diseases—some of them extremely difficult to diagnose.

Stem cell technology represents a big hope for treating unmet clinical needs, including in
the context of cardiovascular disease. The ability to self-renew indefinitely and to differentiate
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in all the three germ layers makes them an attractive candidate
both for drug development and personalized cell therapies.
Using a variety of source cells, we can now generate endothelial
cells (ECs), cardiomyocytes (CMs), vascular smooth muscle cells
(VSMCs), and pericytes (PCs) or even progenitor cells to be used
for transplantation and to create engineered organs. At the same
time, we are able to further study developmental vasculogenesis
and angiogenesis in vitro and identify possible mechanisms of
pathogenesis by comparing models created by patient cells.

Not to be carried away, we note the limitations and challenges
currently present in the use of the ESC—and iPS—derived
cell lines both in vitro and in vivo. Issues with tumorigenesis
are present with the vast majority of the cell lines due to
the genetic stability of the clones. All iPS cell lines are
genetically screened and subsequently characterized in vivo
with tumorigenesis assays with the successful establishment
giving a positive result; in contrast, the iPS-derived cell lines
ought to present a negative result. Still, the high levels of
proliferation of the cells in their early passages cause concerns
when it comes to their clinical application; it is worth
mentioning that Mandai et al—who just last year were the
first to succeed in transplanting a sheet of retinal pigment
epithelial (RPE) cells differentiated from iPS Cells in a patient
with neovascular age-related macular degeneration—excluded
their second patient due to detecting copy-number alterations
in the iPS Cells they derived from them (1). Similarly, the
high variability between different lines in respect to both
maturity and subtype needs to be addressed. It is well-
established that iPS Cells carry the identical genetic anomalies
related to the source donor—a fact which makes them ideal
for disease modeling. Several types of CVDs have already
been modeled including: Hypertrophic cardiomyopathy (HCM),
Dilated cardiomyopathy (DCM), Barth syndrome (BTHS),
Long-QT (LQT), Catecholaminergic polymorphic ventricular
tachycardia (CPVT) and Arrhythmogenic right ventricular
cardiomyopathy (ARVC) but, as it will be discussed further
on, the models are incomplete (2–4). To address these
problematics in the last few years, teams from all over the
world come up with new ideas every day: genetic manipulation
using the CRISPR/Cas9 technology, direct reprogramming of
somatic cells bypassing the pluripotent state, creation of small
molecule cocktails for in situ direct reprogramming of local cell
populations to name a few.

In this review, we discuss what the current state of the stem
cell field is and how close or far away we are from designing
a potential strategy for clinical cardiovascular therapies that
combines successfully a multicellular model.

PLURIPOTENCY REPROGRAMING

In 1981, Evans, Kaufman and Martin reported the establishment
of the first mouse embryonic stem cells (ESCs) in culture
(5, 6), even though it took 17 years until Thompson et al.
developed the first human ESCs lines in 1998 (7). Being able
to study the differentiation of cells in vitro creates, for the
first time, the opportunity to extensively look at the underlying

mechanisms, as well as the opportunity to develop new and
advanced treatments.

During those decades it was universally acknowledged that
specialized cells reach a point when they cannot differentiate or
de-differentiate any more making the process terminal. In 1987,
Davis et al. transfected fibroblasts with the cDNA of MyoD and
it gave rise to a population of myocytes (8). That was the first
challenge of the irreversibility of differentiation and 19 years
later the field of stem cells was revolutionized by Yamanaka,
Takahashi et al. with the establishment of the first mouse (9)
and human (10) induced pluripotent stem cells (iPS Cells) in
2006 and 2007, respectively. Subsequently, the iPS Cells were
incorporated into high quality research with teams differentiating
them into neurons, cardiomyocytes, hepatocytes endothelial cells
etc. Strategies for furthering the field of personalized medicine
started developing as the clinical significance of patient specific
iPS cell lines is undeniable.

The original protocol developed by Yamanaka utilizing a
retroviral vector transduction of the four reprogramming factors
Oct4, Sox2, Klf4, and C-myc (OSKM) has been modified
since aiming to increases in efficiency of reprogrammed cells
and/or the generation of footprint-free iPS cell lines that lack
integration of any viral vector sequences into their genomes
(Figure 1). C-Myc as a known oncogene was substituted with
Wnt3 improving the efficiency of the generation of mouse iPS
Cells (miPS Cells) colonies (11). Another group reported the
addition of Lin28 and Nanog with the OSKLN derived iPS
Cells appearing similar to both Embryonic Stem Cells (ESCs)
and OSKM-derived iPS Cells (12). Other delivery methods
were also applied: Non integrating viruses like adenovirus (13)
and Sendai virus (14) were developed for the reprogramming
of human fibroblasts or blood cells into iPS Cells but the
efficiencies of the reprogramming were 0.0002 and ∼1%
respectively. Traditional molecular manipulation methods have
also been used successfully among them Cre/LoxP (15) and
piggyback (16, 17). Others have established mRNA (18), miRNA
(19–21), proteins (22), episomal plasmid transfections (12),
or minicircle vectors with a varied combination of genetic
modulation (23). Since the CRISPR/Cas9 technology was
established in eukaryotic cells (24, 25) steps were taken into
combining the two revolutionary technologies and creating
a new more versatile approach to the genetic editing of
human iPS Cells (26, 27). The ability to simultaneously
differentiate cells and genetically modify them—as first described
in Howden et al. (28)—raises hope for the disease remodeling
field.

Soon, it became apparent that even when following the
same protocol, both the efficiency of the reprogramming and
the stability varied between iPS cell lines, presenting quite a
challenge, especially with patient specific lines. The cause of
that variability is most probably due to the parental line or even
disease-specific mutations, therefore, making it clear that the
genetic background is crucial to the differentiation potential of a
donor-line; curiously surpassing even that of the source-specific
variation (29, 30). Large scale screenings and extensive study of
the pathways involved in pluripotency led to the discovery of
both different transcription factors (31–33) that can be combined
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FIGURE 1 | Schematic presentation of iPS Cells generation. Somatic cells (fibroblasts, peripheral blood cells etc) can be isolated from healthy donors and patients

and be directly reprogrammed into iPS Cells by the ectopic expression of transcription factors via retro-/lenti-/adeno/Sendai viral transduction. Most commonly used

are the combinations of OSKM, OSKNL, OSKL, and TSK. Other strategies involved episomal plasmids (OSLN), mRNAs (OSKML), miRNAs (variety from cluster 200s,

300s, 367/9s), proteins and small molecules including histone modifiers, metabolic modulators, and signaling pathway inhibitors. O, Oct4; S, Sox2; K, Klf4; C, c-Myc;

N, NANOG; L, Lin28; T, TET1.

and also small molecules that enhance the reprogramming
efficiency (34). Epigenetic modifiers like inhibition of
histone demethylation (35), inhibition of transforming
growth factor-β (TGF-β), MEK and ROCK signaling
pathways as well as metabolic modulation and induction of
glycolysis (36) were shown to improve the iPS Cells induction
(Table 1).

No one can deny that the establishment of patient specific iPS
Cells technology gives breath to novel ideas for drug discovery
by making in vitro screening of side effects as well as new drug
development. The question is; is this enough? In respect to the
cardiovascular field, as it will be further discussed, the answer is
edging toward no.

CARDIOMYOCYTE REPROGRAMMING

Adult CMs have a very low regenerative ability, mainly coming
from the differentiation of cardiac progenitor cells instead
of the replacement of the damaged ones via cell division as
it was showcased in genetic-fate mapping projects in 2007
(41, 42). Extensive damage leads to scar formation from the
activated fibroblasts causing cardiac remodeling and heart
failure (HF). Heart transplantation which has been the standard
treatment for patients with end-stage HF is still plagued by
several issues such as donor shortage, major post-surgery
complications such as stroke, bleeding and infection due to
chronic immunosuppression (43). The question, as a result,
remains. Howwould we be able to overcome these and regenerate
the heart?

The last decade or so, several potential strategies based on
stem cells and cell reprogramming have been proposed as an

answer to that question. Cell transplantation of ESCs—or iPS
Cells-derived CMs (iPS Cells-CMs) is a very promising tool for
“remusculising” a failing heart, as showcased in several studies
both in small rodents and in non-human primates (44, 45).
Alternately, generation of CMs from endogenous sources in situ
through differentiation of resident cardiac progenitors or the
transdifferentiation of local populations like cardiac fibroblasts
or pericytes (46, 47) is another promising approach. Last but
not least, cardiac tissue engineering has been evolving rapidly
in parallel trying to create fully functional 3-dimensional (3D)
biometric constructs from cells derived from iPS to replace the
damaged myocardium (48, 49).

Cardiac cells were some of the first cells that were derived from
mouse ESCs back in 1985 (50) and subsequently, with the road to
pluripotency open, multiple teams in the last decade have been
able to differentiate iPS Cells into cardiac progenitors and CMs.
The first murine iPS Cells-CMs were derived in 2008 by three
groups using the embryonic bodies (EBs) method. Specifically,
Mauritz et al. compared the differentiation of an established ESC
line and that of an iPSC line toward CMs and they reported a
successful conversion, albeit with a much lower efficiency (51).
Schenke-Layland et al. exposed EBs to collagen type IV (CollV)
and selected Fetal Liver Kinase+ (Flk+) cells through magnetic
separation, which, in turn, were differentiated into functional
CMs, SMCs, ECs, and hematopoietic cells (52). Narazaki et al.
also, modified their protocol and cultured their Flk+ cells on OP9
stroma cells inducing self-beating CMs (53). For human cells,
the first iPS Cells-CMs were reported by Zhang et al. in 2009
when they used OSK and Lin28 to generate iPS Cells and then
differentiated them using the EB method (54). Many techniques
have been described since, and the cells generated have all the
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TABLE 1 | Small molecules that enhance iPS Cells generation.

Small molecule Process affected Combination with

other

methods

References

Valproic acid (VPA) Histone deacetylase inhibition OS (35)

SB431542 + PD0325901 TGFβ- and MEK inhibition OSKM (37)

SB431542 + PD0325901 + thiazovivin TGFβ- and MEK and ROCK inhibition OSKM (37)

A-83-01 + PD TGFβ-inhibition O (38)

NaB + PS48 TGFβ-inhibition Histone deacetylase inhibition OSKM (39)

PS48 PI3K/Akt activation OSKM (39)

Vitamin C Enhances epigenetic modifiers, promotes survival

by antioxidant effects

OSKM (40)

O, Oct4; S, Sox2; K, Klf4; C, c-Myc.

advantages that come by that type of differentiation: they can be
patient-specific and compatible, making them ideal candidates
both for disease study, remodeling and cell therapy (55). Apart
from the EBmethod, differentiation in a monolayer has also been
described with high efficiencies by multiple groups. The last 5
years iPS Cells-CMs in varied stages of maturity are produced in
larger scales with the help of bioreactors. The murine myocardial
infraction model (56) has been used widely to confirm the
derived cells’ capability of heart tissue regeneration and reduction
of scarring. As the technology evolved, rodent models were
gradually replaced by non-human primates (44) and pigs (57),
and in 2015 Menasché et al. reported the first human ESC-
derived cardiac progenitors transplant to patients with advanced
ischemic heart failure (58, 59). Even though complications like
ventricular arrhythmias may occur post-transplant, their success
is considerable. So if we take into consideration the similarities
between ESCs and iPS Cells, the baseline of a patient-specific
robust cell therapy strategy is set.

In parallel, the concept of transdifferentiating cardiac
fibroblasts or other non-myocytes that localize in the heart
tissue into CMs also attracts a lot of attention. The first
attempts to reprogram cells in vivo started in 2009, when
Takeuchi and Bruneau demonstrated that overexpression of
Gata4, Tbx5, and the interacting chromatin remodeling protein,
Baf60c, converts non-cardiogenic mesoderm into beating CMs
in the embryo by a mechanism involving the induction of
Nkx2-5 by Gata4 and Baf60c (60). The exogenous production
of CMs was revolutionized a year later when Ieda et al.
reported the discovery of a 3-factor cocktail, Gata4, Mef2c,
and Tbx5 (GMT), successfully reprogramming murine cardiac
fibroblasts (mCFs) into induced CM-like cells in vitro (61).
Shortly thereafter, three independent studies proved that the non-
myocyte pool in the adult mouse heart consisting mainly of CFs
can be transdifferentiated in vivo via injecting directly the GMT
cocktail into the mouse heart with (GMHT) or without Hand2,
and reprogram in vivo CFs into adult induced-CMs (62–64).
This resulted in the regeneration of the myocardium and the
improvement of cardiac function.

Unfortunately, the low efficiency of most of the in vitro
reprogramming protocols—especially when using human cells—
as well as concerns for the integration of viral DNA into the

host, paved the way of constant modifications, additions and
alternations in the GMHT protocol (65). Transcription factors
were added (66–68), replaced (69–71), supplemented with small
molecules (67, 72) and miRNAs (73) and finally omitted in
favor of miRNAs (74), which do not incorporate into the host
chromosome, presenting a much safer future clinical application.
More recently, Huang et al. proposed a chemically-induced
reprogramming in vivo with the combination of CHIR99021;
RepSox; Forskolin; VPA; Parnate; TTNPB and Rolipram,
successfully inducing CMs from CFs in adult mice and resulting
into a reduction of the fibrotic tissue after myocardial infraction
(75) (Figure 2). The mechanisms surrounding reprogramming
are still left to be elucidated but all these changes contribute little
by little to increasing our understanding and, as will be discussed
later, to the design of a strategy to combat CVD.

ENDOTHELIAL CELL REPROGRAMMING

The vascular endothelium controls vascular function and
structure, mainly via nitric oxide (NO) production and play a
pivotal role in the CVS. EC dysfunction is attributed to be the
cause of severe complications, many times proven to be fatal.
As the years pass, a growing list of pathological conditions and
diseases including hypertension, hypercholesterolemia, diabetes
mellitus, congestive heart failure, hyperhomocysteinemia, and
even the aging process itself, are associated with EC dysfunction
(76).

Differentiation of ECs is governed by several factors, including
the immediatemicroenvironment, interactions with surrounding
cells, and the local release of cytokines and growth factors.
In the early stages of embryonic development, angiogenesis
occurs through the expansion of the vascular plexus with vessel
sprouting. The primitive vascular plexus remodels into a highly
organized vascular network in which larger vessels ramify into
smaller ones and become surrounded by mural cells, which
stabilize the newly formed vessels and provide strength to control
blood flow and blood pressure (77). In adults with pathological
conditions such as cancer or ischemia, or even wound healing,
the ECs have the ability to reactivate the angiogenic process
making them invaluable for survival.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 August 2018 | Volume 5 | Article 109

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tsifaki et al. Reprogramming the Cardiovascular System

FIGURE 2 | Schematic representation of examples of direct in vitro reprogramming to cardiomyocytes. CMs were one of the first cell lines to be transdifferentiated

from mouse and human fibroblasts. The low efficiency of the original GMT protocol especially in human cells was addressed by modifications and addition of more

lineage specific factors. Safety concerns were addressed by incorporating new techniques like delivery of miRNA and episomal plasmids coding specific TFs. Small

molecules are also widely used with the addition of cytokines and TGFβ inhibition enhancing the final populations and giving rise to robust protocols. G, Gata4; M,

Mef2c; T, Tbx5; H, Hand2.

ESC-derived ECs were one of the first to be developed after the
establishment of the first colonies with the traditional methods:
formation of EBs from the mesoderm germ layer, from which
both hematopoietic cells and ECs emerge, and their subsequent
exposure to a variety of growth factors, which enhances their
differentiation inside the EBs (78, 79). Two-dimensional (2D)
cultures under feeder or feeder-free conditions are also very
popular and, even though the efficiencies leave something to
be desired, advances in the phenotypic stability are being made
every day. ESCs gave their place to iPS Cells while linage specific
additions to the OSKM factors gave rise to a variety of protocols
generating EC progenitors or mature ECs. Especially in the case
of endothelial progenitor cells (EPCs), despite the invaluable
therapeutic potential they present, the many subtypes that exist
create a tricky unit to work with (80–82). A similar challenge
is presented with the more mature ECs with different subtypes
presenting differences in proliferation and functionality (83,
84). Cell sorting for endothelial progenitor markers like CD34,
CD105, Neurophilin1 (NRP1), Vascular Endothelial Growth
Factor Receptor 2 (VEGFR2), and PECAM1 (CD31) as well as
more mature ones such as VE-Cadherin (CD144) are used to
enhance the populations and ensure high purities of the target
population (Table 2). Severe limitations like the length of time it
takes in generating iPS Cells from the source cells and, in turn,
differentiating them into new cell types, challenged the scientific
groups. The idea of bypassing the pluripotency state and going
down the road of direct reprogramming through epigenetic and
linage-specific modulations was reported in 2012 by Margariti

et al. when the OSKM factors were transferred to human
fibroblasts for 4 days and generated a population of partial-
iPS which did not form tumors in vivo and then differentiated
them into functional ECs able to revascularize tissue engineered
vessels (89). Li et al. used only two of the Yamanaka factors—Oct4
and Klf4—to transdifferentiate human fibroblasts to endothelial-
like cells capable of expressing CD31, von Willebrand Factor
(vWF) and CD144 that were functional in vivo as well (90).
Wong et al. lays emphasis on the importance of epigenetics and
describes the potential of using miRNAs (91). Different miRNAs
are described to enhance endothelial differentiation including
miR-99b,−181a, and−181b (92),−199b (93),−21 (94) of which
the overexpression is reported to increase endothelial marker
expression and functionality. Apart from fibroblasts, other cell
sources have been identified during the last 10 years like mature
amniotic cells (95), blood (96), SMCs (97). In addition, genes
that have been dubbed as “master key regulators” like Quaking
(98–100) and ETV2 (101–104) due to their invaluable role in
endothelial function hold a potential to be useful in developing
new direct reprogramming strategies.

Direct reprogramming via small molecules and chemical
compounds alone has been reported in many cell lines including
neuronal cells, glial cells, neural stem cells, brown adipocytes,
hepatocytes, CMs, somatic progenitor cells by the regulation of
cell signaling pathways and/or histone modification (105). ECs
have not been successfully derived yet but further elucidation
of the pathways involved both in cell signaling and, in
their metabolism, can lead the way. Already scientific groups
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TABLE 2 | Examples of efficient derivation of iPS Cell-ECs or EC progenitors.

Method Ectopic TF

overexpression

Small

molecules

Cell sorting Efficiency References

EB – – VE-cadherin 18 ± 4% (85)

Small molecules – BMP4

Activin

CHIR

VEGFA

PECAM-1 20–30% (86)

Small molecules – FGF2

BMP4

VEGF165

NRP-1

PECAM-1

≥60% (82)

Small molecules – GSK3 inhibitor

BMP4

VEGFA

VE-Cadherin 80% (87)

Small molecules – GSK3 inhibitor

BMP4

FGF2

VEGFA

– 99% of CD31+ and 96.8%

VE-cadherin+

(88)

are turning to single-cell RNA-seq to delve deeper into the
heterogeneity of the iPS-derived cell populations. They aim
to assess the protocols in use as well as to further study the
differentiation process; with Paik et al. publishing a large scale
screening of iPS-ECs earlier this year (106).

SMOOTH MUSCLE CELLS

Smooth muscle cells (SMCs) are highly specialized cells whose
major function when matured is the contraction and regulation
of blood vessel tone-diameter, blood pressure, and blood flow
distribution. Since the late 70s, SMCs have been widely accepted
as the main contributors in the pathogenesis of atherosclerosis
(107, 108). More specifically, the theory suggested that, in
response to vascular injury, SMCs migrate from the media
into the intima, where they turn into foam cells and produce
extracellular matrix. Almost 30 years later that view was
challenged when many scientific teams presented evidence that
SMC progenitor cells and hematopoietic stem cells differentiate
into SMCs in the intima (109–112). That, in combination
with the widely discussed heterogeneity of origin [as different
developmental stage SMCs appear with different phenotypes and
different source populations (113, 114)], made them the center
of attention. Stem cell technology provided the ideal way of
studying the different mechanisms of their derivation as well as
an opportunity of further understanding the way both mature
SMCs and progenitors contribute to the pathophysiology of
CVDs.

Again, the EB formation method was used for ES-derived
SMCs with Haller et al. reporting that the exposure of the EBs
in retinoic acid and dibutyrylcydic adenosine mono-phosphate
(db-cAMP) induced differentiation of spontaneously contracting
cell clusters in 67% compared with 10% of untreated controls
(115). Huang et al. also reported their success in differentiating
ESCs into SMCs by adding trans retinoic acid in a monolayer
culture with 93% of them expressing SM α-actin and SM-MHC
(116). Further studies into cell signaling during the process of

differentiation of ESCs and MSCs to SMCs showed that both
TGF-β and the Notch pathway, as well as the Bone Morphogenic
Proteins (BMPs) (117), are important for the expression of the
vascular SMC markers (118, 119). Histone deacetylation plays a
main role in vascular homeostasis as well as neuronal, controlling
the migration proliferation and differentiation toward SMCs
(120–122).

With the introduction of iPS Cells technology, different
protocols have been applied into directing the iPS Cells toward
SMCs depending on the desired linage (Figure 3). More recently,
Steinbach et al. in 2016 described the stepwise administration
of key members of the TGF-β superfamily to generate lateral
plate-derived vascular SMCs (VSMCs) from human iPS Cells
(127). Yang et al. used a combination of Fibroblast Growth Factor
(FGF), VEGF and TGFβ to generate VSMCs reporting as well a
diversity in their endpoint culture (128).

Direct differentiation protocols have also been applied: most
notably, Karamariti et al. used PiPS Cells and 4 days later,
the PiPS-SMCs were expressing a full panel of VSMC markers
including calponin, SMA-α and SM22α as well as elastin and
collagen, characteristically seen in the VSMCs of large arteries
(129).

The existence of different VSMCs lineages, occurring
as a result of germ layer formation during embryological
development, further adds to the complexity of iPS Cells
differentiation techniques, as mentioned before. The current
studies have provided only a glimpse to a very complicated
system but the potential is there. Even though most of the CVD
models or tissue engraftments are based on induced-CMs or
induced-ECs, we believe VSMCs are an important part of the
cardiovascular physiology that should not be bypassed.

PERICYTES AND THEIR POTENTIAL

Perivascular pericytes, or mural cells, envelop the vascular
tube surface and are integral in the formation of blood
vessels. They are multipotent cells that are heterogeneous in
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their origin, function, morphology and surface markers. Thus,
many controversies have been sparked in respect of their
characterization. They are integral for the regulation of blood
flow, the stability and permeability of vascular structure and
angiogenesis (130–132). Blood vessels lacking pericytes become
hyperdilated and haemorrhagic, leading to pathological changes
ranging from diabetic retinopathy to embryonic death. They are
known to have high level of plasticity and differentiate into other
cell types. They also have tissue- specific properties which have
been extensively reviewed (132–134).

Dar et al. used EB formation and demonstrated the isolation
of CD105+CD90+CD73+CD31− multipotent clonogenic
mesodermal precursors. After expansion, the cells expressed
markers, like CD146, Neural/glial antigen 2 (NG2), and

Beta-Type Platelet-Derived Growth Factor Receptor (PDGFRβ)
(135). Orlova et al. described in 2014 the generation of iPS
Cells-derived ECs that were expressing a plethora of markers
and were functional in vivo; at the same time, using TGFβ3 and
BMP4, they differentiated the CD31- fraction of their selection
toward pericytes (86).

Another tool in their application into regeneration of the
vasculature is cell therapy using pericytes isolated from patients;
as they are abundant in various sites on the human body.
In 2013, Katare used the mouse myocardial infraction model
and demonstrated that transplantation of pericytes, expanded
from redundant human leg veins, relocated around the vessels
of the peri-infarct zone and released a variety of transcription
factors. These enhanced ECs and CMs survival and proliferation

FIGURE 3 | Examples of highly pure iPSC-VSMCs. Due to the heterogeneity of origin as well as the many subtypes of VSMCs acquiring highly pure populations has

proven to be challenging. Three types of protocols have been used successfully; simple embryonic body formation and selection of the Calponin positive population

(123, 124), combination of EBs and monolayer culture by pre-treating the hiPS Cells with VEGF (125), forming the EBs and then expanding the CD166- /CD31-

population in a monolayer again, small molecule treatment of iPS Cells monolayers with PDGF-BB and Tgfβ1 (126).

FIGURE 4 | Schematic Representation of the abstract. Generation of an ex-vivo tissue model for studying the cell to cell interaction in a 3D CVS model is offering

multiple advantages over current animal models and co-culture in vitro systems. Using cells derived from iPS Cells or somatic cells of donors will help us look deeper

into the pathogenesis of diseases, customize and safely test novel drug treatments and cell therapies for patients, even develop strategies for alternative sources of

tissue for transplants.
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(VEGF, angiopoietin) and others inhibited cardiac hypertrophy
and fibrosis while promoting angiogenesis (MiR-132 inhibits
Ras-GAP, angiotensin 1 receptor (AT1R) and MeCP2 (136).

ESCs and iPS Cells have been used as a source of pericytes
(135) but two main concerns have been raised that have yet to
be addressed in their entirety. The first is that the efficiencies
of the protocols described are usually really low and the second
is the lack of distinct pericyte specific markers due to the large
heterogeneity of the populations. Most commonly used and
widely accepted are PDGFR-β, CD44, CD90, NG2, and α-SMA
but they are all strongly present in other cell types so functional
assays and extensive expression profiling is needed to complete
a characterization. The fact that there is no standardized way
of getting a homogenous population of cells is a hindrance
to the design of novel therapies however possible epigenetic
and secretome screening may help us study the mechanisms of
pathogenesis they are involved in.

DISCUSSION

It is commonly acknowledged that, thus far, disease models are
incomplete. In vitro co-culture systems are difficult to maintain
and although they are very informative, they cannot accurately
model the complex and structured in vivo environment. At the
same time, animal models are a very useful tool in research for
cell therapies and drug development but the different species to
species physiology creates major barriers in the clinic. The ideal
for many is a 3D in vitro model that will allow for safe testing
of therapies and will be modeled with human cells. Naturally,
the most promising cell types to be used are human iPS Cells or
reprogrammed cells.

With respect to the cardiovascular field, analyzing the three
points of structure is crucial to planning future strategies. First
and foremost, EC dysfunction is widely acknowledged as one
of the leading causes of complications for patients suffering
from diabetes and other vascular diseases. Secondly, CM damage
combined with the heart’s low regeneration ability has proved
to be one of the most difficult points to address during the
study of the pathophysiology of a disease both in vitro and
in/ex vivo as well as in the development of therapies (137).
Thirdly, SMCs are deeply integrated into the pathogenesis of
the atherosclerotic plaque but the knowledge of the mechanism
behind their differentiation during different stages of the disease
is lacking (114). Last but not least, pericytes may have been
relatively overlooked—possibly due to their heterogeneity—
but are integral to the preservation of vascular rheology and

homeostasis (134). Keeping these in mind, it is obvious to see
that an attempt of excluding a component may lead into not
being able to complete the puzzle. Tissue engineering technology
is advancing rapidly and experimentation of new biomaterials
and re-vascularization strategies is a fact. Engineering 3D cardiac
tissue with a physiologically relevant microenviroment is quite
challenging. Most promising are the re-vascularization strategies
of the bioengineered graft and the maturity of the cells that will
be used, since the reprogrammed cells—especially the CMs—
are usually more immature types, and not what we would
see in a functional human heart. As presented extensively by
Costa- Almeida et al. constant vascularization is critical based
on cellular strategies combining EC transplantation with support
cells, which will produce growth factors, cytokines, hormones
and other bioactive molecules essential to the stability of the
scaffold (138).

If we take a step back we will see that currently we are getting
closer but we still have a long way to go. In vitro culture (and
co-culture) models are very useful for studying different cell type
interactions but we are still missing the complexity of the cell
signaling interplay in tissue. Future research should be focusing
not only in getting novel insights into the process of angiogenesis
but in combining our knowledge of the interaction of heterotypic
cells to develop ex vivo models of the CVS. Considering the
difficulty of acquiringmature cells from patients, iPS Cell-derived
or reprogrammed cells are ideal candidates for modeling these.
Concerns about the phenotypical stability of the differentiated
cells should also be addressed by further studying the epigenetic
process in which we erase the cell memory and direct them in
a different path. The advantages are significant for personalized
and regenerative medicine as well as drug development and
testing, revealing a potential role of these models for their
manipulation into patient-specific scaffolds for heart and vessel
damage (Figure 4).
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