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Cellular specialization and interactions with other cell types are the essence of complex

multicellular life. The orchestrated function of different cell populations in the heart,

in combination with a complex network of intercellular circuits of communication,

is essential to maintain a healthy heart and its disruption gives rise to pathological

conditions. Over the past few years, the development of new biological research tools has

facilitated more accurate identification of the cardiac cell populations and their specific

roles. This review aims to provide an overview on the significance and contributions of

the various cellular components: cardiomyocytes, fibroblasts, endothelial cells, vascular

smooth muscle cells, pericytes, and inflammatory cells. It also aims to describe their

role in cardiac development, physiology and pathology with a particular focus on the

importance of heterocellularity and cellular interaction between these different cell types.

Keywords: cardiac fi broblast, endothelial cells (ECs), macrophages (M1/M2), multicellularity, myocytes, cardiac

tissue, pericytes and vascular smooth muscle cells, inflammatory cell

INTRODUCTION

The development of multicellular organisms required millions of years of evolution, starting
from simple prokaryotic cells, with no intracellular, or rudimentary organization, to eukaryotic
cells, with more specialized, sophisticated cellular systems. Species evolved to include multiple
specialized cells with distinct roles and functions. Populations of highly specialized cells form
a variety of tissues, which allows the formation of organs capable of highly complex functions.
Thus, multicellularity and the specialization of cells have driven evolution. The human body
is one of the most studied multicellular systems and is comprised of more than 200 different
cell types. Among these, the heart has been at the center of investigation not only because
of its role in physiology but also because cardiac diseases are the number one cause of
death in developed countries. The orchestrated function of different cell populations in the
heart, in combination with a complex network of intercellular circuits of communication, is
essential to maintain a healthy heart and its disruption gives rise to pathological conditions.
Our knowledge of the precise factors involved in the orchestrated function and regulation of
the heart is still incomplete. The different cellular components that form the heart, particularly
the non-myocyte populations, have only recently been described in detail (1), making cardiac
multicellularity a novel/topical target for cardiovascular research. Being at the center of the
circulation, the heart is closely regulated by systemic and local signaling of chemical and
mechanical nature, and this is also a very important area of investigation. Finally, the relentless
electromechanical activity, which is unique to the heart, is also capable of regulating both
cardiomyocyte and non-myocyte populations. This adds a crucial element of complexity that
has limited our ability to investigate and understand cardiac behavior, particularly from
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the multicellular/heterocellular viewpoint. In this review, we
will provide an overview of cardiac multicellularity and how
both intercellular physical interactions and cell-cell signaling
are fundamental in cardiac development and adult cardiac
phenotype homeostasis.

Cardiac Multicellularity in vivo
The heart is composed of several cell populations, each with
specific functions and regulatory roles. Cardiomyocytes being
very large cells make up most of cardiac tissue volume (2), but
they only account for≈25–35% of all the cells in the heart (3–5).
Using genetic tools and cellular markers, it has recently been
shown that endothelial cells make up >60% of the non-myocyte
population, making them themost prevalent cell type in the adult
heart (1) (Figure 1). A consensus is still lacking regarding the
remaining stromal cell population composition. Previous studies
(4, 6–9) have suggested that fibroblasts constitute the majority of
non-myocytes, however, it is now known that they only account
for <20% of the non-myocyte population (1, 5) (Table 1).
Vascular Smooth Muscle Cells, pericytes, and hematopoietic-
derived cells make up the rest of the non-myocyte population
however a consensus on their respective percentage in cardiac
tissue is still debated.

THE ROLE OF CARDIOMYOCYTES

Cardiomyocytes are the muscle cells of cardiac tissue and their
synchronous contraction is required to pump blood throughout

FIGURE 1 | Cardiac multicellularity in vitro: Immunohistochemical staining and confocal microscopy were used to identify cardiac cells in a transverse section (A) and

in a longitudinal section (B) of freshly prepared dog myocardial slices. Cardiomyocytes were labeled with caveolin 3, fibroblasts were labeled with vimentin and

endothelial cells were labeled with isolectin. Nuclei were labeled with Hoechst 33342. Scale bar = 50µm.

the body. They are the most physically energetic cells in the
body, repeating their relentless contraction cycle over 3 billion
times in the average human lifespan (10). They are very large
cells, typically 100–150µm in length and 10–35µm in width.
Their cytoplasm is packed with sarcomeres, the contractile
units of muscle cells, and mitochondria, which are needed to
satisfy their high energy requirements and account for ∼35%
of cardiomyocyte volume (11). Cardiomyocytes are cylindrical
in shape with end-to-end connections called intercalated
disks. These highly specialized cell-to-cell connections ensure
mechanical and electrochemical coupling (11). They help to
stabilize the positions of the cells relative to each other
and maintain the 3D structural integrity of the tissue (12).
The intercalated disks are also the preferential method of
cardiomyocyte cross talk. They contain intercellular channels
called gap junctions, made of connexins. Ions, small molecules,
and small peptides are capable of crossing these junctions.
Disorganization of the intercalated discs can make gap junctions
more susceptible to improper intercellular transfer of molecules
and impulse propagation (12). The expression and distribution
of junctional components are often altered in cardiovascular
disease. It has been reported that mutations in the gene encoding
connexin 40 GJA5 induce altered electric coupling and lead to
increased arrhythmogenesis (13). Cardiac-specific loss of murine
N-cadherin leads to a modest dilated cardiomyopathy with
impaired cardiac function before sudden cardiac death (14).
Cardiomyocyte regulation is also controlled by other cell types
through paracrine signaling, however cardiomyocytes are also
able to secrete soluble factors to interact and communicate
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with other cell types, particularly during inflammation or
cardiac injury. A recent study by Roy et al. has shown that
cardiomyocytes are also able to produce and secrete acetylcholine
(ACh), a parasympathetic nervous system neurotransmitter.
This non-neuronal source of ACh increases parasympathetic
cholinergic signaling to counterbalance neural sympathetic
activity regulating cardiac homeostasis and therefore plays a
fundamental role in healthy heart activity (15). Inflammatory
cytokines such as IL-6 are released by cardiomyocytes during
hypoxic stress, suggesting an important role in the progression
of myocardial dysfunction observed in cardiac ischemia-
reperfusion injury (16). Although IL-6 has been reported to
have cardioprotective effects (17), clinical studies suggest that
prolonged and/or excessive synthesis of IL-6 is detrimental to the
heart (18, 19). Cardiomyocytes have also been shown to produce
and secrete TNF-α under certain conditions such as treatment
with lipopolysaccharide (LPS). The presence of LPS contributes
to the cardiovascular collapse and death observed in patients with
sepsis. TNF-α stimulation on cardiomyocytes results in inotropic
and pro-apoptotic effect which results in defective contractility
and relaxation of the myocardium (20, 21). TNFα is another
example of signalingmolecule released by cardiomyocytes during
myocardial infarction. TNFα release has been shown to be
controlled by the hypoxia-inducible factor1α pathway and to be
mediated by exosomes release by cardiomyocytes (22, 23).

THE ROLE OF ENDOTHELIAL CELLS

In the healthy myocardium, a dense network of capillaries
facilitates the distribution of oxygen and metabolic substrates to
cardiomyocytes. Each cardiomyocyte is in contact with at least
one capillary and endothelial cells outnumber cardiomyocytes
by ≈3:1 (1, 24). This architectural arrangement also allows a
mechanical and paracrine cross-talk between cardiomyocytes
and endothelial cells to exist, which plays pivotal roles in cardiac
development and the regulation of cardiomyocyte function
(Figure 2). Several factors released by endothelial cells, including
neuregulin, neurofibromatosis type 1 (NF1) and platelet-derived
growth factor-B (PDGF-B), and by cardiomyocytes, including
vascular endothelial growth factor-A (VEGF-A) and angiopoietin
1, have been implicated in these processes (25–27). Endothelial-
cardiomyocyte interactions play fundamental roles in the
regulation of cardiac function by both autocrine and paracrine
mechanisms. Both endothelial cells and cardiomyocytes are able
to synthesize Nitric Oxide (NO) with three different nitric oxide
synthase isoenzymes (eNOS, iNOS, and NOS). eNOS expression
in endothelial cells is four times greater than in cardiomyocytes
(28). Nitric oxide affects blood vessels, its complex effect
results in vasodilation due to relaxation of vascular smooth
muscle, and reduced contractility in cardiomyocytes, leading
to an attenuation of contraction (29). ET-1 is also released by
endothelial cells, in addition to release by cardiac fibroblasts,
and acts in both an autocrine and paracrine manner binding
to cardiomyocytes via ETA receptors and endothelial cells via
ETB receptors (24). ET-1 effects on cardiomyocytes include
the induction of hypertrophy and remodeling. There is also
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FIGURE 2 | Immunohistochemical staining and confocal microscopy were used to identify endothelial cells distribution in a freshly prepared dog myocardial slice (A).

Higher magnification of capillaries and their location in proximity to cardiomyocytes (B). Cardiomyocytes were labeled with caveolin 3 (red) and endothelial cells were

labeled with isolectin (White and cyan).

evidence that endothelial cells promote cardiomyocyte survival,
with neuregulin found to be a pro-survival factor (30) and
less cardiomyocyte apoptosis observed when cardiomyocytes are
cultured with endothelial cells in vitro (31).

The importance of endothelial factors during cardiac
development has also been demonstrated by a number of
cell-specific gene knockdown (KO) experiments. Mice lacking
either neuregulin or its receptors, erbB2/4, die during mid-
embryogenesis due to lack of cardiac trabeculae and cardiac
cushion development (32). NF1 KO results in developmental
defects in both the myocardial and endocardial cushions,
resulting in myocardial thinning and ventricular septal defects.
Defects do not occur in cardiomyocyte-specific KO models,
indicating that signaling from endothelial cells is crucial for
development (33). Endothelial-specific KO of PDGF-B results in
cardiac abnormalities, including myocardial thinning, chamber
dilation, hypertrabeculation, and septal defects, alongside
vascular and glomerular abnormalities (34). Thus, molecular
signals from endothelial cells are crucial for development but
reciprocal cross-talk between cardiomyocytes and endothelial
cells is also required. Mutations in both VEGF-A and its receptor,
VEGF receptor-2, result in failure of both the endocardium and
myocardium to develop. Cardiomyocyte-specific KO of VEGF-A
results in defective angiogenesis and ventricular wall thinning
(35). The angiopoietin-Tie-2 system is also fundamental
to cardiac development and is primarily responsible for
maturation and stabilization of the neovasculature (35). Mice
with mutations in this pathway have an underdeveloped
endocardium and myocardium, while cardiomyocyte-specific
overexpression of angiopoietin-1 results in embryonic death
(35). These findings demonstrate that sensitively controlled
bilateral paracrine communication between endothelial
cells and cardiomyocytes is fundamental to normal cardiac
development.

THE ROLE OF CARDIAC FIBROBLASTS

Cardiac fibroblasts are often considered the most abundant
stromal cell type and they play a crucial role in extracellular
matrix deposition, maintenance and remodeling. They are
characterized by a secretory phenotype with an elongated,
spindle-like morphology, a granular cytoplasm, and an extensive
rough endoplasmic reticulum (36). In the heart they are
diffusely distributed throughout the myocardium, localized in
the interstitial space that separate cardiomyocytes and in close
proximity to capillaries and larger vessels (Figure 3). To date,
there is no agreement on appropriate markers to identify
resident fibroblasts within the heart. The markers available
(Vimentin, CD90, DDR2, FSP1, Sca1, Periostin, etc.) target
different fibroblast-like cells suggesting that resting fibroblasts
are a mixture of cell populations (5, 36). This hypothesis is
further reinforced by the notion that cardiac fibroblasts come
from two separate developmental origins. Two independent
groups showed that fibroblasts residing in the interventricular
septum and right ventricle do not form from the epicardium,
but instead have an endothelial origin, constituting roughly 20%
of the myocardial resident fibroblast (37, 38). Taken this into
consideration, modern techniques of single cell analysis and
genetic lineage tracing seem to show comparable gene expression
profile of different cardiac fibroblast populations suggesting that
they may not be as diverse as previously thought (37, 39).

The study of cardiac fibroblasts and their interactions with
beating cardiomyocytes in vivo is problematic; fibroblast function
is complex and multifaceted and there may be several direct
and indirect mechanisms of cellular interactions. These include
interaction via alteration of extracellular matrix (ECM) quantity
and composition, vascular maintenance, paracrine signaling,
conduction system insulation, and electrotonic coupling (36).
The ECM is a complex, dynamic scaffold, composed of collagens,
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FIGURE 3 | Immunohistochemical staining and confocal microscopy were used to identify different cardiac populations in a dog myocardial slice. Large vessels were

identified for α-Smooth Muscle Actin expression (white), endothelial cells were labeled with isolectin (green) and fibroblasts were labeled with vimentin (red) (A). Higher

magnification of capillaries and their location in proximity to cardiomyocytes and fibroblasts (B). Cardiomyocytes were labeled with caveolin 3 (blue), endothelial cells

were double labeled with isolectin (green) and Von Willerbrand factor (white) and fibroblasts for Vimentin (red).

proteoglycans, and glycoproteins (10). Cardiac fibroblasts are
involved in the synthesis and maintenance of the ECM and
are responsible for the 5% turnover of the ECM each day
(11). Cardiomyocytes are physically linked to the ECM via
integrin molecules (12), allowing it to influence cardiomyocyte
function through kinase signaling cascades and direct mechanical
interaction with intracellular structures (13). As such, regulation
of the ECM by fibroblasts indirectly influences cardiomyocytes.
In addition to maintenance of the ECM, cardiac fibroblasts
secrete a vast array of bioactive substances. These molecules are
secreted into the interstitium, where they act in both an autocrine
and paracrine fashion (40). The extensive array of soluble
mediators released results in functional cross-talk between
several cardiac cell populations, including cardiomyocytes. Of
the numerous factors released, transforming growth factor
beta (TGF-β), interleukin 6 (IL-6), and endothelin 1 (ET-1)
have significant effects on cardiomyocytes. Secretion of TGF-
β, typically induced by changes in mechanical loading (41),
results in cardiomyocyte hypertrophy (42) and profound
electrophysiological changes (43). At the whole heart level,
these changes are initially protective, but ultimately result
in maladaptive remodeling (44). IL-6 is also associated with
cardiomyocyte hypertrophy, alongside diastolic dysfunction and
reduced expression of SERCA2a (45). ET-1 induces a potent
hypertrophy in cardiomyocytes and its expression directly
correlates with ventricular remodeling (46, 47). Paracrine
interactions can also be achieved via non-soluble mediators,
such as extracellular vesicles and microRNAs (miRs). Fibroblast
secretion of miR-21in exosomes has been shown to induce
cardiomyocyte hypertrophy (48). The presence of all 3 isoforms
of connexin (Cx40, Cx43, and Cx45) (49) and electronic
coupling between cardiomyocytes and fibroblasts in vivo has
been demonstrated using optogenetic techniques and tunneling

nanotubes between the two cell types have also been observed
(50). These findings have implications for cardiomyocyte
electrophysiology and cardiac conductivity but the physiological
importance of these interactions and their role in cardiac disease
remains to be established.

A large variety of stimuli such as cytokines, cardiomyocyte
death, or changes in mechanical load can activate cardiac
fibroblasts into their pathological phenotype, known as
myofibroblasts (40). Activated fibroblasts have a different
morphology with increased cytoplasm, well-defined endoplasmic
reticulum and Golgi complex and microfilament bundles, which
are often identified with αSMA antibody. They also have
altered functions which include decreased ECM degradation
and excessive secretion of matrix proteins, including collagen
Type 1, and pro-inflammatory cytokines which play a crucial
role in scar formation and fibrosis (51). Previous studies have
indicated that myofibroblasts can derive from pericytes, bone
marrow progenitor cells, monocytes, and though endothelial to
mesenchymal transition (51). The contribution of these various
cell types is still debated, however, a recent and comprehensive
study by Kanisicak et al. (39) using genetic lineage tracing,
identified resident cardiac fibroblasts as the main source for
activated myofibroblasts in the injured heart (39). Several studies
have reported different roles of fibroblasts and myofibroblasts
during physiology and disease in regulating myocardial function
via soluble mediators (43). A study by Cartledge et al. have
shown a smaller cardiomyocyte Ca2+ transient amplitude
when cultured with myofibroblasts compared to fibroblasts
suggesting an important bi-directional regulatory role of
TGF- β (43). Similarly to fibroblasts, myofibroblasts are also
capable of forming functional gap junctions in the diseased
myocardium suggesting that myofibroblasts might contribute to
arrhythmogenesis by direct electrotonic modulation of impulse
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propagation and increased mechanosensitive channel activation
(41, 51–53).

THE ROLE OF VASCULAR SMOOTH
MUSCLE CELLS AND PERICYTES

Vascular smooth muscle cells (VSMCs) are stromal cells and
constitute the vascular wall of large and small vessels. By
contraction and relaxation, these cells can alter the vessel
luminal diameter and, as a consequence, they are responsible
for the regulation of blood pressure and blood flow. VSMCs
not only regulate vessel diameter for short periods but
they can also be subjected to long-term stimulation which
results in physiological (such as pregnancy or exercise) or
pathological vascular remodeling (54). VSMCs are normally
classified as contractile or synthetic. This simplification only
represents the two ends of a spectrum which includes several
intermediate phenotypes. These two cell types are different
in terms of morphology, function, gene expression, marker
profile, and gap junctional/adhesion molecules. Contractile
VSMCs are elongated, spindle-shaped cells with contractile
filaments and with a low proliferative and migratory capacity.
Synthetic VSMCs on the other hand have a rhomboid or
cobblestone morphology, high number of organelles and a high
proliferative and migratory capacity (55, 56). Smooth-muscle
myosin heavy chain (SM-MHC) and smoothelin are the twomost
common marker proteins used to identify contractile VSMCs,
whereas syntethic VSMCs express Smooth-muscle-emb/non-
muscle MHC and cellular retinol binding protein (CRBP-1)
(54). Although VSMCs phenotype seems to be genetically
programmed in relation to their developmental origin (57), as
shown in different species such as rat (54), pig (58), and humans
(59), local environmental stimuli can significantly modulate
VSMCs characteristics and function. These includes physical
as well as biochemical factors which act in combination with
the extracellular matrix composition. Tensile stretch and shear
stress, induced respectively by the blood pressure and blood
flow, affecting VSMCs contractile state, can induce vessel wall
remodeling (54). The cells of the endothelium are able to
sense the shear stress and respond with nitric oxide release
and with direct cell-cell interaction with the VSMCs (58,
60). Endothelial cell proliferation and dysfunction, associated
with altered production of vasoactive mediators, such as nitric
oxide, entothelin-1, serotonin and prostacyclin, are reported
to alter VSMCs behavior and contribute to pulmonary arterial
hypertension (61). PDGF molecules play a crucial role in cellular
cross-talk, they are produced by endothelial cells, perivascular
inflammatory cells and smooth muscle cells. During pulmonary
arterial hypertension PDGF-A and PDGF-B are overexpressed,
they induce fibroblasts activation and a synthetic phenotype
in VSMCs with increased cellular proliferation and migration
promoting pulmonary arterial remodeling (61, 62). TGF-β
signaling is also involved in VSMCs regulation promoting a
contractile phenotype on cultured adult smooth muscle cells
(63). Recent studies revealed an important role of cellular cross-
talk between macrophages and VSMCs and this phenomenon

seems to plays an important role during atherosclerotic plaque
formation. This communication, principally mediated by Toll-
Like receptor pathways, can alter the ECM synthesis and
deposition, increase the production of metalloproteinases and
increase the production of angiogenic chemokines such as VEGF
and IL-1 (57, 64, 65).

Pericytes are also an important contractile cell of the
body. They are closely associated with the microvasculature,
particularly with pre-capillary arterioles, capillaries, and post-
capillary venules (65). Pericytes are normally embedded in the
basal membrane in close contact with endothelial cells. In larger
vessels of the myocardium, a sparse layer of pericytes separates
the endothelium from the VSMCs and the elastic structures
of the vessel (66). Morphologically they can be distinguished
for their thin and elongated cytoplasm, numerous finger-like
projections and the rounded nucleus (67, 68). A range of surface
(PDGFRβ, CD146, CD13 and NG2) or cytoplasmic markers
(αSMA, desmin, vimentin, and nestin) are commonly used to
identify this specific cell population (68–70). The number of
pericytes seems to be organ dependent and their number in
cardiac tissue is still debated, with groups reporting pericytes
to be the second most frequent myocardial cell with a ratio
with endothelial cells of 2:1 or 3:1 (71). However, in light of
more recent studies on cardiac cellular composition this numbers
might be an overestimation (1, 5). If pericytes number is still
uncertain, much more is known about their function. The
cytoplasmic expression of contractile proteins, such as αSMA or
vimentin, is a clear indication of their vasomotion regulatory
role. Their main function is to regulate the homeostasis and
permeability of the vasculature and to control the blood flow in
the micro-circulation. They also play a role in the removal of cell
debris and tomonitor the maturation of endothelial cells (72, 73).
Pericyte’s cytoplasmic protrusions connect to cell membrane
invaginations of endothelial cell though connexin43 mediated
and N-Cadherin adherence junctions. These connections are
used to sense mechanical forces, such as stretch and shear
stress, and to exchange electrical (66) and biochemical signals
(both ions and small molecules) (74, 75). The active cross-
talk between pericytes and endothelial cells has been shown to
be fundamental for the maintenance of the endothelial barrier,
principally mediated by TGFβ and angiopoietin1 (76, 77) and
the formation and deposition of collagen I, IV and fibronectin
in the basal membrane (78). They also play an active role in
the process of new vessel formation. They can induce quiescence
and maturation in activated endothelial cells though Angiotensin
I secretion (66) or bridge the temporary gaps formed between
sprouting endothelial cells (66). In pathological conditions,
particularly following ischemic damage, pericytes receive signals
from resident cells and infiltrating inflammatory cells and play
an active role in angiogenesis and collateralization, reparative
fibrosis, tissue remodeling, and regeneration (66). It has been
reported that macrophages secrete galectin-3 which stimulates
pericyte’s proliferation and secretion of protocollagen1 which
eventually lead to collagen accumulation and cardiac fibrosis
(66). Pericytes can also be activated followed injury via PDGF
stimulation, which results in their migration to the interstitium,
change into a myofibroblasts phenotype and increased release of
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ECM (66). During ischemia, cardiomyocytes release pro-Nerve
Growth Factor which binds to the P75NTR on pericytes inducing
cytoskeletal changes, disrupting their interaction with endothelial
cells and provoking vascular permability (66).

THE ROLE OF OTHER CARDIAC CELL
POPULATIONS

The immune cells form another important cardiac cell
population. Of these, the role of macrophages has been
most extensively explored over the last few years. Macrophages
are an important component of the innate immune system and
constitute a first line of defense against invading pathogens.
They are large, round or spindle-like cells that contain a central
round nucleus, have abundant clear, often vacuolated, cytoplasm
with far-reaching protrusions, they are found in the interstitial
space interspersed between cardiomyocytes, fibroblasts and
endothelial cells (79). In the mouse heart it has been estimated
that they can be up to 10% of non-cardiomyocytes cells and
humans may have similar numbers (80). Following cardiac
injury, an expansion of their population occurs through both
local proliferation and monocyte recruitment, and is essential
for myocardial repair (81). For several years macrophage
heterogeneity was oversimplified into two main groups: M1 and
M2. Macrophages that encourage inflammation are called M1,
whereas those that decrease inflammation and encourage tissue
repair are called M2 macrophages (35). Beyond having different
functions, they also have distinct gene expression and surface
markers profile (35). In the past few years it been shown that
this classification does not adequately describe the spectrum of
macrophage populations and several studies are now further
investigating these differences (80, 82). The role of macrophages
in the regulation of cardiomyocytes has been less well explored.
A recent study by Hulsmans et al. has demonstrated that
macrophages can form gap-junction with cardiomyocytes,
via Cx43 expression, thus modulating their electrical activity
(83). Furthermore, photo-stimulation of channelrhodopsin-2-
expressing macrophages was able to improve atrioventricular
conduction (83). Liu et al. (84) using a hypoxic mouse model and
acyanotic vs. cyanotic patients, showed that postnatal hypoxia
promoted cardiomyocyte proliferation and that cardiac resident
macrophages may be involved in this process (35). Macrophages
also communicate with other cell types in the myocardium,
particularly with cardiac fibroblasts via the leucocyte surface
antigen CD40 or the up-regulation of ICAM-1 and VCAM-1
(85, 86). Fibroblasts have the ability to participate in the
maintenance of an inflammatory response via the expression
of chemokines; on the other hand macrophages are the leading
producers of TGF-β which is considered the most significant
pro-fibrotic agent involved in the progression of chronic fibrotic
diseases (87). It has long been recognized that macrophages can
support angiogenesis, through both cell-to-cell contact with
endothelial cells and the secretion of proangiogenic factors (88).
Activated macrophages secrete a large variety of growth factors
and inflammatory cytokines such as VEGF-A, VEGF-C, IL-1β,
FGF2 etc., which induce endothelial activation, proliferation,

spouting and survival (89, 90). Soluble proteases and matrix
remodeling activity induced by macrophages also play a role
in vessel sprouting and vascular growth (91, 92). Recent
studies have shown that macrophages physically interact with
sprouting endothelial cells to support and promote new vascular
intersections in a process mediated by angiopoietin receptor,
TIE2 and neuropilin-1 (88, 93). The interaction of macrophages
and endothelial cells is bidirectional as endothelial cells can also
promote the expansion and differentiation of proangiogenic
macrophages. He et al. showed that endothelial cells can induce
expansion and differentiation of hematopoietic progenitor cells
toward an M2-macrophage phenotype (94). Gene marking
studies, using Tie2-GFP reporter lentiviral vectors, frequently
show clusters of immature Tie2-GFP+ cells monocytes in
association with blood vessel sprouting (95, 96).

Although the interaction of macrophages with the other
cardiac cell types has been quite extensively investigated, much
less is known about the role of the other inflammatory cells
(97, 98). Recent evidence suggests that T cells are also involved
in the regulation of cardiac remodeling, particularly in the
attenuation of hypertrophic response and cardiac dysfunction
following myocardial infarction (99). TNFα overexpressing mice
develop cardiomyopathy overtime, however the administration
of anti-CD3 antibody to neutralize T cells reduced inflammatory
cell recruitment and stopped hypertrophy (100). The depletion
of T cells in Rag2 deficient mice, which develop pressure-
overload induced hypertrophy, has also been shown to reduce
macrophage infiltration and fibrosis together with attenuated
cardiac dysfunction (101). Neutrophils are the most abundant
leukocytes in humans and they also migrate to damaged areas
following acute injury, such as myocardial infarction or ischemia.
In literature very few studies can be found where their role
has been investigated, particularly in hypertrophy and cardiac
remodeling. A recent study from Wu et al. showed that the
neutralization of S100A9, a molecule secreted by neutrophils,
decreased angiotensin-II induced cardiac hypertrophy (102)
suggesting a role of this cell type in cardiac remodeling. Several
studies have also indicated an important role of T cells in the
development of heart-specific autoimmune myocarditis (103–
105). α-Myosin Heavy Chain specific (α-MyHC) CD4+ T cells
have been found in mouse models of myocarditis as well as
in human patients with inflammatory cardiomyopathy. Various
CD4+ T cell subsets, particularly Th1 and Th17, have been
shown to play an important role in the maintenance of tissue
immune homeostasis and in modulating disease phenotypes
(103–105). A better understanding of their role might therefore
provide new approaches for the development of new therapeutic
strategies. The number of mast cells in the heart also increases
following cardiac injury. Mast cells have been implicated in
maladaptive cardiac remodeling, but the mechanisms by which
they contribute to this are yet to be fully elucidated (97). It has
been shown that mast cells can release several bioactivemolecules
including growth factors, cytokines, histamine which affect other
cell types (106–108). Changes in the concentrations of these
factors can induce cardiomyocytes apoptosis as well as fibroblast
proliferation and ECM deposition. Mast cell paracrine secretion
of IL-4 has pro-fibrotic and immunomodulatory effects (106).
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CONCLUSIONS

Cellular specialization and interactions with other cell types are
the essence of complex multicellular life. In recent years, the
development of new research tools has enabled the identification
of various cell populations within the myocardium. Interactions
between different cell types in the heart have been identified as
playing major roles in cardiac development and the maintenance
of adult phenotype in both healthy physiology and pathological
conditions. It is difficult to study cellular interaction in vivo
and the data collected using current in vitro approaches
are often oversimplified and do not recapitulate in vivo
heterocellular complexity. Although progress is evident in the
study of multicellularity and cellular interactions, key questions
regarding multicellular interactions in an electromechanical
stimulated environment remain to be answered. This review
has summarized how chemical cross-talk can change cardiac
cellular function. As the heart is subjected to electromechanical
stimuli which affect cellular function, comprehensive studies
and new models that incorporate mechanical, electrical as
well as chemical signals need to be developed. New in vitro
3-dimensional heterocellular models that can recapitulate adult
cardiac physiology are necessary in order to bridge the gap
between existing in vitro and in vivo models. A more in-depth
understanding of the role of cardiac microenvironment and
heterocellular cross-talk is fundamental in the advancement of

other research areas in cardiac biology, such as regenerative
medicine and cardiac tissue engineering. The knowledge
acquired will be fundamental to develop novel therapeutics with
specific biological targets for treatments of patients with heart
disease.
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