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Cardiovascular calcification is an independent risk factor and an established predictor of

adverse cardiovascular events. Despite concomitant factors leading to atherosclerosis

and heart valve disease (VHD), the latter has been identified as an independent

pathological entity. Calcific aortic valve stenosis is the most common form of VDH

resulting of either congenital malformations or senile “degeneration.” About 2% of

the population over 65 years is affected by aortic valve stenosis which represents a

major cause of morbidity and mortality in the elderly. A multifactorial, complex and

active heterotopic bone-like formation process, including extracellular matrix remodeling,

osteogenesis and angiogenesis, drives heart valve “degeneration” and calcification, finally

causing left ventricle outflow obstruction. Surgical heart valve replacement is the current

therapeutic option for those patients diagnosed with severe VHD representing more

than 20% of all cardiac surgeries nowadays. Tissue Engineering of Heart Valves (TEHV)

is emerging as a valuable alternative for definitive treatment of VHD and promises to

overcome either the chronic oral anticoagulation or the time-dependent deterioration

and reintervention of current mechanical or biological prosthesis, respectively. Among

the plethora of approaches and stablished techniques for TEHV, utilization of different

cell sources may confer of additional properties, desirable and not, which need to be

considered before moving from the bench to the bedside. This review aims to provide a

critical appraisal of current knowledge about calcific VHD and to discuss the pros and

cons of the main cell sources tested in studies addressing in vitro TEHV.

Keywords: valve heart disease, calcification, tissue engineering heart valves, in vitro, heterotopic bone formation

INTRODUCTION

Cardiovascular calcification (CVC) is an independent risk factor and an established predictor
of adverse and disabling cardiovascular events (Figure 1) (1–3). Histopathological studies have
demonstrated hydroxyapatite deposits in vulnerable atherosclerotic plaques (4) and aortic valves
(5). No longer considered a passive age-related disease, CVC is identified as the active, progressive
and multifactorial ectopic bone-like calcification of blood vessels, myocardium or heart valves,
leading to the “degeneration”/deterioration and dysfunction of the affected tissue (5, 6). Although
there is an overlap between the risk factors leading to atherosclerosis and valvular calcification, only
40–50% of patients diagnosed with atherosclerosis concomitantly develop calcific valvular heart
disease (VHD), thus suggesting that VHD is an independent pathological entity (7, 8).
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VHD is the third most common cardiovascular pathology
after hypertension and coronary artery disease in developed
nations (9). Specifically, aortic valve stenosis (AVS) is the most
common primary valvulopathy because of either congenital
malformation (such as bicuspid aortic valve or BAV) or senile
“degeneration.” The result is an increased stiffness and impaired
leaflet motion and calcification, lately leading to the left ventricle
outflow obstruction (10). Moreover, aging, male gender, cigarette
smoking, hypertension, hyperlipidaemia, metabolic syndrome or
kidney dysfunction are frequent independent risk factors for
calcific VHD and significantly impair the outcome and prognosis
of patients (11). The progression of calcific VHD consists of
a valve sclerosis prestadium affecting more than 25% of the
general population over 65 years old and associated to a 50%
increased cardiovascular risk over 5 years (2). The prevalence
of calcification and stenosis is reported in ∼2% or 2.5% in a
population aged over 65 or 75 years, respectively, representing
a major cause of morbidity and mortality in the elderly (11,
12). Stenotic aortic valves are also found in congenital bicuspid
valves and may require valve replacement even two decades
earlier than valves anatomically normal (13). VHD is predicted
to become a new cardiovascular epidemic in the next 20 years
because of the increase of life expectancy in industrialized
nations (9, 12, 14). No specific pharmacological strategy has been
developed to retard, halt or revert the progression of VHD. Valve
replacement represents the gold standard method to treat VHD
through either mechanical or biological prosthesis implantation
(15), but it is not suitable or definitive for all patients. New
therapeutic solutions are claimed from the clinic to overcome
the limitations of current therapeutic options including the
chronic oral anticoagulation required for mechanical valves
implantation or the degeneration, calcification, and failure of the
biological counterparts. A plethora of novel tissue engineering-
based approaches has emerged promising a definitive solution.
Between the two main tissue engineered heart valves (TEHV)
approaches, in vitro TEHV may provide, among others, a
“native-like” extracellular matrix (ECM) surrogate and promote a
“physiologic-like” regeneration in a pathologic environment with
a deteriorated reparative system. Implantation of those devices is
appealing for pediatric patients with congenital VHD as it might
circumvent the failure of growth, repair, and remodeling required
after somatic growth. In this review, we assess the current
knowledge in the clinical relevance and mechanisms of valvular
calcification and critically discuss the benefits and limitations
of different cell sources currently used for the development of
in vitro TEHV.

DETECTION, RISK AND PREVALENCE OF
VALVULAR CALCIFICATION

Calcific VHD of anatomically normal valves is a slow and
active process driving to degeneration and dysfunction, with
a long preclinical and asymptomatic phase. The onset of
symptomatology is a general sign of advanced and severe disease
associated with a high event rate, rapid valve deterioration
and malfunctioning, thus being a poor prognostic indicator

and elective for valve replacement surgery (15). However, the
management of patients with asymptomatic valve disease is
challenging. The real prevalence of unsuspected VHD is unsure,
and a significant proportion of patients remain asymptomatic
and undiagnosed until late stages when the long-term benefits
of intervention are ambiguous due to increased postoperative
complications and further mortality (8, 14). Large European and
North American observational studies have provided most of the
valuable insights on the overall VHD prevalence and the effect
on overall survival (8, 14, 16, 17). In 2001, the Euro Heart Survey
study (8) evidenced “degeneration” as the dominant etiological
cause of VHD, with AVS (43%), mitral regurgitation (32%), and
aortic regurgitation (13%) representing the commonest forms of
adult valvopathies. AVS progression occurring in up to 5% of
elderly patients (11, 14) carries an 80% 5-year risk of developing
heart failure, valve replacement requirement, or death (18).
Moreover, a US population-based study in more than 28,000
adults demonstrated the age-dependent VHD prevalence, rising
from 0.7% in subjects aged 18–44 to 13% in those over 75
years old (16), significantly impacting the survival rates and
emphasizing its significance as a health care issue. A more recent
publication showed that general population aged ≥60 years
across 37 advanced economies (16.1 million people) has a whole
prevalence of 4.5% VHD (2.8 and 13.1% in individuals aged
60–74 and ≥75 years, respectively) (19). Only in the UK, VHD
might account for approximately 1 million people aged over 65
years, and trend predictions suggest a significant raise due to
increased life expectancy and the continuum of population aging
in industrialized countries. The degeneration of anatomically
normal valves is more often and rapid in people over 70 years
because of progressive fibrosis and calcification of the valve cusps
(www.bcs.com). A population aged over 75 years is projected to
rise around 50% by 2025 resulting in a substantial VHD impact
(www.statistics.gov.uk) recently estimated in≈331,300 new cases
of severe aortic stenosis per year including 65,600 patients (19).
Thereby, VHD may become the next imminent and real cardiac
epidemic (9, 12, 20). Genetic background and structural valve
differences due to congenital malformations, such as BAVmay be
considered separately and are not deeply discussed in this review.

The presence and extent of CVC are generally acknowledged
as strong predictors of future adverse clinical events including
cardiovascular and all-cause mortality (21–23). The latter is
highlighted by the up to 73% all-cause survival rate reduction
estimated in patients diagnosed with high coronary artery
calcification score (21). Importantly, 5–20% of the atherosclerotic
lesions contain calcium deposits (24, 25), and it is alarming
the potential underestimation of affected tissues due to the
presence of chondrogenic intermediates, asymptomatic phases,
or the lack of more powerful calcification screening methods.
Additionally, the extent of valvular calcification correlates with
the severity of stenosis (26). Therefore, a comprehensive and
early understanding of the cardiovascular risk associated with
calcification is critical for patient management and long-term
prognosis (15, 27, 28).

Echocardiography is the mainstay for diagnosis, assessment
and follow-up of VHD (15). It allows the calculation of the
continuity equation-based aortic valve area both for predicting
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FIGURE 1 | Differential pathology and clinical impact of valvular vs. vascular calcification flowchart. Cardiovascular calcification is an active and degenerative bone-like

process affecting the cardiovascular tissues. Both vessels and valves show an athero-inflammatory background and, despite the commonalities and overlap of several

risk factors (such as aging, hyperlipidaemia or kidney disease), both atherosclerosis and calcific VHD are two independent pathologic entities. The biological

progression of the disease, tissue characteristics and clinical impact stand those differences. The result is the independent plaque rupture primary outcome found in

the progression of VHD. An increased stiffness or sclerosis induces an increased aortic pulse wave, triggering hypertension, and a reduction in coronary perfusion.

Besides, the pressure overload caused by a sclerotic pre-stadium and observed in the progression of the VHD leads to LV structural and hemodynamic changes.

Symptomatology onset and calcification burden are poor prognosis predictors associated with multiple adverse cardiovascular complications, such as left ventricular

hypertrophy (LVH), aortic valve stenosis, congestive heart failure (HF), ascending aorta aneurysm, myocardial infarction (MI), and peripheral vascular disease (PVD).

the clinical outcome and for clinical decisions making as well
as aortic jet velocity and leaflet calcification (5, 29). However,
visualizing abnormal valve anatomy becomes difficult once severe
calcification is established. Moreover, concomitant hypertension
increases the systemic vascular resistance in addition to the
valvular obstruction, thus imposing a double over-load on the left
ventricle which may lead to underestimate the assessment of the
stenosis severity (30).

Other imaging methods, notably cardiac magnetic resonance
imaging (MRI) and coronary computed tomography (CCT), are
used if echocardiographic imaging is not satisfactory. Three-
dimensional time-resolved, phase contrast cardiac magnetic
resonance, otherwise referred as 4-dimensional (4D) flow
MRI, is an innovative and appealing method for studying
cardiovascular diseases. Dataset integration of 4D-Flow MRI
can be retrospectively quantified providing a comprehensive

evaluation of complex secondary vascular parameters, such as
mechanical wall shear stress (WSS) on the vessels and heart
valves (31) but also flow energy loss and flow displacements
(32, 33). BAV is frequently associated with the progression
of ascending thoracic aorta aneurysm (AsAo). Intrinsic wall
abnormalities cannot fully explain the differential aneurysm
progression resulting from different aortic leaflet fusion patterns
and asymmetry (34). Echocardiography findings have suggested
that abnormal blood flow could potentially trigger those
differences in AsAo progression. In the context of VHD, 4D-Flow
MRI has demonstrated to be a powerful tool to determine the
association of flow hemodynamic, especially in those situations
in which eccentric systolic blood flow jets result in abnormal
helical systolic flow. The latter has highlighted the potential
application of 4D-Flow MRI to study the progression and
stratify/predict the risk of AsAo development specially in BAV
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patients (34), while echocardiography is not a reliable method.
Moreover, recent studies have demonstrated the association of
WSS and aortic peak velocity with parameters of left ventricle
remodeling, allowing to distinguish BAV patients with or without
aortic stenosis or regurgitation (35). Post-operative follow-up
of reparative surgery of tetralogy of Fallot is another potential
application of 4D-Flow MRI (36). However, long acquisition
times, lack of blood pressure determination, susceptibility to
motion artifacts, poor spatial resolution and the need of massive
data post-processing are the main drawbacks of this technique.
In addition, aberrant hemodynamic changes are seen only
in advanced stenotic VHD and that represents a limitation
for hemodynamic analysis techniques. Earlier phases of the
VHD, such as asymptomatic sclerosis pre-stadium of well-
functional anatomically normal valves, may not be detected by
echocardiography or 4D-Flow MRI. Complementary imaging
techniques such as CCT may provide substantial information
on the detection and risk assessment of VHD. Multi-slice
CCT together with the implementation of new acquisition
techniques including ECG synchronization, retrospective image
reconstruction and application of algorithms such as Agatston
score (37), permit a direct, real-time and easy assessment of
calcium content in coronary arteries (38). It has substantially
improved the detection of early CVC stages. The high sensitivity
of CCT has improved the screening for CVC, evidencing a
progressive increment on CVC in patients over 60 years, which
is especially relevant in patients diagnosed with VHD. Moreover,
CCT combined with coronary angiography (gold-standard for
coronary lesion evaluation) has demonstrated a good correlation
between coronary calcium content and coronary artery disease
(39, 40). The suitability of CCT to screen early stages of valve
calcification in sclerotic valves with no hemodynamic obstruction
has been also demonstrated (41). Moreover, CCT screening has
proved to be a superior and more trustable method than carotid-
intima-media thickness or ankle-brachial index for identifying
patients at high risk (42). Finally, MRI and CCT can also provide
complementary information to improve assessment of the valve
lesion and cardiac function to aid the timing of surgery and
determine risk (43).

PATHOPHYSIOLOGY OF VALVULAR
CALCIFICATION

Over the past four decades, experimental and clinical research
has elucidated the pathophysiology of CVC. Ectopic calcification
is an active and tightly organized process, which recapitulates
several molecular mechanisms orchestrating physiologic
chondro/osteogenesis (44–46). Both the phenotypic trans-
differentiation into osteo/chondroblast-like cells and the active
ECM remodeling, including its mineralization, represent the two
hallmarks of ectopic calcifications (47) (Figure 2). In particular,
calcific VHD has been described as a multifactorial, complex and
active heterotopic endochondral lamellar bone-like formation
process, driving heart valve calcification, degeneration and
dysfunction (5, 6) toward integration of ECM remodeling,
osteogenesis, and angiogenesis. Heterotopic bone exhibits

morphological and biochemical features of orthotopic bone,
and it is capable of generating bone marrow (48). Higher
remodeling rates have been reported in calcified valves than
in physiologic bone formation (48) though, thus suggesting
uncoupling of bone formation and resorption activities (49).
However, histological observations in human specimens of
calcific valves have evidenced an 83% prevalence of dystrophic
calcification with only a 13% of active bone remodeling (5)
and a 92% prevalence of microfractures, which are the main
site of active bone remodeling. One could interpret valve
calcification as a senile degeneration leading to cellular aging and
death, and hydroxyapatite deposition on cellular degradation
products rather than an active osteogenic-derived mineralization
occurring on collagen and elastin fibers. Further research on this
regard will significantly contribute to the understanding of the
calcific VHD pathophysiology in the next years and it is currently
cause of controversy. Observation of advanced end-stage phases
in dystrophic human specimens could lead to misinterpretation
of the underlying pathology in which a “preliminary” heterotopic
bone-like tissue demonstrated by both in vitro and in vivo
studies, might lately be replaced toward a misbalanced bone
resorption (49) leading to an increased presence of dystrophic
mineralisation.

Mature valves have an avascular (50) trilaminar organization
including the upper surface of the valve or fibrosa (outflow),
the central spongiosa and the inflow-orientated ventricularis.
Those layers differ with each other by distinct ECM organization,
composition andmechanical properties [a detailed description of
the valve anatomy and function has been provided by Schoen
(44)]. Moreover, two major resident cells are found in the
valve: valve endothelial cells (VEC) and valve interstitial cells
(VIC). Although VECs are not fully characterized, differential
phenotypes and expressional profiles have been identified (51,
52). Biological functions of the VEC may include regulation
of permeability, mediate immune responses and establish a
paracrine signaling with VICs (53). The VIC represents a
heterogenous population of mesenchymal cell type which
shares several commonalities with vascular smooth muscle cells
(VSMC) and fibroblasts, acts as mechanical sensor thorough
complex cell-to-ECM interactions and shows highly dynamic
phenotype plasticity (54). The latter allows the VIC to contribute
to the permanent ECM turnover and reparative processes
guarantying the maintenance of the valve integrity and function
(44), but also contributes to the development of valve stenosis
(55, 56).

Calcific VHD is regarded as an active athero-inflammatory
disease associated with a damaged endothelium and an
unresolved immunological inflammation resulting from such
insult. The pathogenic role of hyperlipidaemia in the valve
was recognized toward the introduction of dyslipidaemia
experimental models (57, 58). Early studies in human aortic
valve lesions demonstrated the association among atherogenic
oxidized low-density lipoproteins (oxLDL) risk factor and
the expression of signaling molecules promoting osteogenic
processes (57). Moreover, inflammation plays a key role on
the pathogenesis of VHD with superimposed calcification (59).
Numerous histological studies have suggested inflammation to
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FIGURE 2 | Pathophysiology of valve calcification. VICs are myofibroblast-like cells endowed with high plasticity, allowing them to participate in reparative,

regenerative, and pathological processes. Underlying athero-inflammatory disease, aging as well as other clinical conditions such as chronic kidney disease or

hyperlipidaemia, can trigger the acquisition of synthetic, proliferative and migratory phenotypes by VICs. These conditions are often associated with a reduction of

defense mechanism against calcification. Two major features are recognized during valve calcification: (i) ECM remodeling, including the synthesis of a

collagen-enriched matrix and its mineralization, and (ii) osteo/chondroblast differentiation of VICs. Osteogenic processes are associated with the abundant synthesis of

collagen type-I and other ECM remodeling processes causing stiffness changes capable of perpetuate and extend the osteogenesis in the valve. A prestadium of

sclerosis in well-functional valves finally leading to stenosis and obstruction in an active heterotopic bone-like formation process has been described. Observations in

human samples also suggest the possibility of dystrophic mineralisation in advanced end-stages of calcific VHD. Pyrophosphate, osteopontin, osteoprotegerin,

gamma-carboxylated matrix Gla protein and circulating fetuin-A are listed as physiologic inhibitors of vascular calcification; while hyperphosphatemia and

hypercalcemia, expression of bone morphogenetic proteins or alkaline phosphatase and activation of osteo/chondroblast regulators (Runx2, Osterix, Wnt) are

counted among the pro-calcifying elements orchestrating osteoblast-like transdifferentiation. PPi, pyrophosphate; cMGP, gamma-carboxylated matrix Gla protein;

BMP-2, bone morphogenetic protein 2; ECM, extracellular matrix; CKD, chronic kidney disease; CHD, congestive heart disease; VIC, valve interstitial cells; VEC, valve

endothelial cells; GAGs, glycosaminoglycans; Ca10(PO4)6(OH)2, hydroxyapatite; Pi, inorganic phosphate; ALP, alkaline phosphatase; Bglap, bone Gla protein or

osteocalcin.

trigger ECM remodeling, fibrosis, and valve thickening leading
to the structural changes of VHD (60) and the subsequent
differentiation of VICs into osteoblast-like phenotypes (55).
Despite the commonalities and overlap of several risk factors,
both atherosclerosis and calcific VHD are currently considered
two independent pathologic entities mainly due to differences in
the biological progression of the disease, tissue characteristics,
clinical impact and resulting outcomes independent of plaque
rupture (8). Among other differences, a CD8T cell-based
inflammatory background has been evidenced in valve
calcification instead of the polyclonal lymphocytes reported
in atherosclerotic lesions (59, 61).

The discovery of genetic modifications such as Notch1
mutations and their association with dysfunctional tissue
structure of BAV and the spectrum of VHD has increased the

current knowledge of these abnormalities through congenital
cardiology (62). Signaling components of embryonic valvular
development, such as Notch1 as well as bone morphogenetic
protein (Bmp) members, transforming growth factor beta 1
(TGF-β1) or Wnt/β-catenin participate in the onset of AVS by
contributing to ECM remodeling, osteogenesis and angiogenesis
[further reviewed in (47, 63, 64)].

OSTEOGENESIS

Several cell types have been involved in the development
and progression of CVC and that includes vascular resident
cells (VSMCs, VICs, or VECs) and circulating cells, such
as mesenchymal stromal cells (MSCs), endothelial progenitor
cells (EPCs) or calcifying vascular cells (CVC) (47). A
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dysfunctional valvular endothelium together with an imbalance
between activators and natural inhibitors may promote the
calcification of neighboring VICs (Figure 2) (65–67). Different
VICs sub-populations have been identified in the heart valve
and may differentially contribute to the pathology of calcific
VHD (54). Multiple signaling molecules (such as Bmp2,
TGF-b, Wnt/b-catenin, VEGF, or Notch1) are integrated in
what resembles a pathologic post-natal recapitulation of fetal
valvulogenesis, including the acquisition of quiescent-to-active
phenotypes, an active ECM remodeling, cytokine release and
promoting in situ osteoblast/chondroblast-like differentiation
as an environmentally maladaptation (68, 69). Bmp2 is a
strong morphogen inducing osteoblast-like phenotypes, and
it plays a key role in the pathogenesis of VHD (47). Bmp2
signaling triggers nuclear translocation of Smad proteins and
the activation of osteogenic-regulators such as Runx2/Cbfa1.
Runx2 is an early master gene of osteoblast differentiation and
chondroblast maturation during heterotopic endochondral bone
formation (5, 6, 70). Active Runx2 can bind to the SP7 promoter
to induce the expression of Osterix, a master transcription
factor of differentiated osteoblasts. Both Runx2 and Osterix
bind to BGLAP promoter to induce osteocalcin, a marker for
differentiated osteoblasts, which contributes to maturation of
the mineralised ECM and it is present in calcified heart valves
(69). Moreover, ECM synthesis is induced directly by Osterix
and its binding to the COL1A1 promoter or indirectly by
Runx2 through the activation of ATF6 and subsequent COL1A1,
COL1A2, and BGLAP expression (66, 67, 70). In addition,
Osterix triggers the expression of alkaline phosphatase (ALP),
a pyrophosphatase capable of releasing inorganic phosphate
from PPi, thus inducing local hyperphosphatemia and PPi
deprivation. ALP also inhibits osteopontin phosphorylation
and thus its protective biological function. Finally, Wnt/β-
catenin pathway mainly perpetuates osteoblastic phenotype by
further induction of Runx2 and Osterix toward Bmp2-dependent
signaling (57).

It is now appreciated that VECs, under certain circumstances,
may undergo endothelial-to-mesenchymal transition, which is
reminiscent of the early formation of the endocardial cushions
(71, 72). The result might be an increase in the number
of VICs susceptible to display an osteoblast phenotype (45).
Dysfunctional VECs also manifest an altered secretome (73).
VEC-derived nitric oxide (NO) is a regulator of Notch1 signaling
in calcifying VICs (74), and a decreased Notch signaling has
been found in AVC (45). Moreover, genetic studies in BAV have
identified eNOS and Notch1 as candidate genes contributing to
the valve anatomy and the development of VHD (62). Notch
signaling leads to the cleavage and nuclear internalization of
the Notch1 intracellular domain. One of the target genes of
the Notch1 intracellular domain is the Hairy/enhancer-of-split
(Hes)-related with YPRWmotif (Hey) element, which is involved
in early valve development. Both the nuclear location of the
Notch1 intracellular domain and the expression of Hey1 are
regulated by the VEC-derived NO (74). Furthermore, Notch1-
dependent signaling is transduced through Bmp2/Runx2 axis,
which directly regulates Sox9 in chondrogenesis and is an
important mediator of AVS (75). Hey1 activated by Notch1

signaling forms a complex with Runx2/Cbfa1 and inhibits its
transcriptional activation (64).

Pluripotent resident cells, EPCs, MSCs, and MSC-like
pericytes have been found in calcified lesions suggesting a
role of progenitor cells in the development and progression
of ectopic calcification (45, 76, 77). The athero-inflammation
associated with the release of multiple cytokines and chemokines
may contribute to the recruitment of stem/progenitor cells
into an environment whose homeostasis has been hampered
by pro-calcifying factors and the depletion of physiologic
calcification inhibitors. Finally, bone marrow (BM)-derived cells
may contribute to replenishing the VIC population, modifying
the proportion of VIC subpopulations yielding increased
susceptibility to calcification. By using chimeric mice whose
BM was repopulated with enhanced green fluorescent protein
expressing total nucleated BM cells, Hajdu et al. documented the
engraftment of BM-derived cells occurs as part of normal valve
homeostasis (78).

ECM Remodeling
Besides providing biomechanical support, valvular ECM
participates in a plethora of biological functions, such as cell
communication and differentiation. In addition, the ECM
may contribute to ectopic CVC (74, 79, 80). Differentiation
of VICs toward myofibroblast or osteoblast phenotype is
highly dependent on the complex and unique VIC-to-ECM
components interactions (81). Therefore, a loss of the valve
ECM integrity causes malfunction and results in VHD. In
line with this, propagation of the inflammation-dependent
calcification of the heart valves is associated with the active ECM
remodeling resulting from the proteolytic and synthetic activities
of active macrophages, VICs and mast cells (82). Moreover,
substrate stiffness elicits the myofibroblast activation of VICs
which remaining persistent can lead to osteoblast differentiation
although the exact molecular mechanisms remain unclear
(83, 84).

Regulatory factors, such as thrombospondins, have been
found characteristically up-regulated in calcific valves (47).
Moreover, microstructural changes in collagen fiber number,
width, length, density or alignment may regulate pathogenic
processes compromising the mechanical properties of the valve,
in particular, and most frequently at the level of the spongiosa,
chondrogenic-like layer (80). Mechanistically, cartilage-specific
ECM genes are downregulated in calcifying VICs because of Sox9
downregulation (74). Moreover, ECM influences VEC function
and it is involved in VEC-to-myofibroblast transformation
toward EMT processes (85).

Angiogenesis
Heart valves have a sparse vascularity at the proximal
part (50) being considered mainly avascular. That valve
avascularity is seemly abrogated in VHD (86), and the extent
of neovascularisation correlates well with the burden of the
disease (87). The expression of pro- and anti-angiogenic factors
in stenotic valves or calcifying VICs (74, 88) has reinforced
the idea that angiogenesis in the valve may promote calcific
VHD, which calls for the use of modulators of angiogenesis
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in the therapy of valve degeneration (86, 88, 89). Accordingly,
anti-angiogenic therapy has shown a protective effect on
the valvular cusp endothelium (86). Immunohistochemical
studies have revealed the co-localization of micro-vascularization
with actively proliferating VICs, bone-related proteins, and
heavy calcification (90). In addition, during calcific VHD,
expression of osteonectin (pro-angiogenic and chondrogenic
factor) and Lect1/chondromodulin-1 (Chm-I) (anti-angiogenic
factor) is disrupted (74). In human calcified valves, the
expression of vascular endothelial growth factor (VEGF), matrix
metalloproteinases (MMPs) and angiogenesis is concomitant
with a downregulated expression of Chm-I.

Revisiting the physiology of bone formation, one could
speculate that valve angiogenesis is not the cause, but the
consequence of the osteogenesis perpetuation described for
endochondral bone formation or that may provide of support
to the thickened tissue produced de novo and resulting in a
hypoxic microenvironment requiring of oxygen supply (50).
An angiogenic switch of cartilage allows neovascular invasion
and triggers the replacement of cartilage by bone (91). Resting
chondrocytes become active and proliferative to differentiate
into pre-hypertrophic chondrocytes, which can then secrete
the cartilage matrix (92). Angiogenic factors such as TGF-β
or VEGF are normally expressed in the cartilage and Chm-I
has been proposed as an inhibitor during avascular phases
of chondrogenesis. Chm-I plays divergent biological functions
including chondrocyte growth and angiogenesis inhibition,
stimulation of osteoblast proliferation and differentiation with
a reduction of ALP activity (92, 93) and contribution to bone
remodeling (92). Accordingly, Chm-I expression is upregulated
by Sox9 during chondrogenesis in the avascular cartilage, but it
is not present in the late hypertrophic and calcified zones leading
to final osteogenesis (88, 91). In line with this, Chm-I deficient
mice showed a significant increase in bone mineral density and
lowered resorption (92). Moreover, the basal cartilage-like profile
of the normal andmature valve is lost during AVS, though in vitro
assays have shown an early up-regulation of Sox9 followed
by Runx2 and ALP up-regulation (94). This may indicate
an early chondroblast intermediate stage before the down-
regulation of Sox9 and Cmh-I. Noteworthy, angiogenic factors
and abundant vascularization have been mostly co-localized in
late-stage heavy calcified plaques (87, 94) with the presence of
osteopontin and osteocalcin suggesting a mature mineralised
ECM (90, 95) but also coinciding with the thickest remodeled
tissue. Importantly, VEGF induces osteoblast proliferation and
differentiation and osteoclast recruitment (96) but also inhibits
calcification of ovine VICs in the presence of particular
ECM compositions (97), highlighting again the regulatory
importance of the ECM in modulating the action of growth
factors.

According to another theory, VHD recapitulates the signaling
pathways that control developmental valvulogenesis (98). For
instance, Bmp2, canonical Wnt, TGF-β1, and Notch signaling
occurs during the endothelial-to-mesenchymal transition (99,
100) which may induce a myofibroblast phenotype on VECs and
the subsequent calcification if the signaling network activation
persists in time.

CURRENT THERAPEUTIC APPROACHES
FOR CALCIFIC AORTIC VALVE STENOSIS

Several pharmacological attempts have been made for
establishing a medical treatment of CVC. The regression
observed by in vivo calcification models suggests the existence of
endogenous mechanisms capable of dismantling the extremely
insoluble and stable calcium phosphate deposits (101). Potential
strategies to revert CVC have been proposed during the last
few years and reviewed by O’Neill et al. (101). Preliminary
evidence suggests a beneficial effect of treating calcific VHD,
but frequently in association with bone mass weakening
(101). Therefore, preventing or reverting the ectopic bone-like
formation in the cardiovascular territory may boost bone
resorption and increase the risk of fractures, which represents
a serious concern for extensive use in the elderly population.
To date, surgical valve replacement (SVR) represents the only
available therapeutic approach for treating VHD.

Valve replacement, specifically aortic valve replacement,
represents the second commonest cardiovascular surgical
procedure (102) and accounts for 10 to 20% of all cardiac surgical
procedures in the US (9). A 26% increase in the number of
patients undergoing aortic SVR was calculated over a 5-year
period comprising 2004–2009 in Great Britain and Ireland (103).
It is anticipated that the number of patients requiring SVR
will be 2.93-fold increased by 2050, in less than 50 years’ time.
Refusing to undergo SVR is associated with poor prognosis,
a significant morbidity (104, 105) and >12-fold the risk of
mortality (105). More than half of the patients will die within
the next 12–18 months of symptom onset (106). Risk factors,
co-morbidities and patient denial are common exclusion criteria
for valve replacement. According to a recent survey, about
40% of patients with severe symptomatic VHD and 70% of
patients with asymptomatic VHD were not eligible for SVR
(19). This heterogeneous population require therefore alternative
approaches.

The introduction of SVR has improved the outcome of
patients with VHD. Mechanical or biological prosthesis are
the two main options for current SVR (107). Mechanical
valves last longer and are still the gold standard for patients
under 60 years (108), but may come with a high inherent
risk of thrombosis and therefore a requirement for chronic
oral anticoagulation, based on coumadin derivatives. More
frequent use of biological prostheses (mainly porcine or bovine-
derived), introduction of minimally-invasive implantation
techniques, and better control of risk factors and complications
(109, 110) have considerably improved the clinical outcome of
people undergoing SVR (111). Geometrical, nano-structural
and material features of the bioprosthetic valve are more
similar to the native tissue. Moreover, recent bioprosthetic
valve improvements have significantly lowered the age for
recommended mechanical valve replacement (111, 112).
Nevertheless, biological prosthesis has a relatively poor long-
term durability; thus, it does not provide a definitive cure.
Instead, owing to the progressive deterioration and failure of
current valve substitutes, native VHD is traded for “bioprosthetic
valve disease,” which entails expensive treatments, hospital

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 November 2018 | Volume 5 | Article 155

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Jover et al. In vitro Heart Valve Engineering

readmission and reintervention (110). Structural prosthetic
valve deterioration represents a major limit for durability,
independently the substitute is a homograft or xenograft.
Several factors contribute to this phenomenon. Animal-derived
prostheses, now prevalently used because of the shortage of
human valve substitutes, are subjected to decellularization
procedures to prevent recipient’s immune response, and are
cross-linked with glutaraldehyde, to provide tensile strength
and elasticity, and render them further non-immunogenic.
However, improvements in pliability and tolerogenicity come
at a price. In fact, elimination of VICs, which synthetize
ECM proteins and possess contractile properties, deprive
the valves of their unique function in such a mechanically
demanding environment and makes prostheses more susceptible
to degeneration. Moreover, residual fragments of devitalized
VICs and VECs may act as hydroxyapatite nucleation sites
and induce activation of immune responses. Atherosclerotic
processes also participate in prosthetic valve remodeling,
with initial accumulation of oxLDL, followed by monocyte
recruitment, generation of a pro-inflammatory milieu, collagen
disruption and osteogenic differentiation of resident endothelial
cells (ECs) and precursor cells recruited from the circulation
(113, 114). Damage of the ECM is cumulative: calcium deposits
enlarge and merge, forming nodules that interfere with the
bioprosthesis function. Manufacture protocols preserving ECM
integrity and encouraging in vivo recellularization prolong
durability (115, 116). Anti-calcifying agents are also effective
(117). However, ECM disorganization and degradation remains
the ultimate limiting factor in durability (118).

Pediatric or adolescent patients diagnosed with congenital
valve diseases are specially challenging. The risk of prosthetic
valve failure becomes relevant in these populations with a 10%
rate of failure within 4 years after implantation (117) and usage
of mechanical valves linked to chronic oral anticoagulation does
not fit with their active lifestyle. Failure of somatic growth, repair
and remodeling are also common problems of both mechanical
and biological prosthesis. The ideal valve prosthesis has yet to be
developed.

FUTURE SOLUTIONS FROM
REGENERATIVE MEDICINE AND TISSUE
ENGINEERING OF HEART VALVES

Landmark experimental and clinical work has demonstrated the
potential of tissue engineering, which combines cells from the
body with template materials, to guide the somatic growth of
new tissue and correction of organ defects (119). Application
of this approach has been proposed to improve the durability
of cardiac prostheses and thereby optimize long-term outcomes
in patients with congenital or acquired valve defects. Therefore,
Tissue Engineering of Heart Valves (TEHV) has emerged as a
valuable alternative for definitive treatment of VHD promising
to overcome either the chronic oral anticoagulation or the
time-dependent deterioration and reintervention of current
mechanical or biological prosthesis, respectively and to offer
a valve substitute capable to grow in a “physiologic-like”

manner. In the past few decades, two main strategies have
been developed to generate TEHVs. The underpinning concept
for both TEHVs approaches is that patient’s own cells will
generate a viable and physiologically competent tissue able to
withstand hemodynamic forces before (in vitro) or after (in
situ) implantation. Briefly, in vitro TEHV uses various types
of autologous cells, including stem/progenitor cells, that are
expanded in culture, seeded on decellularized biological (120,
121) or synthetic scaffolds (122, 123) (see below), and may
be conditioned in a bioreactor to ensure fast and competent
“natural-like” matrix production before implantation (124). The
underlying concept is that in vitro incorporation of cells shall
confer prosthetic grafts with the characteristics of a living
tissue that remodel in a physiologic manner and concert with
cardiac and whole-body needs, withstanding the impact of
degeneration and calcification. Implantation of in vitro TEHV
is an appealing alternative for pediatric patients with congenital
VHD requiring of SVR even two decades earlier than VHD
patients with anatomically normal valves. On the other hand,
in situ TEHV, aims to create an acellular biodegradable scaffold
which gradually transforms into a living valve by recruiting
endogenous cells upon orthotopic implantation (125–127). An
interesting combination of the in vitro and in situ approaches
is represented by tissue-engineered matrixes (TEMs), which
are usually made of autologous vascular cell- or fibroblast-
derived ECM/fibrin gel sheets undergoing a decellularization
process before implantation. TEMs are supposed to provide a
more natural substrate for homing of the recipient’s cells (128,
129). A similar strategy to produce a natural ECM graft is the
in vivo TEHV by which synthetic non-degradable molds are
implanted at sub-cutaneous level and expected to produce a
collagen-rich, non-immunogenic, harvestable, and implantable
fibrotic capsule (108). In the in vitro procedures and TEM, a
balance between the extent of decellularization and conservation
of the native properties of the ECM must be reached to
avoid undesired alterations of biomechanical and hydrodynamic
properties. The in situ approach is instead totally reliant on
the endogenous capacity of the hosting organism to mobilize
and incorporate the right cells, which may be negated by a
disease-associated alteration in cell behavior (130–133). The two
main strategies, in vitro vs. in situ, are briefly summarized in
Table 1.

A three-dimensional scaffold and the correct choice of
cells are the cornerstone elements to consider generating
a living valve substitute. A plethora of approaches and
techniques have been established on TEHV and that has
been recently and extensively reviewed elsewhere (134–136).
Unique valve mechanobiology features and implications in the
development and design of TEHV has been nicely reviewed
by Schoen (137). Furthermore, utilization of different cell
sources may confer of additional properties to the valve
substitute which may, or may not, be desirable in the VHD
environment. The cell of choice to be seeded in in vitro
TEHV should sense and perform optimal adaptative responses
to environmental changes. All that must be considered before
moving from the bench to the bedside and is further discussed
below.
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TABLE 1 | Advantages and disadvantages of in vitro and in situ TEHV.

In vitro TEHV In situ TEHV

Advantages • Exogenous delivery of stem/progenitor cells in an environment with a

deteriorated endogenous reparative/regenerative system

• Promotion of a “physiologic-like” reparation/regeneration of the

injured area by the exogenously delivered stem/progenitor cells

• Promotion of resident cell recruitment

• Phenotype modification of recruited cells through stem/progenitor

cell-derived secretome or other mechanisms

• Bioprosthetic-derived in vitro TEHV displays a more "native-like”

ECM. Alternatives to GA cross-linking may inhibit calcification and

there is a lower ECM damage than in decellularized tissue used in

many HV implants

• A dynamic maturation prior implantation may favor a desired cell

profile and ECM remodeling, including collagens as well as

non-collagen proteins (e.g., proteoglycans and glycosaminoglycans)

• Cell seeding prior implantation reinforce the capability of the TEHV to

support cell functions such as viability, proliferation or migration in

both static and dynamic conditions

• Inhibition of thrombogenic events

• Tailored prosthesis according to patient’s anatomy

• Maintained natural ECM architecture and depending cell signaling

• Biodegradable surrogates mimicking the native ECM

• Possibility of Tissue Engineered Matrix (TEM) application

• More rapid implantation and possibly non-invasive

• Resident cell recruitment

• Surrogates mimicking the native ECM

• Off-the-shelf scaffold manufacturing. Limitless supply and ready-to-be

implanted for urgent implantations

• Different and desired growth factor or drugs can be delivered

• Tissue Engineered Matrix (TEM)-in vitro synthesis of a natural-like ECM

• Mechanical, chemical, and biochemical features of the construct will

stimulate and direct the host’s native regeneration capabilities

• Controlled and tailored properties

• Easy, reproducible and less expensive formulation

• Less prone to infections or contaminations

Disadvantages • Time-consuming, need of cell harvest, expansion, repeated

manipulation, potential infection

• Decellularized products, related toxicity and calcium nucleation sites

mainly if using GA cross-linking

• Multilineage commitment of exogenous stem/progenitor cells can

favor undesired phenotypes

• Undesired phenotypes in recruited cells including myofibroblast

profiles. Leaflet contraction

• Possible immunotherapy for allogenic cells. Autologous cells are not

ideal for old patients or patients with CVD

• Product heterogeneity depending on baseline characteristic of the

donor

• Potential malignant transformation of derived cells

• Immunogenic response if decellularization process not completed

• Optimal cell type/s to be determined

• Advanced Therapy Medicinal Product-GMP regulations for cell

product and scaffold may make more complicate to transfer the

results from the bench to the bedside

• Potential modification of prosthesis geometry in tailored prosthesis

• TEM limitations-decellularization (and cross-linked) product, related toxicity

and creation of calcium nucleation sites. Some could be not cross-linked

• Lower capability of stem/progenitor reparative cell recruitment due to

underlying impaired mobilization: physiologic reparative and regenerative

processes must be lower under certain clinical conditions causing VHD

• Thrombogenicity in collagen-based exposed surfaces needing of rapid in

vivo re-endothelisation in hypercoagulable diseases

• Limited capability to modify diseased phenotype of recruited resident cells,

mostly subjected to the physical properties of the scaffold.

• Myofibroblast phenotype activation and leaflet contraction

• Time-limited delivery of drugs or growth factors

• Prosthesis-patient mismatch in off-the-shelf products

• Toxicity of degradation products. Induction of inflammatory response

• Difficult balance among hydrolytic polymer degradation and tissue

formation in a systemic pathological environment which can drastically

modify mechanical and biochemical properties

In green color are highlighted the potential advantages; in red color the potential disadvantages. HV, heart valve; ECM, extracellular matrix; GA, glutaraldehyde; TEHV, Tissue Engineered

Heart Valve; GMP, good manufacturing practice; CVD, cardiovascular disease.

SCAFFOLDS FOR IN VITRO TEHV

Intuitively, the best scaffold/graft to comply with all the
requirements of TEHV would be the native aortic valve-derived
ECM or similar biological composites. Commercially available
bioprostheses are being currently tested as cell carriers thanks
to significant improvements in decellularization protocols, which
include novel cross-linking procedures to increase pliability while
avoiding calcification (138). For instance, glutaraldehyde fixation
replaced by heparin has shown to ameliorate valve prosthetic
calcification rates probably by blocking calcium phospholipid
binding sites as well as to inhibit thrombosis (108, 139). Other
cross-linking alternatives are the reduction of free amine groups

and targeting free aldehydes by using reducing agents capable of
forming Schiff bases whichmay allow for glycosaminoglicans and
elastin stabilization, avoid collagen deformation and inhibition of
calcium binding (138).

As anticipated above, the typical in vitro approach is to
seed cells on a scaffold, and induce differentiation and ECM
synthesis. However, it has been demonstrated that respiring
cells on the scaffold periphery and the size of the scaffold
can restrict oxygen and nutrients availability at the center of
the tissue, leading to areas of necrosis and degeneration(140).
Different procedures have been proposed to circumvent this
problem, including mechanical compression (141) and flow
perfusion (142). The implementation of dynamic systems, such
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FIGURE 3 | Main TEHV approaches comparison. Two main TEHV strategies are being explored; in vitro and in situ. In vitro TEHV consist of the combination of, ideally,

autologous cells (e.g., MSCs, fibroblasts, EPCs, HSC, PCs or others) that may, or may not, be previously differentiated into the target cell. Those cells are seeded on a

scaffold or graft preparation and statically or dynamically matured prior orthotopic implantation. On the other hand, in situ TEHV is based on the use of an acellular

scaffold/graft capable to recruit endogenous cells which will remodel and integrate. Both in vitro and in situ meet at the scaffold/graft preparation step. Scaffold/grafts

can be based on decellularized xeno/homografts or synthetic totally/partially biodegradable materials (hydrogels, porous, or fibrous). Both approaches can be

enriched with biomolecules or drugs stimulating desired cell recruitment and phenotypes or inhibiting deleterious events such as calcification, angiogenesis, etc of the

TEHV. After implantation, the TEHV must be able to regenerate and integrate into the recipient host and be native-like functional. MSCs, mesenchymal stromal cells;

EPCs, endothelial progenitor cells; HSC, hematopoietic stem cells; PCs, pericytes.

as use of bioreactors, before implantation into the recipient host
may give better results than static systems and considerably
contribute to maintain viability of the three-dimensional TEHVs
supporting its maturation. Mature grafts/scaffolds might be
easier to integrate into the recipient’s heart and to acquire the
definitive native features of a living valve (143–145) (Figure 3).
However, dynamic culture conditions can also negatively impact
cell differentiation and tissue formation. Since two intermediates
products are combined in the final Investigational Medicinal
Product [definition provided in Directive 2001/20/EC, Article 2
(d)], it is vital the latter is checked for quality and quantity before
implantation.

Cell Types for in vitro TEHV
Cells represent the biological component of the TEHV, e.g., the
ones supposed to confer living properties. The optimal cell type
for valve engineering should be non-immunogenic and able to
maintain its specialized function or gain such a specialization
through differentiation. Autologous cells are the first choice, but
they show significant dysfunctions if obtained from old patients
or patients with cardiovascular diseases (146), while allogenic
cells might be immunogenic (147). Induced pluripotent stem
cells (iPSCs) generated by reprogramming somatic cells would
be the ultimate solution for patient-tailored therapy but there
are still several concerns (148). Hence, differentiated cells or
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progenitor cells, including VICs, VECs, MSCs, BM-mononuclear
cells (MNCs), fibroblasts or EPCs, remain a safer option thus far.
We will go through some examples (144, 149–155) here which
are further summarized in Table 2.

Two main scopes are followed for graft repopulation: (i) to
recreate the internal biologic environment of a valve and (ii)
to provide them with an EC coverage. Short-term follow-up
studies in sheep and primates showed the potential advantage
of repopulating the core of scaffolds/grafts with VICs or MSCs
(156, 179–181). However, other aspects such as the prone
differentiation into myofibroblast or osteoblast phenotypes must
be considered and is discussed below for the main cell sources
explored so far.

Mesenchymal Stem Cells (MSC)
MSCwith different origins seems to be a consistent choice for the
TEHVs cellularization since the VIC represents a heterogenous
population of cells sharing a mesenchymal ancestor. Moreover,
the VIC shares phenotypic commonalities with VSMC and
fibroblasts, that could be achieved by MSC differentiation as
confirmed by antigenic expression (21, 22, 156, 157). In addition,
MSCs are easy to be harvested and expanded in vitro, and
there are multiple tissue sources (e.g., bone marrow, adipose
tissue, peripheral blood, umbilical cord blood, umbilical cord,
and placenta or amniotic fluid). Both animal and human studies
support the immunoprivileged state of the MSC and evidences
their unique immunomodulatory characteristics. Accordingly,
the MSC is nowadays the preferred cell of choice for in vitro
TEHV and the several studies in animal models account for
that (147, 182). Since MSCs are progenitor stem cells able
to differentiate in all the valvular cell phenotypes, they can
overcome the issue of primary cells harvested from old and sick
patients (147). Finally, unlike other stem cells, MSCs do not
develop teratomas and there are not ethical concerns as for the
embryonic stem cells (ESCs) (183).

MSC-bioengineered valves differentiated through
conditioning in biomimetic and dynamic environments have
shown physiologic profiles in terms of ECM composition (e.g.,
higher amounts of collagen type I and III), mechanical properties
and VIC/myofibroblast markers expression (147, 183). These
studies have also shown the influence of chemical, flow, and
flexural stimuli on the cell phenotype expression and synthesis
capabilities, also demonstrating an enhanced outcome of their
synergic action. Moreover, MSC preserve their phenotype
plasticity, being able to express endothelial or mesenchymal
markers in response to different biochemical and mechanical
stimuli (157). No evidence of glycosaminoglycans synthesis
has been demonstrated by MSCs, but that issue could be
circumvented by an additional stimulation with concomitant
insulin and hypoxic conditioning (184). In vivo experiments
performed on rat, sheep, and canine models have confirmed
the positive in vitro outcomes. MSCs differentiation and
different secretion of ECM components were mirroring the
native structure (156). Cell labeling of implanted cells has
also suggest their active collaboration in tissue regeneration
(152, 153). However, performance issues, such as regurgitation
and leaflets mobility restriction, have been found in some
MSC-bioengineered substitutes (158).

Animal model, mainly pig and sheep, can give some help
to test the valve ability to withstand some aspect of the
immune reaction and calcification. Sheep model are preferred
because of their valve anatomy similarity with humans, and
the slower growth pace compared to the pigs. Moreover,
juvenile sheep models represent the worst-case scenario to
evaluate calcification because of the high level of calcium and
phosphorous in the serum. However, they do not consider all
the peculiarity of the human immune system. For instance,
sheep have reduced platelet activity than the humans (185).
Therefore, many in vivo studies ended up in failures when
translated to clinical practice (186, 187). Comparison studies
attempted to determine the superiority of available cells products,
in particular, MSCs vs. other cell types, such as BM-mononuclear
cells (MNCs) or CD133+ aortic-derived cells (144, 154, 188).
An interesting report from Vincentelli et al. (154) compared
the efficacy of MSC- or MNC-engineered TEHVs implanted
in lambs. Both cell groups promoted the re-endothelization of
the TEHV through recruitment by the recipient’s ECs after
4 months implantation. However, MNC-seeded valves caused
leaflet thickening, retraction, inflammation and calcification,
while the MSC-seeded valves displayed a αSMA+ cellularization
with no signs of calcification.

Controversial results have been observed in humans and
the therapeutic use of MSCs (188). Modest or null benefit
has been documented in clinical trials using BM-MSCs (189,
190). In the context of VHD, experiments are mostly limited
to in vitro, static or dynamic, TEHV cellularization (185,
186). The experimental results of human in vitro studies
are aligned with the animal-derived MSCs in vitro models.
Dynamic culture enhanced the construct mechanical properties,
which were comparable to the native valves; tissue formation
and organization; endothelialization; and native-like markers
patterns (150). Differentmechanical stimuli, or different intensity
of them, promote several MSC behaviors such as migration
or differentiation (144). For example, media enriched with
VEGF and high shear stress leads to endothelial phenotype
differentiation (191, 192). Concerns also surround the stability
of the acquired phenotypes and the potential unwanted fibrotic
overgrowth causing retraction and regurgitation of the TEHV.
In fact, osteogenic markers (such as alkaline phosphatases,
osteopontin, and osteonectin) have been found expressed in
the implanted graft, suggesting the susceptibility to prosthetic
valve calcification (132, 147). Pro-osteogenic cells may influence
resident VICs to acquire similar properties, thus raising concerns
about their transplantation into pro-calcifying environments.

Endothelial Progenitor Cells (EPCs)
Similarly to the MSCs, the endothelial progenitor cells (EPCs)
have broaden differentiation potential and can be supplied
by non-surgical procedures, since they can be isolated from
peripheral and umbilical cord blood (147). EPCs are particularly
interesting because of their capability to differentiate into EC
and to contribute to vascular regeneration and development as
well as to neovascularization processes after limb or myocardial
ischemia (193). Moreover, EPCs can undergo EMT processes to
acquire a VIC-like phenotype under determinate stimuli (e.g.,
growth factors such as TGFβ1 or mechanical conditioning) and
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therefore offering the possibility of a complete valve regeneration
with a single cell type (163, 194, 195). However, EPCs may
also contribute to different pathological stages including cancer
and diabetes (196, 197) and the ideal antigenic profile remains
controversial (165).

In vitro and in vivo experiments have demonstrated the
ability of the EPCs to colonize the whole TEHV. Importantly,
EPCs express both endothelial andmesenchymal lineage markers
(CD31 and α-SMA, respectively), spatially arranged in a native-
like fashion with a concomitant expression of MMPs and
TIMPs, suggesting an active remodeling which recapitulates
a developmental-like process (198). The result is a higher
mechanical performance than the one achieved by other cell
sources (164). No calcification or thrombi were noticed in all
the reported studies. Furthermore, EPCs have been implanted
on valve leaflets in animal models leading to a reduced infection
and graft failure (199). However, the lack of leaflet pliability
and discontinuous endothelialization raise concerns about the
EPC-based bioengineered devices (151).

In vitro studies conducted on human-derived EPCs show
similar results to those find in vitro and in vivo using animal
sources. Human EPCs derived from umbilical cord blood have
been co-seeded with Wharton’s Jelly-derived myofibroblasts.
Biochemical and mechanical stimulations are also necessary
to promote the desired native-like mechanical organization,
phenotype determination, and functionalization (166, 167, 170).
Human EPCs harvested from umbilical cord blood have been
also combined with prenatally harvested chorionic villus-derived
MSCs to provide a tissue engineered prosthesis for pediatric
patients. A good phenotype and mechanical properties of the
resulting prosthetic valve was achieved (162).

Clinical studies of re-endothelialization have confirmed the
feasibility of correcting pulmonary valve defects using allografts
engineered with vein-derived autologous ECs or EPCs (200).
To the best of our knowledge, the only one human in vivo
study took place in Republic of Moldova in 2002 and was
published on Circulation in 2006. Two pediatric patients affected
by tetralogy of Fallot, underwent a pulmonary valve replacement
with decellularized human pulmonary valves which have been
repopulated by autologous MNCs from their peripheral blood.
After valve recellularization, the cells were characterized as EPCs.
Throughout the follow-up duration (3.5 years), the patients
recovered well. Themselves and their prosthetic valves had a
somatic growth, and there was no complication whatsoever. Only
a trivial regurgitation was reported (168).

Induced Pluripotent Stem Cells (IPSC)
In some cases, adult stem cells are not enough proliferative
due to diseases or patient old age. A good alternative might
be the iPSC, which are autologous reprogrammed fibroblasts,
able to differentiate in MSCs and ECs. Using this cell type,
ethical or need for compatible stem cells issues are avoided.
Simpson et al. managed to reprogram skin fibroblast into
iPSC, and then produce iPSC -derived MSCs (iPSC -MSCs)
and iPSC -derived ECs (iPSC -ECs). iPSC -MSCs were seeded
on decellularized human pulmonary valves, resulting in valve
repopulation and ECM production (171). Compared with
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MSCs, the iPSC -MSCs have higher proliferation potential
and have some expression pattern similarities with VICs
(172). However, there are still safety concerns about IPCSs.
Recent reports have emphasized the pitfalls of iPSC technology,
including the potential for genetic and epigenetic abnormalities,
tumorigenicity, and immunogenicity (148).

Native Cell Types: VIC and VEC to
Bioengineer TEHV
TEHV seeded with human mitral or aortic VICs can generate
a valvular tissue with mechanical properties similar to the
naive human aortic valve (176) while retaining native antigenic
expression (201, 202). Similar results have been reported for
human VICs isolated from sclerotic valves (146). However,
several models using native VICs and VECs to produce in vitro
TEHV aim to model the pathological development of prosthetic
degeneration, calcification and fibrosis by mimicking native-like
environments rather than to design prosthetic solutions (203,
204). Other studies have used native resident cells to establish
tissue engineering and cell culture protocols (147, 176, 205).
For instance, VICs seeded on heparin-coated wells in presence
of TGF-β1 undergo to activation into myofibroblast phenotypes
with enhanced synthetic and contractile activity, producing stress
fibers and expressing α-SMA, all of them typical markers of active
VICs (173). Mechanical properties of the scaffolds are also tested
on native resident cells to better understand the mechanobiology
of the VIC. Stiffer surfaces enhance their myofibroblastic activity,
their density, and spreading (84). Conducting those studies
is especially relevant to develop methods capable to obtain a
temporary myofibroblast phenotype. Myofibroblasts are known
to exert wound healing function but its persistence may promote
fibrosis and calcification causing prosthetic valve disease (81, 83)
as well as prosthetic retraction and regurgitation due to an
excessive contractibility (206).

A priori, more interesting for therapeutic applications would
be the VEC given the phenotypic peculiarities mentioned
above. Those unique properties allow the VEC to provide an
antithrombogenic surface, replenish the VIC population toward
EMT processes and regulate VIC phenotype, in response to
mechanical and biochemical stimuli. Indeed, Butcher et al.
described the capability of the VEC to maintain quiescence of
bioengineered VICs (73). However, difficult harvest and their
degeneration can lead to valve failure due to neo-vascularization,
infiltration of inflammatory agents, or lipid deposition, amongst
the many (207). In addition, VECs undergoing to EMT can
express osteogenicmarkers, not reported in other EC populations
(72, 85). Although VECs can trigger valve dysfunction, providing
an endothelial lining is a main concern when designing TEHV.
That justify the use of primary endothelial cells (ECs) or EPCs in
many studies (147).

Other Native Resident Cells: ECs,
Myofibroblasts/Fibroblasts/VSMC
A way to attempt to reproduce the valvular structure is through
using cell types whose lineage is close to VICs and VECs
including ECs, fibroblasts (FBs) and VSCM. Sequential seeding of
FBs and human adipose-MSC-derived endothelial cells were able
to colonize and penetrate into animal decellularized heart valves

(177). However, activation of FBs and VSMC into myofibroblasts
has been also reported leading to expression of cytokines, and
scaffold degradation and contraction (143, 178). Incorporation
of ECs lining seems to stop it (178). Those approaches are
getting us close to understand the mechanisms to switch off
and on undesired phenotypes by controlling the mechanical
and biochemical signals of the designed TEHV (208). In line
with in vitro results, TEHV bioengineered with myofibroblasts
and ECs in sheep for 8–20 weeks was associated with leaflet
thickening and moderate regurgitation (149, 151). Incipient
calcification and regurgitation have been also found in BM-
derived SMC valve substitutes implanted in sheep (155).

The utility of using native resident cells stands also in
establishing the suitability of scaffolds designated for in situ
TEHV and their capability to accommodate the recruitment of
resident cells and a proper phenotype.

Alternative Cell Sources
There are other cell products with potential application in
the in vitro TEHV with minor or not assessment so far. For
example, two fractions have been differentially characterized
among the progenitor cells isolated from the amniotic fluid. It
has been shown that CD133+ fraction of the mononuclear cells
in the amniotic fluid can acquire endothelial phenotype, whereas
the CD133− fraction can differentiate into myofibroblast-like
cells. Those cells are especially relevant for the preparation of
cellularized valves before birth (169). An unexplored alternative
for in vitro TEHV in the adult is the suitability of heterogeneous
perivascular stem/progenitor cells described in the vascular
niche by our group and others and considered native ancestors
of heterogenous MSCs (179, 209). The therapeutic potential
of those perivascular cells in the cardiovascular regenerative
medicine has been already demonstrated (210–212). Moreover,
adventitial perivascular progenitor cells (APC) derived from
cardiac surgery saphenous vein leftovers have properties, which
make them a potential candidate for regenerative medicine
(145), including the suitability for cellularization of xenografts
(213) and application into myocardial ischemic models (214–
216). The latter has shown the superiority of the APC to keep
their specialized function upon implantation without acquiring
undesired phenotypes (214). Importantly, intramyocardially
transplanted APCs did not induce calcification, in contrast
with BM-MSCs. It remains unclear if these properties are
peculiar to APCs. In vivo and in vitro studies demonstrated the
capability of other pericytes to contribute to the pathogenesis
of vascular calcification toward osteogenesis and angiogenesis
promotion from the adventitial vasa vasorum and the intimal
layer (217). However, no intact perivascular coat has been
described yet around the new vessels irrigating the growing
of the advanced plaque-like tissue (87) and BM-MSC-derived
endothelial cells and adventitial Sca1+ cells, rather than derived
from adventitial vasa vasorum, have been described in association
with atheromatous plaque progression (218, 219). Further
evidences are needed to state that the APC is a cell of choice
for in vitro TEHV. Adding new cell sources may bear the
risk of adding more approaches to the several techniques and
approaches found in the literature.
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ADDITIONAL CONSIDERATION TO
CHOOSE THE PROPER CELL TYPE FOR
IN VITRO TEHV

In order to improve graft durability, additional aspects must
be considered. (A) Cell-graft interactions. These features are
inherent to the cells, but also depend on proper interactions
between the “right cell” and “right prosthesis.” For instance,
VEGF significantly inhibits the formation of calcium nodules
when ovine VICs are grown on collagen, fibronectin, and
laminin (97), while may confer osteoblast-like phenotypes using
other substrates, suggesting that providing “right” specific ECM
and/or growth factors may protect VICs from calcification and
degeneration. Combining cells and prostheses already available
in a clinical format may provide the means for swift exploitation.
Thus it may be advantageous to test them first. (B) Cell
accessibility and scalability. Tissues that are easily accessible as
a source of candidate cell products represent the ideal solution.
However, thanks to advances in cardiac imaging, it is now
possible to obtain tissue specimens for cardiac cell harvesting
with minimally invasive procedures. Additionally, expansion
and storage protocols of various cell types are well established,
thus allowing potential use of diverse cell populations for TE.
(C) Tissue specificity. It is thought that progenitor cells and
differentiated cells maintain an epigenetic memory of the source
tissue. In line with this concept, cardiac progenitor cells, VICs
and VECs may represent the logic solution for disease conditions
that require reparative cardiomyogenesis or valve replacements.
(D) Paracrine activity. As discussed above, cells seeded onto
the graft/scaffold represent a source of biomolecules, favoring
re-endothelialization, new native-like ECM (138). In addition,
the presence of cells can decrease the degradation rate of the
constituent scaffold ECM resulting in enhanced preservation of
its mechanical properties (176) and eventually against prosthetic
calcification. (E) Cell retention on the implanted scaffolds. This
important aspect has not been extensively assessed, because of the
difficulties in tracking cells incorporated into the graft. A study
investigating TEHVs made by autologous canine BM-MSCs,
seeded on allogenic or porcine-derived xenogeneic pulmonary
valves demonstrated cell retention of 1 and 3 weeks, respectively
(153). It remains uncertain whether the pathologic and pro-
calcifying environment found in the aortic wall contiguous to the
prosthetic valve implantation site may affect the retention and
“right” phenotype preservation of cells used for TEHV and that
needs to be studied.

CONCLUSIONS

A wide range of approaches is still being explored in the
manufacture of TEVHs, based on established technologies and

novel cutting-edge techniques. Due to many patients targeted by
TE for substitution of cardiac valves, the financial volume for
these technologies/products is substantial. A market forecast for
tissue engineered products indicates the total value will surpass
$4.8 billion by 2028.

Several publications with promising in vivo and in vitro
results have underestimated the effects of the “minor outcomes”
reported and that could lead to valve substitute degeneration in a
next generation of the current “biologic prosthetic valve disease.”
Active native-like ECM deposition and even valvulogenesis-like
events must be desirable during the process of valve substitute
production, but those must be abolished thereafter to avoid
excessive fibrosis, contraction, retraction, degeneration, and
calcification of the valve substitute. On this regard, the ideal
cell type of choice has yet to be determined and more research
is needed to provide the best therapeutic alternative to both
adult and congenital VHD. Besides, results from experimental
modeling performed with resident native cells seeded on
different types of scaffolds, show that scaffold compositions
or designs still need to be substantially improved to achieve
the correct cell behavior in a diseased environment. Further
research on this regard, combined with a better knowledge of
the pathology, including the factors triggering myofibroblast
phenotype perpetuation, osteoclast recruitment in the calcific
valve or the exquisite behavior of the VEC, will significantly
contribute to successfully develop valve substitutes. Innovative
technologies are required to meet specific, quantitative standards
of safety and performance. Similar standards will have to
be developed to enable routine clinical use and customized
fabrication of TEHVs.While a large number of options have been
tested in animal models, more work is warranted before the use
of TEHVs can be proposed as a better therapeutic option than
available prostheses.
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