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The physicochemical deposition of calcium-phosphate in the arterial wall is prevented

by calcification inhibitors. Studies in cohorts of patients with rare genetic diseases

have shed light on the consequences of loss-of-function mutations for different

calcification inhibitors, and genetic targeting of these pathways in mice have generated

a clearer picture on the mechanisms involved. For example, generalized arterial

calcification of infancy (GACI) is caused by mutations in the enzyme ecto-nucleotide

pyrophosphatase/phosphodiesterase-1 (eNPP1), preventing the hydrolysis of ATP into

pyrophosphate (PPi). The importance of PPi for inhibiting arterial calcification has been

reinforced by the protective effects of PPi in various mouse models displaying ectopic

calcifications. Besides PPi, Matrix Gla Protein (MGP) has been shown to be another

potent calcification inhibitor as Keutel patients carrying a mutation in the encoding gene

or Mgp-deficient mice develop spontaneous calcification of the arterial media. Whereas

PPi and MGP represent locally produced calcification inhibitors, also systemic factors

contribute to protection against arterial calcification. One such example is Fetuin-A,

which is mainly produced in the liver and which forms calciprotein particles (CPPs),

inhibiting growth of calcium-phosphate crystals in the blood and thereby preventing their
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soft tissue deposition. Other calcification inhibitors with potential importance for arterial

calcification include osteoprotegerin, osteopontin, and klotho. The aim of the present

review is to outline the latest insights into how different calcification inhibitors prevent

arterial calcification both under physiological conditions and in the case of disturbed

calcium-phosphate balance, and to provide a consensus statement on their potential

therapeutic role for arterial calcification.

Keywords: arterial calcification, pyrophosphate, gla proteins, klotho, osteoprotegerin, osteopontin, fetuin

Vascular calcification (VC) is a common occurrence in patients
affected with chronic diseases including diabetes, chronic kidney
disease (CKD), or atherosclerosis. VC is also a hallmark of rare
genetic diseases including pseudoxanthoma elasticum (PXE),
generalized arterial calcification of infancy (GACI), Keutel
syndrome, and progeria (1). Although the pathogenesis and
clinical significance of VC are dependent on the etiology,
the endpoint is invariably the formation of hydroxyapatite
(HA) deposits in the arterial wall. Over the last two decades,
studies have identified a number of calcification inhibitors
in the healthy vessel wall that act to protect the vascular
smooth muscle cells (VSMCs) from calcification. These factors
act by either directly interfering with molecular pathways
and/or sequestering hydroxyapatite components impairing their
assembly and deposition. Their actions also depend on the stage
of crystal formation and environmental context. Tremendous
efforts have been put into the understanding of the mechanisms
involved in the activity of these endogenous inhibitors that
represent attractive factors with therapeutic relevance to VC
treatment.

INORGANIC PYROPHOSPHATE

Inorganic pyrophosphate (PPi), which consists of two inorganic
phosphate molecules joined by a hydrolyzable ester, was first
recognized as a key endogenous inhibitor of biomineralization
in the 1960’s (2). The major source of PPi is extracellular
ATP, which is released from cells through a highly regulated
process (3). Subsequently, ATP can be rapidly hydrolyzed by
ecto-nucleotide pyrophosphatase/phosphodiesterases (eNPPs)
to produce PPi. Additionally, the membrane protein ANK
(progressive ankylosis or ANKH) regulates PPi levels through the
transport of intracellular PPi to the extracellular environment (4).
Furthermore, a crucial source of systemic PPi is provided through
ATP-binding cassette subfamily C member 6 (ABCC6)-mediated
ATP release from hepatocytes (5).

The formation of calcium phosphates and homogeneous
precipitation is not thermodynamically favored in blood and
solutions, but it still can take place through the nucleating activity
of matrix proteins such as collagen or elastin (6, 7). Nucleation
of amorphous calcium phosphate is prevented by PPi, which
also inhibits the crystallization toward hydroxyapatite and crystal
growth by binding to the hydroxyapatite surface (2, 8).

Reduced circulating PPi concentration is commonly present
during vascular calcification, as observed in hemodialysis
patients (9). PPi is hydrolyzed by local phosphatases, such as

tissue-non-specific alkaline phosphatase (TNAP). Consequently,
when the expression of TNAP is selectively increased, ectopic
calcification is observed (10). During CKD, aortic calcification
is accompanied by TNAP overexpression (11), an event
that precedes the first observed calcium nanodeposits and
hyperphosphatemia in a rat CKD model (12). In those, calcium
deposition is followed by an unexpected local increase in
ANKH expression and late increase in ENPP1 expression.
These expression changes are followed by reduced plasma
PPi concentrations as a later event (12). Therefore, the local
concentration of PPi may be a relevant factor for the initial
deposition of calcium in soft tissue, whereas reduced circulating
PPi levels may play a role during ESRD and hemodialysis.

A number of animal models have further contributed to
our understanding of the role of reduced PPi levels in VC.
Mice lacking ABCC6 (Abcc6−/−) display a 40% reduction in
plasma PPi levels (13) and present arterial calcification and
an enhanced myogenic response (14). Enpp1-knockout mice
also show depressed levels of circulating PPi, with concomitant
increased calcification in articular cartilage, peri-spinal ligament
and aorta (15). A comparable phenotype can be found in
the so-called tiptoe-walking (ttw/ttw) mouse (16), a naturally
occurring mutant with a non-sense mutation in Enpp1, and the
asj/asj mouse, which carries a V246D missense mutation (17).
Furthermore, a naturally occurring truncation mutation of the
C-terminal cytosolic domain of ANK appears to attenuate PPi
channeling in ank/ank mutant mice, which display VC (18).
Intriguingly, intraperitoneal administration of PPi in adenine-
induced uremic calcification reduced calcium content by 70%
(19), and a recent study has shown that orally administered PPi,
also inhibits arterial calcification in ttw/ttw and Abcc6−/− mice
(20), reinforcing the central role of PPi in the protection against
VC.

GLA PROTEINS

Matrix Gla protein (MGP) and Gla-rich protein (GRP),
also known as Upper zone of growth plate and Cartilage
Matrix Associated protein (UCMA) because of its original
discovery in cartilage chondrocytes, are small secreted matrix
proteins. They are members of the vitamin K-dependent
(VKD) protein family containing, in their mature forms, several
γ-carboxylated glutamate (Gla) residues. These VKD post-
translational modifications (5 in human MGP, 15 in human
GRP), enable MGP and GRP to bind calcium and calcified
matrices (21, 22), which can modulate their function (23, 24).
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Under normal physiological conditions, both MGP and
GRP are synthetized by a variety of cell types including
VSMCs and chondrocytes, where they function locally (21,
22). In agreement with this finding is the observation that
both carboxylated and uncarboxylated MGP are localized at
different levels in mineralized elastic fibers (25–27). Reverse
genetics has clearly shown that MGP is a potent physiological
inhibitor of calcification (28) since Mgp-deficient mice exhibit
lethal early spontaneous medial calcification of their arterial
trunk. Mutations in the human MGP gene cause Keutel
syndrome, a rare autosomal recessive disease characterized
by abnormal cartilage calcification, short stature, multiple
peripheral pulmonary stenoses, brachytelephalangia, and inner
ear deafness (29–31). However, in contrast to the mouse, humans
rarely develop arterial calcifications (32). This has been suggested
to be due to compensatory up-regulation of osteopontin (OPN,
see below) in the vessel wall, which may have a protective effect
in Keutel syndrome patients (33).

Interestingly, beside mutations, post-translational
modifications (i.e., γ-carboxylation and/or phosphorylation
for MGP) can further influence the clinical phenotype in
patients. For MGP, its dephosphorylated and uncarboxylated
form (dp-ucMGP) is a surrogate marker in CKD patients (34)
and is associated with increased incidence of cardiovascular
diseases (35, 36).

Several studies have also implicated GRP in vascular and soft
tissue calcification, osteoarthritis, inflammation and carcinoma
(37). Similar to MGP, GRP inhibits phosphate-induced VSMC
calcification via SMAD-dependent BMP signaling (38). However,
in contrast toMgp-deficient mice, GRP deletion does not induce
a clear phenotype (39), which contradicts a putative essential role
as a physiological calcification inhibitor in vivo.

FETUIN-A

Fetuin-A, also known as alpha2-Heremans-Schmid glycoprotein,
is a liver-derived protein, which was initially isolated from fetal
calf serum (40) and later also found in human serum (41, 42).
Fetuin-A is the strongest circulating proteinaceous calcification
inhibitor, being able to bind ∼100 Ca2+ ions per molecule,
i.e., ∼50x the calcium-binding capacity of an albumin molecule
(43). The Fetuin-A cystatin 1-domain contains a functional site,
which is able to bind clusters of amorphous calcium phosphate
(Ca9(PO4)6).

When pure Fetuin-A or Fetuin-A-containing serum is
exposed to high calcium and phosphate concentrations, mineral-
laden Fetuin-A molecules coalesce to form so-called primary
calciprotein particles (CPP) (44, 45). These particles contain
amorphous calcium phosphate and have a diameter of 50–
100 nm. In analogy to lipoprotein particles, which solubilize fatty
acids, CPP keep calcium phosphate in solution and prevent
it from precipitating (46). Over time, however, primary CPP
undergo spontaneous transformation toward secondary CPP,
which are larger (>100 nm), of elongate shape and contain
crystalline calcium phosphate (HA) (47). CPP can be regarded as
the nano-morphological correlate of a humoral mineral buffering

system in blood. Interestingly, both primary and secondary
CPP have been found in blood samples from patients with
CKD (48, 49). Recent work suggests that circulating CPP may
predominantly represent primary CPP or even earlier forms
(“low molecular weight CPP”) (50).

Consistent with the important calcification-inhibiting
properties of Fetuin-A, mice deficient in fetuin-A develop heavy
and diffuse soft tissue calcifications throughout the whole body
(51). In contrast, upon induction of vascular injury, calcifications
are primarily found in the intimal plaques, indicating an
interaction between systemic and local calcification facilitators
(51).

Fetuin-A is a negative acute phase protein, and, accordingly,
its blood concentrations are commonly lower in the presence
of inflammation (52). Furthermore, circulating Fetuin-A
concentrations have been found to be associated with SNPs in
the genetic region coding for the fetuin-A protein (53). Low
fetuin-A concentrations have also been found in CKD patients
and these low levels been associated with poor long-term
cardiovascular outcome (54). Recent data indicate that fetuin-A
should not be considered as an isolated factor only. In contrast, it
should rather be seen in the functional context of the formation
of mineral-fetuin-complexes/CPP and thus the performance of
the humoral mineral buffering system (55, 56). Specifically, a
newly developed blood test measures the transformation (T50-)
time point from primary to secondary CPP in vitro, and thus
the calcification homeostasis in blood beyond single factors.
This provides more insight and functional information about
the net effect of the humoral factors, which inhibit or promote
calcification (57–61). These recent findings have the potential to
vastly widen our view and to open new and exciting possibilities
for research and clinical care alike.

KLOTHO

Klotho is a single pass transmembrane protein that acts as a co-
receptor for fibroblast growth factor-23 (FGF23) (62). Signaling
through the Klotho and FGF receptor heterodimer decreases
both phosphate reabsorption, via down-regulation of the renal
proximal tubule type-II sodium phosphate co-transporters as
well as 1,25(OH)2 vitamin D synthesis. Thus, Klotho plays a
major role in calcium-phosphate equilibrium. Additionally, a
soluble form of Klotho, produced by alternative splicing and
cleavage by secretases, can be found in the circulation. This
soluble form acts as an endocrine factor exerting its functions by
its glycosidase activity (62) Soluble Klotho has been implicated
in Wnt signaling inhibition (63) as well as maintenance of
endothelial integrity (64).

Genetic deletion of Klotho in mice is characterized
by a reduced lifespan, osteoporosis, arteriosclerosis,
hyperphosphatemia, and ectopic calcification (65), hallmarks
of CKD. Indeed, downregulation of Klotho is observed in
CKD patients as well as in animal models of CKD (66–68).
Interestingly, targeted deletion of Klotho in the murine kidney
mimics the phenotype of the full body knockout mice (69).
Taken together, these observations hence point to the kidney
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as the main producer and effector of Klotho in VC. However,
transgenic overexpression of Klotho prevents CKD-induced
medial calcification despite only modest serum phosphate
reduction (67), suggesting that Klotho can also prevent medial
calcification through alternative mechanisms other than
reducing phosphate. Moreover, as mentioned previously, Klotho
can act as an endocrine factor. This is further supported by the
stable delivery of soluble Klotho to Klotho-deficient mice, which
prevents VC despite a modest decrease in serum phosphate and
an increase in serum calcium (70). In support of direct effects
of Klotho in the vascular wall, treatment of rat VSMCs with
recombinant soluble Klotho reduces both phosphate-induced
calcification and sodium-dependent phosphate uptake (67).
However, it is still debated if Klotho is endogenously produced
by VSMCs (71). Therefore, whether these effects on VC are the
consequence of circulating or locally produced Klotho remains
unknown.

Two mutations in the αKLOTHO gene have been described
in humans, which resemble the observed phenotype in mice.
First, a homozygous missense mutation leading to an attenuated
production of Klotho translated in hyperphosphatemia,
hypercalcemia, and both vascular and ectopic calcification in
the brain and the Achilles tendon (72). Second, a balanced
chromosomal translocation in the proximity of the αKLOTHO
gene resulted conversely in increased soluble Klotho levels,
leading to hypophosphatemic rickets and skeletal abnormalities
(73). In CKD, serum Klotho levels decrease alongside disease
progression (74, 75). Moreover, in a small group of patients,
urinary Klotho was decreased in stage 1 CKD patients, and
the decrease correlated with the severity of the decline of
the estimated glomerular filtration rate (67). However, in a
prospective observational study of stage 2–4 CKD patients
circulating Klotho levels did not predict atherosclerotic or
acute heart failure events or death after 2.6 years of follow-up
(76). It is worth noting that none of these studies explored the
relationship between Klotho and VC. Nonetheless, decreased
levels of circulating serum Klotho have been associated with
increased arterial stiffness (77). In summary, serum and urinary
Klotho could hence serve as predictors of CKD progression but
not mortality, whereas their role as biomarkers for VC remains
to be established.

OSTEOPONTIN

Osteopontin (OPN) is a member of the SIBLING (small integrin-
binding ligand, N-linked glycoprotein) protein family of bone
and teeth mineralization regulators (78). It is a multifunctional
protein with a clear role in opsonization and chemotaxis via
integrin signaling in non-mineralized tissues and is highly
expressed by a variety of cell types including macrophages where
it acts as a cytokines (79). Besides these roles, OPN was also one
of the earliest regulators of mineralization identified in the vessel
wall, although its mechanisms of action in regulating VC still
remain incompletely resolved.

Independent studies identified OPN as a protein highly
expressed in synthetic VSMCs in culture and subsequent studies

in vivo identified OPN invariably at sites of mineralization in
both atherosclerotic plaques and the vessel media (80–82). OPN.
When expressed at sites of calcification, it forms a bridging
protein that links the cellular extracellular matrix with mineral.
It may also play a role in the dissolution of calcification by
inducing macrophages to express carbonic anhydrase, which acts
to acidify the local environment (83). Knockout mouse studies
have shown that OPN is not an endogenous inhibitor of VC,
as Opn-deficient mice do not develop spontaneous calcification,
which is consistent with its low expression in contractile VSMCs
(80, 82, 84). However, when Opn-deficient mice are crossed with
Mgp-deficient mice or are subjected to a high phosphate diet,
then calcification is exacerbated, suggesting that OPN functions
as an inducible inhibitor of calcification (84, 85).

OSTEOPROTEGERIN

Osteoprotegerin (OPG) is a protein endogenously expressed by
contractile VSMCs. Its role in calcification was first identified
when the Opg-knockout mouse was found to develop not only
osteoporosis, but also VC and this was one of the first pathways
linking these two age-associated pathologies (86). OPG acts as a
neutralizing decoy receptor for RANKL and TRAIL and it has
a major function in regulating osteoclast differentiation via this
pathway (87). Mice lacking OPG develop osteoporosis because
of increased osteoclast activity–however, the role of OPG in
regulating VC has been more problematic to solve. Mouse OPG
knockout studies showed that in the vessel wall the RANKL
system is activated in the absence of OPG and this is associated
with the presence of multinucleate osteoclast-like cells (88). In
vitro studies have further elaborated the roles of OPG showing it
can affect a number of cell types and processes including blocking
osteoblastic change in VSMCs via direct and paracrine secretion
from endothelial cells and this occurs via multiple signaling
pathways (89, 90). OPG also appears to play an important role
in the context of diabetes by regulating inflammatory responses
(91, 92). Therefore, its actions in protecting the vessel wall from
calcification may be context-dependent and clearly further work
is required to delineate its multifunctional roles. Interestingly,
epidemiological studies have shown that circulating levels of
OPG are increased in patients with VC (93, 94). However,
the significance of this biomarker remains unclear. It is not
known whether its elevation reflects increased OPG to combat
calcification, while the cellular origin of the circulating OPG has
not been identified.

ENDOGENOUS VASCULAR

CALCIFICATION INHIBITOR AS

THERAPEUTIC AGENTS

The use and/or stimulation of the endogenous calcification
inhibitors described herein constitute a tempting therapeutic
strategy. Yet, limited data are available on successful attempts for
the reversal of already established calcification.

The delicate balance of pro-calcifying Pi and the major
anti-calcifying molecule PPi (the Pi/PPi ratio) is regulated

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 January 2019 | Volume 5 | Article 196

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Bäck et al. Inhibitors of Vascular Calcification

by numerous factors, opening up for intervention at several
distinct levels. The dietary uptake of Pi can be hindered by
phosphate binders (e.g., sevelamer and aluminum salts) or novel
therapies (e.g., tenapanor), which inhibit Pi absorption from the
gastrointestinal (GI) tract leading to a decreased Pi/PPi ratio.
These molecules are used in hyperphosphatemia in patients
suffering from CKD (95, 96).

Besides decreasing Pi, the Pi/PPi ratio could potentially
be reduced through elevating blood PPi levels. This can
be experimentally achieved via the intraperitoneal or oral
administration of PPi in rodent models, the latter being effective
in humans as well (20, 97, 98). Although oral delivery has clinical
potential as it halts crystal growth in the PXE or progeria mouse
models (97, 98) and prevents calcification even as a gestational
treatment in the GACI mouse model (20), it might have several
limitations. First, only ∼0.1% of dietary PPi is absorbed (20) as
presumably the vast majority of PPi is degraded in the GI tract by
the microbiome. Second, dietary PPi and Pi intake are variable
particularly as PPi is a frequently used food additive (E450).
Additionally, considering the short half-life of PPi in plasma,
several daily doses of PPi might be necessary, although repetitive
administration of PPi might lead to GI and other side effects
(19, 20). Therefore, maintaining sufficient Pi/PPi plasma levels
might be difficult to obtain via oral administration. However,
analogs of PPi, the bisphosphonates, are already in clinical use
for the treatment of osteoporosis, despite the rare but severe
adverse effects (e.g., jaw necrosis). Moreover, bisphosphonates
have been shown to reduce ectopic calcification in patients with
GACI (99, 100) or PXE (101), and in animal models of PXE and
CKD (17, 97, 102).

Besides direct administration of PPi or uncleavable
derivatives, alternative strategies could target endogenous
enzymes involved in the maintenance of PPi concentration. The
serum PPi level can thus be increased by the recombinant soluble
Enpp1 enzyme, as shown in laboratory conditions (103). Finally,
a novel promising target is TNAP, which cleaves PPi into two Pi
ions increasing thereby the Pi/PPi ratio and the propensity for
calcification (104, 105). SBI-425 is a recently developed specific
TNAP inhibitor (106), with sufficient oral bioavailability and
efficacy in mouse models (103–105, 107).

CONSENSUS STATEMENTS

Endogenous calcification inhibitors represent a crucial defense
mechanism against VC. Although the function of the endogenous

VC inhibitors has been extensively studied, there are still
some important clues lacking to fully elucidate their role
in the development of VC. To attain this knowledge, the
EuroSoftCalcNet COST Action consortium here emphasizes the
following:

1. The deep phenotyping of genetic alterations in calcification
inhibitor pathways in both humans and mice represents a
powerful tool to better define their clinical and therapeutic
relevance and to increase our understanding of the alteration
of the pro- and anti-calcifying balance during different stages
of VC and the influence of local and systemic inhibitors on

the cellular response of VSMCs and/or the physical-chemical
properties of mineral deposit.

2. The calcification inhibitors need to be studied from an
integrated point of view, including detailed analysis of the
molecular pathways and the interactions involved, the relation
to altered phosphate (Pi/PPi) balance and the association
with different calcification phenotypes. Altogether, this would
help identify an ideal biomarker measure that should reflect
calcification homeostasis beyond single factors.

3. The central role of the Pi/PPi ratio in the regulation of VC
makes PPi an interesting candidate as an effective and low-cost
treatment against VC.

4. The exploration of the therapeutic potential of PPi and
other calcification inhibitors should focus on bioavailability
and tolerability as well as efforts to avoid bone loss as a
consequence of stimulating these pathways within a long-term
treatment perspective.
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