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Introduction: Adult survivors of the atrial switch operation for transposition of the

great arteries present with a systemic morphologic right ventricle and a subpulmonary

morphologic left ventricle. This physiology can be considered a model for the effects of

long-term right ventricular pressure overload and of decreased left ventricular afterload.

We aimed to determine the impact of these chronically altered loading conditions on

myocardial deformation of the ventricles.

Materials and methods: Two-dimensional steady state free precession cine images

of 29 patients after atrial repair (age 29 ± 7 years) and 19 controls (24 ± 10 years; n.s.)

were post-processed with feature tracking software (TomTec 2D CPA). Volumes, ejection

fractions, global and free wall longitudinal and circumferential strains of both ventricles

were compared between both groups.

Results: Systemic right ventricular global longitudinal strain was decreased in patients

compared to controls (−12.9 ± 3.3% vs. −18.9 ± 4.6%, p < 0.001), while right

ventricular circumferential strain was unchanged (−15.8 ± 3.4% vs. −15.1 ± 5%; n.s.).

Left ventricular longitudinal strain was similar in both groups (−17 ± 5.6% vs. −17.5

± 4.6%; n.s.), but global left ventricular circumferential strain was lower in patients

(−20.7 ± 4.1% vs. −27.3 ± 4.5%, p < 0.001). The systemic right ventricle, compared

to the systemic left ventricle, showed decreased global longitudinal (p < 0.001) and

circumferential strain (p < 0.001). The subpulmonary left ventricle, compared to the

subpulmonary right ventricle, demonstrated similar longitudinal (p = 0.223) but higher

circumferential strain (p < 0.001).

Conclusions: In patients after atrial switch repair for transposition of the great arteries,

the systemic right ventricle shows poor longitudinal strain, but maintains normal right

ventricular circumferential strain. The left ventricle shows higher circumferential strain than

the right ventricle, in both systemic and subpulmonary positions.

Keywords: transposition of great arteries (TGA), atrial switch operation, cardiovascular magnetic resonance

(CMR), strain, systemic right ventricle
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INTRODUCTION

The atrial switch operation according to Senning or Mustard has
been the surgical repair technique of choice for transposition
of the great arteries (TGA) for many years (1). In the 1980’s, it
was replaced by the arterial switch operation (2). The Senning
procedure results in a subaortic right ventricle (RV) pumping
into the systemic circulation and a subpulmonary left ventricle
(LV). During follow-up, the chronic pressure overload may cause
deterioration of RV function with impaired clinical functional
status and eventually RV failure and increased mortality (3).
LV function can be compromised by RV dysfunction due
to negative ventriculo-ventricular interaction (4). Therefore,
functional assessment of both ventricles is of high clinical
importance in this population (5).

Cardiac magnetic resonance (CMR) has evolved to be the
reference method for calculation of RV volumes and function,
due to its high accuracy and reproducibility (6).

Magnetic resonance feature tracking (MRFT) enables
quantification of the segmental and global motion of the
myocardium from CMR cine images (7). MRFT is similar to
echocardiographic speckle tracking analysis, which has been
demonstrated to be a useful diagnostic and prognostic modality
in many different congenital heart lesions, including those with a
systemic RV (8–11). However, reports of MRFT in patients with
systemic right ventricles are still limited (12, 13).

The aim of this study was to examine regional deformation
of the ventricles in patients after atrial repair (Senning) and
to compare it with that of individuals with normal cardiac
anatomy (controls). We hypothesized that the RV and LV
in Senning patients show different deformation patterns than
normal ventricles due to their reversed pressure loads.

MATERIALS AND METHODS

Patient Population
All consecutive patients with TGA after atrial switch operation
undergoing a CMR examination between June, 2009 and March,
2016 were considered for inclusion in the study. Exclusion
criteria consisted of evidence of chronic tachyarrhythmias or
arrhythmias at the time of image acquisition, significantly
impaired function with an ejection fraction (EF%) of either
ventricle of <30%, significant baffle leak with a pulmonary to
systemic blood flow ratio > 1.3: 1, significant baffle stenosis
with evident venous dilation and/or reversed flow in the azygous
vein, subpulmonary LV outflow tract obstruction. Baseline
characteristics, CMR data including ventricular volumes, EF%,
flow volumes, and strains in longitudinal and circumferential
direction, as well as follow up cardiopulmonary exercise (CPEX)
data were collected / measured.

Healthy volunteers and patients in whom cardiac pathology
was ruled out by CMR, such as patients who were imaged for
suspected vascular rings, were recruited as normal controls.

Image Acquisition
All subjects underwent CMR on a 1.5 Tesla system (Signa MR/i
Twinspeed or Discovery MR 450, GE Healthcare, Milwaukee,

WI, USA) using a 32-channel phased-array cardiac coil and
vector cardiogram for retrospective cardiac gating.

Cine Steady State Free Precession (SSFP) images were
acquired in a horizontal long-axis plane showing both ventricles
and both atria as well as in a stack of 12–13 adjacent short-axis
slices through both ventricles from the cardiac base to the apex,
with a slice thickness of 8mm and gap of 0–2mm. All images
were acquired in end-expiratory breath-holding.

The parameters of the SSFP sequence were as follows: 40
reconstructed phases/cardiac cycle, TE 1.5–1.8ms, TR 2.8–
3.1ms, flip angle 45◦, bandwidth 125 kHz, matrix 224 × 224,
number of excitations 1, field of view 250–350mm, views
per segment 6–12 depending on heart rate. Parameters were
optimized for obtaining a temporal resolution of <30ms (mean
26.7ms). Cine phase contrast images were obtained in through
planes perpendicular to the ascending aorta andmain pulmonary
artery, in breath-holding technique, for internal validation of
stroke volumes.

Image Analysis
Ventricular volumes and ejection fractions were calculated offline
on a separate workstation with a dedicated software (QMass,
Medis Suite 2.0.16.0, MEDIS, Medical Imaging Systems, Leiden,
The Netherlands). The endsystolic and enddiastolic phases were
identified visually in a midventricular short axis slice, the
endocardial contours weremanually traced; volumes and ejection
fractions were calculated as previously described and indexed to
body surface area (14). On phase contrast images, vessel contours
were traced in all phases, and flow volumes were calculated
(QFlow, Medis Suite 2.0.16.0, MEDIS, Medical Imaging Systems,
Leiden, The Netherlands) to determine residual shunts.

Feature tracking analysis was performed using a dedicated

software (TomTec 2D Cardiac Performance Analysis MR© 1.0.1,
TomTec, Unterschleissheim, Germany). Endocardial contours of
both ventricles were traced manually on an end-diastolic image
frame (Figure 1), and subsequently semi-automatic processing
provided tracked endocardial borders throughout the cardiac
cycle. If automatic tracking was inadequate, endocardial borders
were corrected manually and automatic tracking restarted until
the tracked borders fitted all cardiac phases.

Longitudinal strain analysis was performed on the horizontal
long-axis view (four chamber view) of both ventricles. For the LV,
the endocardial border was traced beginning at the septal mitral
annulus, along the apex, and ending at the lateral mitral ring in
a clockwise direction. For the RV, a mirror image was created
in order to similarly trace from the septal tricuspid annulus,
along the apex, and ending at the lateral tricuspid ring in a
clockwise direction.

Circumferential strain was measured for both ventricles on
one midventricular slice on short axis images. Midventricular
location was chosen to minimize the out-of-plane motion of the
region of interest (15).

The software provided values of global longitudinal and/or
circumferential strain for the LV and the RV by averaging all
segmental values. Regional segmental values were provided for
the LV following the American Heart Association 17-segment
model. We used a “mirror image” nomenclature for defining the
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FIGURE 1 | Endocardial tracing of the ventricles in a Senning patient. The green line shows the endocardial border tracing of the systemic right ventricle (RV),

horizontal long axis (a); systemic RV, short axis (b); subpulmonary left ventricle (LV), horizontal long axis (c); subpulmonary LV, short axis (d).

segments of the RV (16). Systemic ventricle twist was calculated
as the difference of apical and basal systolic rotations, and torsion
was calculated by dividing twist by the distance between the
respective image planes (17).

Image quality was assessed for each slice and classified as:
2 = good, 1 = moderate, 0 = inadequate. Images of inadequate
quality were excluded from analysis.

Intraobserver variability was tested by one investigator
(BB) measuring twice, on different days at least 8 weeks
apart. Interobserver variability was assessed from measurements
of two independent investigators (BB, EV) blinded to each
other’s results.

Statistics
Continuous data are expressed as mean and standard deviation
(SD). The one-sample Kolmogorov-Smirnoff test was used
to test for normal distribution. The Student’s t-test was
used to compare data between groups. For parameters that
were not normally distributed, the Mann-Whitney U-test was
used for comparison statistics. Correlations were calculated
using Pearson’s correlation coefficient. Intra- and interobserver
variability was examined with Bland-Altman analyses (18)
and intraclass correlation coefficients (type C, two-way mixed
effects model, average measures). Coefficients of variation
(CV) were calculated as the standard deviations of differences
between two measurements, divided by the respective means
of two measurements. Statistical significance was defined as
a two-sided p-value < 0.05. SPSS software, versions 22 and
24 (IBM Corporation, Armonk, NY, USA), was used for
statistical analyses.

RESULTS

Patient Characteristics
Twenty-nine patients after the atrial switch operation (Senning
group) and 19 healthy normal controls (control group)
were recruited in the study. Subject characteristics did not
differ in terms of age, sex, height, weight, or heart rate
(Table 1). In 4 patients, associated cardiac anomalies were
addressed during the Senning operation, including closure of
ventricular septal defects in 2, closure of ventricular septal
defects and pulmonary artery de-banding in1, and resection of
subvalvular pulmonary stenosis in one. Three patients had had
cardiac interventions after the Senning procedure, consisting of
radiofrequency ablation in 2, atrial septal occluder implantation
for baffle leak in one. None underwent repeated cardiac surgery.
Cardiac medication at the time of CMR consisted of ACE
inhibitors in 7 patients and an angiotensin receptor blocker
in one.

Ventricular Volumes and Ejection Fractions
Senning patients presented larger RV end-diastolic volumes (RV
EDV) (p < 0.001) and lower RV EF% (p < 0.001) than controls
(Table 2).

LV volumes were smaller in end-diastole (LV EDV) in the
Senning group than in the control group (p< 0.01). No difference
was observed for LV EF% (p= 0.43).

Comparing the ventricles in their functional positions, RV in
systemic position were larger than the normal systemic LV (p <

0.001). The systemic RV had lower EF% than the systemic LV (p
< 0.001).
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TABLE 1 | Subject characteristics.

Senning; n = 29 Control; n = 19 p

Age [years] 29 ± 7 24 ± 10 0.05

Male [number (%)] 17 (59%) 10 (53%) 0.46

Height [cm] 167.9 ± 10.2 172.4 ± 13.9 0.20

Weight [kg] 68 ± 13.5 64.6 ± 12.7 0.39

Heart rate [bpm] 64 ± 14 70 ± 16 0.12

Values are expressed as mean ± standard deviation.

TABLE 2 | Ventricular volumes and ejection fractions for the right and the left

ventricle in their anatomic positions (upper half) and in their functional positions

(lower half).

Senning; n = 29 Control; n = 19 p

RV EDVI [ml/m2 ] 114 ± 24 84 ± 16 <0.001

RV ESVI [ml/m2 ] 68 ± 18 40 ± 9 0.015

RV EF [%] 40 ± 5 53 ± 6 <0.001

LV EDVI [ml/m2 ] 75 ± 15 88 ± 16 <0.01

LV ESVI [ml/m2] 30 ± 8 37 ± 9 0.514

LV EF [%] 60 ± 6 58 ± 5 0.159

RV/LV EDVR 1.53 ± 0.21 0.96 ± 0.10 0.001

SV EDVI [ml/m2] 114 ± 24 88 ± 16 <0.001

SV ESVI [ml/m2 ] 68 ± 18 37 ± 9 0.022

SV EF [%] 40 ± 5 58 ± 5 <0.001

SPV EDVI [ml/m2] 75 ± 15 84 ± 16 <0.05

SPV ESVI [ml/m2 ] 30 ± 8 40 ± 9 0.831

SPV EF [%] 60 ± 6 53 ± 6 <0.001

Values are expressed as mean ± standard deviation. EDVI, end-diastolic volume index;

EDVR, end-diastolic volume ratio; EF, ejection fraction; ESVI, end-systolic volume index;

LV, left ventricle; RV, right ventricle; SPV, subpulmonary ventricle; SV, systemic ventricle.

p values in bold type denote statistically significant differences.

The subpulmonary LV in the Senning group were smaller than
the subpulmonary RV in the control group (p< 0.05) and showed
higher EF% (p= 0.001).

Longitudinal Annular Plane Displacement
Tricuspid annular plane systolic excursion (APSE) was lower in
the Senning than in the control group (8± 2.5 vs. 16.2± 3.3mm;
p< 0.001), while mitral APSE was not significantly different (11.6
± 3.5 vs. 10.1 ± 2.7mm; p = 0.126). Senning patients showed
lower APSE of their systemic (8 ± 2.5 vs. 10.1 ± 2.7mm; p <

0.001) and also lower APSE of their subpulmonary ventricles
(11.6± 3.5 vs. 16.2± 3.3mm; p < 0.001).

Strain Measurements
The systemic RV (Senning) showed lower global longitudinal
strain (p < 0.001) compared to normal RV. No difference
was found for RV global circumferential strain (Figure 2;
Supplementary Table 1).

The subpulmonary LV (Senning) had similar global
longitudinal strains but lower global circumferential strains
than the normal systemic LV (p < 0.001).

Comparing deformation parameters in relation to the
functional position of the ventricle, the systemic RV

had lower global longitudinal and circumferential strains
compared to the normal systemic LV (p < 0.001) (Figure 3;
Supplementary Table 2).

Both ventricles in subpulmonary position, i.e., the RV in
normal subjects and the LV in Senning patients, showed similar
global longitudinal strain, however circumferential strain was
higher in the LV than in the RV (p < 0.001).

The systemic RV in Senning patients showed significantly
reduced twist (−3.1± 11 vs. 22.3± 7.4◦; p < 0.001) and reduced
torsion (−0.6 ± 1.9 vs. 3.8 ± 1.2 ◦/cm; p < 0.001) compared to
the systemic LV in controls.

Considering regional deformation, in Senning patients, strain
values were generally higher in the free wall of both ventricles
compared to global strain values. In normal subjects, free
wall strain values were higher in longitudinal but not in
circumferential direction (Table 3).

Strain and Ventricular Volume
In Senning patients, longitudinal RV strain correlated with RV
EF% (r =−0.554; p < 0.01), as well as with LV EF% (r =−0.468;
p < 0.05). Circumferential strain of the systemic RV correlated
with RV EDV (r = 0.705; p < 0.001), LV EDV (r = 0.425; p <

0.05), and RV EF% (r = −0.706; p < 0.001). LV longitudinal or
circumferential strains did not correlate with ventricular volumes
or EF%.

In the control group, RV longitudinal strain correlated with
RV EF% (r =−0.592; p < 0.01) and with LV EF% (r =−0.591; p
< 0.01).

Comparing subgroups of patients with RV EF% < 40% vs. ≥
40%, those with lower RV EF% (n = 16) had worse RV global
(p = 0.03) and free wall (p = 0.008) longitudinal and worse RV
global (p= 0.002) and free wall (p= 0.008) circumferential strain.
LV strain values were not influenced by RV EF%.

RV longitudinal strain correlated with RV circumferential
strain in Senning patients (r = 0.489; p = 0.01), but not
in controls.

LV longitudinal strain did not correlate with other strain
parameters; LV circumferential strain correlated with RV
longitudinal (r = 0.753; p < 0.001) and circumferential
(r = 0.615; p = 0.005) strains in normal subjects, but not in
Senning patients.

Functional Assessment
Twenty of 29 (69%) Senning patients underwent CPEX within
a median interval to CMR of 7 days (range −343 to 346
days). Additionally, the latest CPEX during follow up was
considered for further functional assessment and was available
in 20 of 29 (69%) patients. Most CPEX were performed as
bicycle ergometries using a ramp protocol. Work load [Watts],
maximal oxygen consumption [ml/kg/min], and the slope of
VE/VCO2 (respiratory equivalent for carbon dioxide) were
recorded. Patients were stratified into Weber class (A to D)
according to Guazzi et al. (19), analogous to patients with heart
failure, pulmonary arterial hypertension, or chronic obstructive
pulmonary disease. Due to the retrospective nature of this study,
some values were missing in some patients.
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FIGURE 2 | Maximal global strain for right (RV) and left ventricles (LV) in Senning patients and controls.

FIGURE 3 | Maximal global strain for systemic and subpulmonary ventricles in Senning patients and controls.

At the first CPEX, patients attained a work load of 158 ± 48
Watts and 28.9 ± 5.3 ml/(kg∗min) peak oxygen consumption,
corresponding to 74.9 ± 14.2% predicted. VE/VCO2 was
available in 17/29 (59%) of patients, with a mean ± SD of 25.7
± 3.9. All patients attained Weber class A. VO2max at the time
of CMR did not correlate with any ventricular strain. VE/VCO2
correlated weakly with global (r = 0.484; p= 0.049) and free wall
(r = 0.509; p= 0.037) circumferential RV strain.

At the most recent CPEX, mean performance was 170 ± 56
Watts and 28.4 ± 6.7 ml/(kg∗min) peak oxygen consumption,
corresponding to 72.8 ± 13.7% predicted. All patients except
one (Weber class B) were still in Weber class A at the most
recent CPEX. VE/VCO2 was measured in 15/20 (52%) of patients

at the most recent follow up, with a mean ± SD of 26.7 ±

3.4. No correlations with RV or LV strain were found. Exercise
performance was unchanged over a follow-up period of 3.2 ±

1.4 years.
During follow up, patients with an RV EF% < 40% (n = 16)

were not performing worse than those with RV EF% ≥ 40%
(n = 13). Performance in Watts, peak oxygen uptake, or percent
predicted peak oxygen uptake were not correlated to RV EF%.
Long-term exercise performance was not correlated with RV
strain values.

One patient moved abroad after the CMR. All others (n= 28)
were still alive after a follow up time of 53 ± 25 months (range
2–108 months).
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TABLE 3 | Comparison of global vs. free wall strains.

Global Free wall p

SENNING

RV longitudinal strain [%] −12.9 ± 3.3 −15.3 ± 3.2 <0.001

RV circumferential strain [%] −15.8 ± 3.4 −17.1 ± 3.3 0.003

LV longitudinal strain [%] −17 ± 5.6 −20.4 ± 8.1 0.001

LV circumferential strain [%] −20.7 ± 4.1 −24.3 ± 5.1 <0.001

CONTROLS

RV longitudinal strain [%] −18.9 ± 4.6 −24.7 ± 5.4 <0.001

RV circumferential strain [%] −15.1 ± 5 −15.2 ± 6.7 0.92

LV longitudinal strain [%] −17.5 ± 4.6 −20.4 ± 4.1 0.002

LV circumferential strain [%] −27.3 ± 4.5 −26.7 ± 4.7 0.148

Values are expressed as mean ± standard deviation. LV, left ventricle; RV, right ventricle.

p values in bold type denote statistically significant differences

Medication
Senning patients taking ACE inhibitors or angiotensin receptor
blockers (n = 8) had higher end-diastolic ventricular volumes
than their counterparts (RV EDV 131 ± 27 vs. 107 ± 20 ml/m2;
p = 0.024; LV EDV 86 ± 16 vs. 70 ± 12 ml/m2; p = 0.009).
Medicated patients also differed from other Senning patients in
that they had lower circumferential strains in their systemic RV
(global p = 0.001; free wall p = 0.022). Senning groups did not
differ in biventricular EF%, APSE, systemic RV twist or torsion.

Image Quality
Short axis images were all of sufficient quality for strain analysis.
In Senning patients, quality was good in 90% and moderate in
10%. In normal subjects, quality was good in 63% and moderate
in 37%.

Long axis image quality was insufficient for strain analysis
only in 2 patients after atrial repair. In all other patients, quality
was classified as good in 62% and moderate in 31%. In controls,
all long axis images could be postprocessed, 90% being of good
and 10% of moderate quality. Variations in RR intervals during
acquisition or difficulty in tracing the basal septumwere the most
important factors influencing image quality.

Inadequate quality images were excluded from analysis.
Therefore, images were available for analysis of circumferential
strain in 29 and for longitudinal strain in 27 patients. We decided
not to study radial strain because of its low reproducibility
described previously (20).

Reproducibility
Coefficients of variation and intraclass correlation coefficients
demonstrated good reproducibility for intra- and interobserver
measurements (Tables 4, 5). Variability was largest for
longitudinal measurements in both ventricles.

DISCUSSION

This study used MRFT for measurement of global and regional
strain of both ventricles in patients after atrial switch repair for
TGA compared to healthy controls. Our results give new insights

into myocardial mechanics and demonstrate that the subaortic
RV presents decreased longitudinal deformation compared to
a normal subpulmonary RV and to a normal subaortic LV,
but unchanged circumferential deformation. As longitudinal
shortening represents the main contraction mechanism of the
RV, this results in a decreased RF EF%. The inability to increase
circumferential strain is a further finding indicating that the
myocardium of the subaortic RV is unable to adequately adapt to
a chronic pressure overload. Furthermore, the RV cannot mimic
the rotational mechanism of an LV in systemic position. The LV
in subpulmonary position shows a decrease in circumferential
strain, while maintaining longitudinal deformation; this reflects
the remodeling in a pressure unloaded LV.

Dysfunction of the subaortic RV and eventually right
heart failure are a major determinant of outcome in patients
after the atrial switch operation for TGA (3). Impairment
of global contractility measured as EF% is considered a late
finding; therefore, more sensitive methods are needed for
timely detection of RV dysfunction. RV myocardial strain by
speckle tracking echocardiography has been shown to correlate
with other biomarkers, functional class (21), and outcome
(10, 11). In Senning patients and others with a systemic and
dilated RV, MRFT represents a useful alternative modality to
speckle tracking, as it overcomes the well-known limitations
of echocardiography for imaging the entire dilated RV. Since
CMR images are usually taken in a short axis covering
both ventricles, a standard plane for measuring ventricular
volumes, MRFT can obtain not only global longitudinal
strain, but also circumferential strain (22). MRFT has clear
advantages compared to other CMR techniques for evaluation
of myocardial deformation, such as myocardial tagging or
displacement encoding with stimulated echoes (DENSE), which
are sophisticated sequences, potentially challenging to acquire
and with cumbersome post-processing (23). In fact, MRFT can
be easily applied on standard cine SSFP images, if temporal and
spatial resolutions are sufficient (20). MRFT has been validated
against other deformation sequences, and excellent agreement
between MRFT and tagged harmonic phase analysis has been
reported (24). Our data are very similar to normal endocardial
MRFT reference values (25) and to strain values reported recently
in a larger cohort of adults after atrial repair (13).

The decreased longitudinal strain which we have found
in the subaortic RV is in agreement with data previously
reported by tissue Doppler echocardiography (26, 27). We have
observed that circumferential strain in the subaortic RV is
not increased. Both findings suggest that the subaortic RV in
Senning patients not only loses some degree of longitudinal
deformation, which is the main force of the RV, but also can
not compensate chronic pressure overload by increasing the
activity of any circumferential fibers, which are scarce in the
RV. In an animal model with pulmonary artery banding, by
using diffusion tensor imaging, Nielsen et al. demonstrated that
the RV is structurally unable to sustain a permanent increase
in afterload (28). Our observation that in the unloaded LV,
circumferential strain is higher than in the normal RV similarly
reflects the myocardial fiber structure of the ventricles, with
a larger layer of well-developed circumferential fibers in the
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TABLE 4 | Intraobserver variability.

Mean value (%) Mean difference (%) SD of differences (%) Limits of agreement (%) CV (%) ICC

RV ε circ −17.2 0.67 3.2 −5.7; 7.0 18.8 0.892

LV ε circ −25.1 −0.94 2.7 −6.3; 4.4 10.9 0.946

RV ε long −19.1 −0.91 1.5 −3.8; 2.0 7.7 0.983

LV ε long −16.8 −3.32 3.5 −10.2; 3.6 21.1 0.885

Limits of agreement encompass the 95% confidence interval of differences between measurements.

CV, coefficient of variation = SD of differences between 2 measurements, divided by mean of 2 measurements. ICC, intraclass correlation coefficient; LV ε circ, left ventricular

circumferential strain; LV ε long, left ventricular longitudinal strain; RV ε circ, right ventricular circumferential strain; RV ε long, right ventricular longitudinal strain; SD, standard deviation.

TABLE 5 | Interobserver variability.

Mean value (%) Mean difference (%) SD of differences (%) Limits of agreement (%) CV (%) ICC

RV ε circ −16.1 −1.49 2.8 −7.0; 4.0 17.5 0.908

LV ε circ −24.6 0.01 2.7 −5.3; 5.3 10.9 0.947

RV ε long −17.6 2.01 3.9 −5.6; 9.7 22.2 0.862

LV ε long −15.9 −1.60 4.2 −9.8; 6.6 26.3 0.742

Limits of agreement encompass the 95% confidence interval of differences between measurements.

CV, coefficient of variation; ICC, intraclass correlation coefficient; LV ε circ, left ventricular circumferential strain; LV ε long, left ventricular longitudinal strain; RV ε circ, right ventricular

circumferential strain; RV ε long, right ventricular longitudinal strain; SD, standard deviation.

LV. Secondly, CMR studies have described the presence of
regional and diffuse RV myocardial fibrosis in a considerable
number of patients after the atrial switch operation (29,
30), albeit no correlation has been found with peak oxygen
uptake during exercise. From a mechanistic point of view, it
seems self-evident that fibrotic myocardium may deform less.
Thirdly, additional factors other than solely intrinsic myofiber
mechanics may influence deformation. Most recently by using
three-dimensional techniques, Morcos et al. comprehensively
assessed global and regional function of the systemic RV in
atrial switch and in congenitally corrected TGA patients. They
found that global and regional myocardial function was more
abnormal in the atrial switch patients than in the congenitally
corrected TGA group (31). We have previously described
an abnormal “atrial” function with a decreased reservoir
and pump component in Senning patients and an increased
conduit component of atrial dynamics, which corresponds to
a loss of atrial pulsatility (32). The results of both studies
suggest a relationship between abnormal filling and abnormal
ventricular mechanics of the systemic RV. The mechanisms
of atrioventricular coupling in this patient population deserve
further investigation.

We have observed a positive correlation between RV strain
and EF% with LV EF%. This finding is in line with the well-
known interventricular interaction. Interventricular interaction
in patients after atrial switch or with congenitally corrected
TGA has also been demonstrated by echocardiographic speckle
tracking analysis (10).

A very interesting finding of this study is that in Senning
patients strain values of the free walls were higher than
global strain values in both ventricles. We hypothesize that the

abnormal D-shape of the septum with a pressure overloaded
RV may negatively affect septal myocardial mechanics and
lead to decreased septal strain values; this obviously has a
direct influence on values of global deformation, but not on
deformation values of the free walls. Therefore, we suggest that
in Senning patients, measurement of free ventricular wall strain
may better reflect the myocardial deformation and performance
of both ventricles, rather than global strain.

Many Senning patients presented with a reduced exercise
capacity, which remained stable over the follow up time of
3.5 years. The lack of significant correlations between the
CMR parameters and CPEX results may be explained by the
fact that CMR parameters were acquired at rest rather than
during exercise. In fact, it has been shown that atrially switched
patients cannot increase stroke volume during stress in contrast
to patients with congenitally corrected transposition (33). The
reason for this is most probably the abnormal “atrial” function
described above (32) causing an abnormal preloading of the
ventricles, which may be even better unmasked during exercise.
As the atrial switch patient cohort ages, correlations between
CMR parameters and adverse events in the natural course should
ideally be evaluated prospectively. This cross-sectional study
provides a basis toward this.

We found acceptable inter- and intraobserver reproducibility
of MRFT measurements, for both longitudinal and
circumferential strain. The slightly larger variability for
longitudinal measurements is similar to that described by other
authors and can be explained by the difficulties in correctly
tracking the most basal myocardial segments in the longitudinal
direction throughout the cardiac cycle, due to the strong in-plane
motion of the AV valves (20).
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LIMITATIONS

This is a monocentric, retrospective study with a limited number
of patients; thus, our results must be considered preliminary.
Due to the retrospective nature of the study, we could not
analyze the effect of fibrosis on myocardial deformation, since
late gadolinium enhancement data were not available in all
patients, and T1 mapping was not performed at the time of
data acquisition.

Our data may have been influenced by a referral bias, since
patients with poor function and arrhythmias or pacemakers, as
well as patients with very good RV function on echocardiography
may have not been referred for CMR. However, this aspect
was investigated by Tutarel et al., who did not report any
significant difference in strain values between the overall atrial
switch group and a subgroup of patients in optimal clinical
condition (13).

CONCLUSION

Myocardial deformation of the subaortic RV after atrial switch
operation for TGA as measured by MRFT is abnormal. In
Senning patients, the subaortic RV has decreased longitudinal
and unchanged circumferential deformation. These data suggest
that the subaortic RV is not able to adapt to chronic pressure
overload and to remodel to mimic a LV. Myofiber architecture,
intrinsic myofiber function, and other mechanisms, including
myocardial fibrosis as well as an abnormal preload may be
potential explanations.
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