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Patients with autoimmune diseases are at increased risk for developing cardiovascular

diseases, and abnormal electrocardiographic findings are common. Voltage-gated

calcium channels play a major role in the cardiovascular system and regulate cardiac

excitability and contractility. Particularly, by virtue of their localization and expression

in the heart, calcium channels modulate pace making at the sinus node, conduction

at the atrioventricular node and cardiac repolarization in the working myocardium.

Consequently, emerging evidence suggests that calcium channels are targets to

autoantibodies in autoimmune diseases. Autoimmune-associated cardiac calcium

channelopathies have been recognized in both sinus node dysfunction atrioventricular

block in patients positive for anti-Ro/La antibodies, and ventricular arrhythmias

in patients with dilated cardiomyopathy. In this review, we discuss mechanisms

of autoimmune-associated calcium channelopathies and their relationship with the

development of cardiac electrical abnormalities.
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INTRODUCTION

Voltage gated calcium channels (VGCCs) are macromolecular complexes which include the main
pore forming α1-subunits, the accessory β, α2δ, and γ-subunits (1–4). In the heart, VGCCs
mediate calcium (Ca) influx in response to membrane depolarization and modulate excitability,
contraction, hormonal secretion and gene transcription (1–6). There are many pathologies, both
genetic and acquired, involving VGCCs. Mutations in VGCCs cause dysfunctions of Ca channels,
resulting in abnormal excitation of the cardiomyocyte, and cardiac arrhythmias (2, 6–8), which
contribute substantially to morbidity and mortality. Among the different pathophysiological
mechanisms of arrhythmogenesis, a new area of interest has recently emerged and is related
to autoimmune-associated Ca channel dysfunction (autoimmune Ca channelopathies) in cardiac
arrhythmias (9–12). This review summarizes the recent findings on the roles of cardiac Ca channels
in autoantibodies-associated cardiac arrhythmias.
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VOLTAGE-GATED CALCIUM CHANNELS IN
THE HEART

L-type and T-type Ca channels are the two major classes of
VGCCs in the heart. The L-type Ca channel is a high voltage-
activated, long-lasting, and the T-type channel is characterized
by a low voltage-activated, transient-type channel (2, 3, 5, 6, 13,
14). There are 10 isoforms of mammalian genes encoding the
α1 subunit. (5, 15–18). CACNA1S, CACNA1C, CACNA1D, and
CACNA1F encode α1S, α1C, α1D, and α1F subunits (L-type Ca
channels) respectively. CACNA1A, CACNA1B, and CACNA1E
encode α1A, α1B, and α1E subunits (P/Q-, N-, and R-types),
respectively, (19–21). The T-type Ca channels α1G, α1H, and α1I
subunits are encoded by CACNA1G, CACNA1H, and CACNA1I,
respectively, (22–24). Among these channels, the L-type Ca
channels α1C and α1D isoforms and the T-type Ca channels α1G
and α1H isoforms are the major VGCCs expressed in the heart
(25–27). The features and tissue distribution of the L-type and
T-type Ca channels are summarized in Table 1.

L-type Ca Channels in the Heart
α1C L-type Ca Channel
Cardiac α1C L-type VGCC is a protein complex comprised
of α1C, β2, and α2/δ subunits. The α1 subunit is the pore-
forming subunit, which determines the major features of the
channel, such as ion selectivity, activation-inactivation and the
sensitivity to Ca channel blockers (3, 6, 15, 16). The β2 and
α2/δ accessory subunits play important roles in the regulation of
the biophysical properties of Ca channels (36). The α1C VGCC
is universally expressed in the heart and plays a critical role
in excitation–contraction coupling, impulse generation in sinus
node (SAN) and its conduction in the atrioventricular node
(AVN). The Ca ions entering the cardiomyocytes through α1C
VGCCs also shape the plateau phase of the ventricular action
potential and induce the release of Ca from the sarcoplasmic
reticulum (calcium induced-calcium release) which initiates the
myocardial contraction (1, 6, 36).

α1D L-type Ca Channel
In contrast to the ubiquitously expressed α1C VGCCs in the heart,
α1D VGCCs are restricted to the supraventricular tissue of the
adult heart, with the highest expression in the atria, SAN, and
AVN, but they are not expressed in the normal adult ventricles
(5, 28, 37–42). In the fetal heart, however, α1D VGCCs are
expressed throughout the heart including the ventricles, atria,
SAN, and AVN (39). While α1C VGCCs activate at more positive
(−40 and −30mV) potentials, α1D VGCCs activate between
−60 and −40mV at a range of diastolic depolarization of the
SAN (28, 42). This unique feature allows α1D VGCCs to play
an important role in the automaticity of SAN pacemaker cells
(29, 43, 44). The unexpected SAN dysfunction reported in mice
lacking α1D VGCCs was the first evidence of their importance in
heart automaticity (28, 42, 44). Deletion of the α1D VGCC gene
impairs pace making in the SAN and atrioventricular conduction
in the AVN but has no effect on myocardial contractility (42, 44).

T-type Ca Channels in the Heart
There are 3 isoforms of T-type VGCC: α1G (23, 45), α1H (24), and
α1I (45, 46). Among them, α1G and α1H are the major isoforms
in the myocardium and their expression is developmentally
regulated (17, 30, 31). While α1H T-type VGCC constitutes the
predominant isoform in embryonic heart tissue (32); α1G T-
type VGCC expression increases during the perinatal period
and reaches its maximal level in adulthood. In adult SAN,
α1G expression is higher than α1H T-type VGCC (26, 27, 33).
In contrast to α1D L-type VGCC, which requires accessary
subunits for normal gating, α1G or α1H subunits expression
alone exhibit native T-type Ca channel properties (17, 47, 48).
In addition, T-type VGCCs open at significantly more negative
membrane potentials that overlap the pacemaker potentials of
SAN cells (30, 49). The threshold for activation is −70 to
−60mV, and the channel is fully activated at −30 to −10mV
(17, 31, 49). T-type VGCCs are expressed in the SAN (34),
the AVN (50), and the Purkinje fibers (51, 52), supporting
their roles in the generation of the diastolic depolarization,
the automaticity of SAN and the impulse conduction of
the heart (30, 31, 53, 54). Indeed, homozygous transgenic
mice lacking α1G VGCC exhibit first-degree atrioventricular
block (AVB) and bradycardia (25). Collectively, both L-
type, and T-type Ca channels by virtue of their tissue-
specific localization can modulate automaticity, conduction
and repolarization, and as such, agents and compounds like
autoantibodies (discussed below) which interact and target
these channels are expected to affect the electrical activity of
the heart.

AUTOANTIBODIES-ASSOCIATED
CARDIAC CALCIUM CHANNELOPATHIES

Autoimmune disorders and cardiovascular disorders are
associated with significant morbidity and mortality and are
a major health problem both in the USA and worldwide.
While the field of “cardio-immunology” is being formally
established, recent and emerging advances in this area indicate
that autoantibodies play an important role in the development of
cardiac arrhythmias.

Autoantibodies Against Ca Channel and
Ventricular Arrhythmias: Anti-α1C

Subunit Antibody
Autoimmunity is one of the main mechanisms involved in
the pathogenesis of dilated cardiomyopathy (DCM) (55–57).
Sudden death caused by ventricular arrhythmias is one of
the leading causes of death in patients with DCM (58–
60). Results from previous studies indicated that the VGCC
plays an important role in the pathogenesis of DCM (11, 61,
62). The function of VGCCs in DCM is affected either by
autoantibodies directed against the regulatory pathway/accessary
subunits or autoantibodies targeting the pore forming α1
subunit itself. Several autoantibodies indirectly affecting the
L-type VGCCs have been identified in patients with DCM
(63–65). The presence of antibody against the β-adrenoceptor
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TABLE 1 | Features of Ca channels in the heart.

Channel Gene Activation Distribution Developmental change Function

α1C VGCC Cav1.2 −40mV Ubiquitous Increase with developmental

stage

• Action potential in SAN and AVN,

• Inotropy, contraction of atria

and ventricles

α1D VGCC Cav1.3 −60mV SAN, AVN, Atria in adult heart;

Ubiquitous in immature heart

Decrease with developmental

stage

• Pace making,

• AVN conduction

• Atrial excitability

α1G VGCC Cav3.1 −70mV Supraventricular tissue, 30-fold

more in SAN than in atria

Increase during development,

maximal at adult stage

• Pacing making

• AVN conduction

α1H VGCC Cav3.2 −70mV Supraventricular tissue Predominant in embryonic stage

references (6, 14, 15, 17, 18, 28–35).

was first reported in a patient with Chagas’ disease by
Sterin-Borda et al. (66). Ten years later, Wallukat and
Wollenberger demonstrated the presence of an agonist-like anti-
β1 adrenoceptor in DCM patients (67). Subsequent studies
showed that these autoantibodies in DCM target the second
extra-cellular loop of the β1-adrenoreptor (68), resulting in
a positive chronotropic effect. Autoantibodies against β1-
adrenoceptors were closely related to ventricular arrhythmias
in patients with DCM (69). Anti-β1-adrenoceptor antibodies
induced in an animal model caused action potential duration
prolongation, with higher propensity for induction of early
repolarization, promoting the development of ventricular
arrhythmias which increased the risk of sudden death (69–
71). Notably, Christ et al. (72) demonstrated that anti-
β1 adrenoceptor antibodies increased L-Type Ca current,
ICa−L in adult rat ventricular cells in concordance with the
prolongation of the action potential duration. Autoantibodies
against adenine nucleotide translocators, which cross-react with
VGCCs, increases the Ca inflow which causes myocyte damage
by Ca overload in DCM (73–75).

The evidence of the presence of agonist-like autoantibodies
directly against the L-type VGCC α1C subunits in DCM was
demonstrated by Liao et al. (76) and Xiao et al. (11) subsequently
demonstrated that autoantibodies against α1C Ca channel are
arrhythmogenic and lead to sudden cardiac death in patients
with DCM. In a prospective study, the authors compared
ventricular arrhythmias and sudden death in 80 patients with
DCM and age- and gender-matched controls for 32 months.
Autoantibodies against L-type α1C subunits (anti-α1C) were
detected by ELISA in 39 patients with DCM (48.8%) and 5
controls (6.3%). Higher incidence of ventricular arrhythmias
and sudden cardiac death was observed in anti-α1C antibody-
positive patients as compared to the antibody-negative patients.
The presence of anti-α1C antibodies was identified as the
strongest independent predictor for sudden death in DCM
(11). The arrhythmogenic effect of anti-α1C antibodies was
reproduced in a rat model (11). Perfusion of affinity purified
anti-α1C antibodies lead to ventricular arrhythmias by action
potential duration prolongation and triggered activity (11). This
effect was blocked by pre-incubating the anti-α1C antibodies
with its specific peptide and Ca channel blockers, indicating
the specificity of the arrhythmogenic effect of the anti-α1C

antibodies (11). To further investigate the underlying mechanism
of the anti-α1C antibodies, Xiao et al. using immunofluorescent
approach demonstrated that anti-α1C antibodies were able
specifically to bind to the Ca channel on the myocyte, enhancing
the channel’s activities (hence the agonist-like effect). In a
prospective study, Yu et al. (62) recruited 2096 patients with
congestive heart failure, of which 841 dilated cardiomyopathy
patients (DMC) 1,255 ischemic cardiomyopathy (ICM) patients,
and 834 controls. By the end of a median follow up of
52 months, 102 cases of DCM had sudden cardiac death.
Interestingly, the rate of anti-Ca channel antibody in DCM
was significantly higher in DCM patients compared to controls.
After adjusting for risk factor including age, left ventricular
ejection fraction (LVEF), hypertension, diabetes, New York

Heart Association (NYHA) functional classification, QTc, and

medications, Cox regression analysis revealed that the presence
of anti-Ca channel antibodies still remains an independent

risk factor for sudden cardiac death in DCM patients. In
conclusion, there are novel agonist-like anti-α1C Ca channel

antibodies in patients with DCM, which prolong action potential

duration and QT interval, induce early after depolarizations,
and ventricular tachycardia, eventually leading to sudden cardiac

death. These antibodies could serve as novel clinical markers
and as positive predictor of sudden death in DCM (Figure 1)

(61, 62).

Autoimmune-Associated
Brady-Arrhythmias and Conduction
Abnormalities: Cardiac L-type Ca Channels
and Anti-ro Antibodies
While presence of the anti-α1C Ca channel antibody is identified
as a strong predictor for ventricular arrhythmias and sudden
cardiac death in DCM (11), its role has not been well-established
in other autoimmune-associated cardiac electrical abnormalities.
The best studied disease caused by autoantibody related L-type
Ca channel dysfunction is autoimmune-associated congenital
heart block (CHB) characterized by AVB, and sinus bradycardia
(10, 35, 77–80). CHB is a conduction abnormality that affects
structurally normal hearts of fetuses and/or newborn to mothers
with autoantibodies against the intracellular ribonucleoproteins
SSA-Ro and SSB-La (10, 79, 80). The hallmark of CHB is
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FIGURE 1 | Proposed mechanism of the pathogenic role of anti-Ca channels

autoantibodies in Dilated Cardiomyopathy. Anti-Ca channels autoantibodies

target L-type Ca channels in the ventricular myocyte resulting in an increase in

L-type Ca current (ICaL ) which in turn leads to action potential prolongation

and ventricular arrhythmias.

various degrees of AVB, with complete AVB being the most
common, for which more than 60% of affected children require
lifelong pacemakers (81), and carries mortality rate up to 30%
(81, 82). Because anti-Ro antibodies are the most prevalent
autoantibodies in CHB (83–85), anti-La antibodies are not
discussed in this review. There are 2 subtypes of anti-Ro
autoantibodies: anti-52 and anti-60 kD SSA/Ro (collectively
termed anti-Ro antibodies in this review). Anti-Ro antibodies
result from an autoimmune response to the SSA-Ro antigen,
which is an intracellular ribonucleoprotein that is not accessible
to the circulating anti-Ro antibodies in the normal cardiac
myocyte, likely because of their large size. Anti-Ro antibodies
are more prevalent in certain autoimmune diseases including
Sjögren’s syndrome, systemic lupus erythematosus, scleroderma,
rheumatoid arthritis, systemic sclerosis, and myositis (86, 87).
Intriguingly, these anti-Ro antibodies are also present in the
general healthy population (87–89). The incidence of CHB is
about 1:11,000 (81, 90); however, this incidence dramatically
increases to about 5% in anti-Ro positive mothers and up to
18% in subsequent pregnancies thereby affecting the decision
to have a second child (79, 81). The causal relationship of
anti-Ro antibodies to the development of CHB was reproduced

in both active and passive mice models of CHB (81, 91–93).
Various degree of AVB developed in pups born to female
mice immunized with recombinant 52 SSA/Ro protein (active
immunization) (81, 93, 94). Transfer of anti-Ro antibodies from
mothers with CHB children (anti-Ro antibody positive IgG)
directly into timely pregnant mice also resulted in first degree
AVB and, surprisingly, sinus bradycardia in about 70% of the
pups (passive immunization) (91). Similarly, clinical data (95, 96)
also confirmed similar sinus bradycardia in newborns of mothers
with anti-Ro antibody positive IgG, indicating that the spectrum
of CHB extends beyond AVN to also affect SAN.

Anti-Ro Antibody Positive IgG Inhibits Both α1C and

α1D Ca Currents
As mentioned above, the hallmark of CHB is AVB. The
conduction of the impulse through the AVN depends critically
on α1C Ca current, ICa−L, which activates at more positive (−40
and−30mV) potentials (97). It is logical to speculate that anti-Ro
antibody positive IgG might target α1C Ca channel to disturb the
electrical conduction at AVN as seen in CHB. Anti-Ro antibody
positive IgG and affinity purified anti-52 Ro antibodies from
mothers with CHB children, but not anti-Ro antibody negative
IgG from healthy mothers, inhibited ICa−L in isolated SAN,
AVN cells, Purkinje fibers and in ventricular cells by 50–59%
(77, 78, 98–100). In addition, anti-Ro antibody positive IgG had
no effect on K currents (the transient outward current, Ito and
the inward rectifier, IK1), or the Na current (INa), indicating its
specificity toward Ca channels (98). To exclude the possibility
of potential contamination from other ion currents, α1C Ca
channels expressed in Xenopus oocytes were similarly inhibited
about 50% by anti-Ro antibody positive IgG (92, 99, 100).

While inhibition of α1C ICa−L could account for the AVB seen
in CHB, the contribution of α1C ICa−L to diastolic depolarization
of the SA node is generally considered to be minor. SAN
pacemaker depolarization occurs between −60 and −40mV;
however α1C ICa−L activates at more positive (−40 and−30mV)
potentials (101). Knockout of the α1D Ca channel, which
activates at −60 and −40mV in mice, results in significant sinus
bradycardia and AVB (28, 42, 102), a phenotype reminiscent
to that seen in CHB. Mangoni et al. (44) showed ICa−L in
SAN cells was decreased by 75% in α1D Ca channel knockout
mice compared with wild-type mice, which indicates that the
contribution of the α1D Ca channel to total ICa−L is significant
in the mouse SA node cell. Furthermore, our previous studies
demonstrated that both α1D Ca channel transcripts and proteins
are expressed in human fetal heart and in adult rabbit SAN
(39, 40). Collectively, these data suggest that α1D, along with
α1C, contribute to form ICa−L, playing a critical role in pace
making activity in SAN and are a potential target by anti-Ro
antibodies. Because there are no biophysical methods or specific
blockers to separate α1D from α1C ICaL in native cells, the specific
effect of anti-Ro antibodies on α1D ICa−L has been challenging.
Initial studies were carried out in expression systems to allow
individual expression of α1D ICa−L to characterize the effect of
anti-Ro antibody positive IgG. Anti-Ro antibody positive IgG
from mothers with CHB children inhibited α1D ICa−L by about
43% in tsA201 cells and about 33% in Xenopus oocytes (40, 77,
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FIGURE 2 | Effects of anti-Ro antibodies from mothers of children with congenital heart block on an isolated multicellular AV nodal preparation (left) and Langendorff

perfused whole heart (Right). (A) Simultaneous control action potentials from the crista terminalis (black tracing) and the AV node area (red tracing). (B) Superfusion of

the preparation with positive IgG (800µg/mL) for 10min resulted in 2:1 AV block (indicated by the arrows) which progressed to near complete inhibition of the AV

node action potential by 15min (B), (green tracing). (C) ECG was recorded by the conventional ECG machine in lead I, except for the use of silver wires at the

recording end of the leads. One lead was inserted in the atrium, the second in the left ventricle near the apex, and the third in Tyrode’s solution (ground). “P” indicates,

the P wave and on the ECG. Regular sinus rhythm (horizontal scale, 50 mm/s and vertical scale: 5 mm/mV) at 300 beats/min in Tyrode’s solution. (D) After 5min of

perfusion with positive IgG (800µg/mL), there was bradycardia associated with a 2:1 second degree AV block that degenerated into complete AV block by 15min of

IgG perfusion (E). The sectioned heart in the middle panel illustrates the location of the microelectrode recordings.

78, 92, 99, 100). To overcome this limitation of using expression
systems, our group has tested the effect of anti-Ro antibodies
on α1D ICa−L in native neonatal cardiomyocytes, in which the
α1C gene was effectively silenced by lentivirus. Adding anti-Ro
antibody positive IgG resulted in 35% reduction of α1D ICa−L

in naïve cardiomyocytes (103), similar to the results seen using
expression systems.

Because anti-Ro antibodies inhibit both α1C and α1D
ICa−L, it is anticipated that anti-Ro antibodies will cause both
sinus bradycardia and AVB. Further experimental evidence
using isolated multicellular AVN preparations (Figures 2A,B)
and Langendorff-perfused whole hearts (Figures 2C–E)
demonstrated that anti-Ro antibody positive IgG resulted
in bradycardia associated with 2:1 AVB then complete
third degree AVB as recorded by surface EG. In contrast,
perfusion of the AVN preparation or whole heart with
control anti-Ro antibody negative IgG had no effect on
ECG parameters (78). The sinus bradycardia and AVB were
also demonstrated in Langendorff-perfused human hearts
by our group (77) and by others (104, 105). Similar findings
were obtained using the optical mapping technique, which

allows simultaneous recording of voltage action potentials at
multiple areas of the heart including the AVN area. Perfusion
of hearts with anti-Ro antibody positive IgG revealed the
sites of conduction abnormalities at the sinoatrial junction
and AVN, thereby confirming the site of action for these
autoantibodies (106).

In summary, α1D and α1C Ca channels both contribute
to total ICa−L in the heart, with α1D Ca channels playing a
more critical role in the SAN and α1C Ca channels in the
AVN. Anti-Ro antibodies inhibit ICa−L emanating from both
α1D and α1C, resulting in AVB and sinus bradycardia seen in
CHB. This causal relationship was confirmed by reproducing
active and passive mice CHB models by induction of anti-
Ro antibodies (active immunization) or passive transfer of
the anti-Ro positive maternal IgG into pregnant mice (passive
immunization). Altogether, anti-Ro autoantibodies’ inhibition
of Ca channels are causally related to the development
of CHB, but the low incidence of CHB children born to
anti-Ro antibodies positive mothers suggest that additional
factor(s) may be necessary to contribute to the full spectrum
of CHB.
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FIGURE 3 | Schematic representation of alternative mechanism of linking anti-Ro antibodies to the development of atrioventricular block: fetal cardiomyocytes

undergoing “physiological” apoptosis cause the surface translocation of the intracellular located Ro antigens. Circulating maternal anti-Ro antibodies which can cross

the placenta, subsequently bind to the translocated Ro antigens at the cell surface; provoke the secretion of proinflammatory cytokines such as TGFβ from

macrophages. Excessive TGFβ secretion activates fibroblasts leading to scars promoting myofibroblasts in the Atrioventricular node, resulting in atrioventricular block.

Anti-ro Antibody Positive IgG Inhibits Ca Currents by

Binding Directly to the Pore Forming Subunit of the

Ca Channels
As pointed out earlier, anti-Ro antibody positive IgG cannot cross
the sarcolemma of a normal fetal cardiac myocyte, and hence
one can suspect that its effects are not directly mediated through
its antigen, SSA/Ro, but rather via sarcolemma targets such as
Ca channels. Evidence for direct interaction between anti-Ro
antibodies and Ca channels is provided by the direct binding of
anti-Ro antibodies on the pore forming α1 subunit of VGCC,
resulting in inhibition of ICaL. Indeed, using immunostaining and
Western blots, it was demonstrated that anti-Ro antibody positive
IgG binds directly to the Ca channels’ α1 subunit (99, 107). In a
subsequent study, purified GST fusion proteins corresponding to
the extracellular loop S5–S6 of each of the four domains that form
the pore of the α1D subunit were expressed and their reactivity
to anti-Ro antibody positive IgG was tested. Fourteen percent
of anti-Ro antibody positive IgG reacted specifically with the
extracellular loop S5-S6 of the first domains of the α1D subunit,
as demonstrated by both ELISA and Western blots (108). L-
type Ca channels’ inhibition by anti-Ro antibodies is one of the
mechanisms for the electrocardiographic abnormalities seen in
CHB. The resulting formulation of the “Ca channel hypothesis”
was based on the above experimental findings and was driven
by the fact that AVN electrogenesis depends on the L-type Ca
channels. Inhibition of this channel will ultimately lead to AVB, as
seen in CHB. The “Ca channel hypothesis” states that circulating
maternal antibodies directly cross react with L-type Ca channel
pore forming protein α1-subunit, inhibiting the currents and
leading to the development of AVB (97).

T-type Ca Channel and
Autoimmune-Associated Congenital Heart
Block
T-type α1G VGCCs subtype participates with α1H in regulating
electrical conduction through the AVN (18, 27, 31, 34). α1G

VGCC is highly expressed in the AVN in human hearts
(27, 31, 32). Homozygous α1G knockout mice exhibit first-
degree AVB and bradycardia, a phenotype seen in CHB (25).
These findings suggest α1G VGCC as an additional potential
cross-reactive target with anti-Ro antibody positive IgG in
the development of CHB. Hu et al. demonstrated that anti-
Ro antibody positive IgG decreased both ICaL and T-type
Ca current (ICa−T) without affecting the delayed rectifier K
current, IK, and the funny current, If, in rabbit SAN cells (98).
The average inhibition of ICa−T by anti-Ro antibody positive
IgG was 31.4% at −40mV and 44.1% at −20mV in rabbit
SAN cells (98). In addition, although anti-Ro antibody positive

IgG inhibited the α1H ICaT expressed in the Xenopus oocyte

(100), α1H Ca channel knockout mice have no ECG changes
(109), likely secondary to the low level of α1H expression in

the human neonatal AVN cells (107). These findings support

the conclusion that the α1G Ca channel is the target for

anti-Ro antibody positive IgG. Strindberg et al. demonstrated
α1G mRNA and proteins in human fetal hearts and that

α1G ICa−T rather than α1H ICa−T is the dominant current
in the AVN in newborns (107). Experimental data using

immunoprecipitation, Western blot and immunofluorescent
staining have demonstrated accessibility of anti-Ro antibody
positive IgG to the α1G epitope on the surfaces on the
cardiomyocytes in the human fetal heart (107). Reactivity to

α1G T-type VGCC was significantly higher in CHB maternal
sera compared to controls. Binding epitope of anti-Ro antibody
positive IgG was mapped to the extracellular S5–S6 portion of
repeat I of α1G subunit (aa305–319; designated as p305). Using
the patch-clamp technique, the authors also demonstrated that
anti-Ro antibody positive IgG inhibited ICa−T in isolated mice
SAN cells (107). Taken together, these results indicate that anti-
Ro antibody positive IgG readily target an extracellular epitope
of α1G T-type VGCC and inhibit the current in human fetal
cardiomyocytes, thus contributing to the development of AVB as
seen in CHB.
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FIGURE 4 | Schematic illustration of the Ca channel hypothesis. Maternal anti-Ro antibodies cross react and bind to α1C (yellow), α1D (green), and α1G (red) Ca

channels in the fetal human heart, inhibit all three Ca currents leading to sinus bradycardia and atrioventricular (AV) block (acute effect). Furthermore, fetal heart Ca

channels are exposed chronically (chronic effect) (1) to maternal anti-Ro antibodies during pregnancy. Binding of anti-Ro antibodies to Ca channels (2), can cause

cross-linking of the adjacent ion channels by the two Fab arms of IgG (3) to increase the internalization of the channel/antibody complex and thereby decrease of the

channel density on the cell membrane. Internalized Ca channels are lysed by lysosomes (4). If the number of Ca channels on cell surface decreased to a critical level,

then cell death will occur. Cell death, per se, could trigger inflammation subsequent to leukocytic influx resulting in damage of the surrounding healthy myocytes such

as in sinoatrial node and AV node which can cause permanent sinus bradycardia and AV block.

Anti-52kD Ro antibodies are present in 80% of mothers of
children with CHB; however, the risk of having CHB children
is low, with only 1–2% in single anti-Ro antibody positive
pregnancies (84). Markham et al. investigated if reactivity with
p305 (anti-Ro/p305) can be used clinically to more accurately
predict CHB in anti-Ro antibody positive patients (110). Using
anti-Ro antibody positive IgG and with multiple control groups,
reactivity was determined and compared for binding to anti-
Ro/p305. In mothers carrying anti-Ro antibodies, positive anti-
Ro/p305 antibodies were detected in 3/59 (5%) CHB pregnancies,
4/30 (13%) unaffected pregnancies with a CHB-sibling, and
0/42 (0%) of unaffected pregnancies with no CHB-sibling.
Similarly, using umbilical blood from 61 CHB and 41 healthy
with CHB-sibling, in which reactivity would unambiguously
substantiate exposure to maternal antibody, no association of
anti-Ro/p305 with CHB was detected. These data indicate that
anti-Ro/p305 reactivity in pregnant anti-Ro antibody-positive
patients is not a robust maternal marker for assessing increased
risk of CHB (110).

As described above, it is well-recognized that maternal
anti-Ro antibody is associated with the development of the
congenial AVB, at least in part resulting from an inhibitory
cross-reaction with L- and T-type Ca channels. More recent,
studies demonstrated that 10–60% of anti-Ro-positive subjects
are at increased risk of developing QTc prolongation as a
result of anti-Ro antibodies’ interference with K channels, (111–
115) resulting in complex ventricular arrhythmia, (116, 117)
including Torsade’s de Pointes (TdP) (118, 119). Lazzerini et al.
(119) recently evaluated 25 consecutive patients who experienced
TdP, where anti-Ro antibody was present in 15 out of 25
patients. Purified anti-Ro positive IgG from TdP patients cross-
reacted with the Human Ether-a-go-go-related Gene (hERG)
K channel and significantly inhibited the resulting current,
IKr. This observation indicates that anti-Ro antibodies may
represent a novel, clinically silent risk factors for TdP. To
date, studies on the association of anti-Ro antibodies and atrial
fibrillation are scarce. In our previous study (120), we were
able to induce atrial fibrillation in the α1D knockout mice but
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not in the wild-type mice. One can speculate that the unique
atrial specific distribution of α1D Ca channel, together with the
documented inhibitory effect of the anti-Ro antibodies on the
α1D Ca channels, may suggest that anti-Ro positive patients
might be at increased risk of having atrial fibrillation, warranting
further investigations.

CONCLUSIONS AND FUTURE
DIRECTIONS

Cardiac Ca channels, including both L- and T-type Ca
channels, play critical roles in the impulse generation in the
SAN, the conduction through the AVN and the development
of arrhythmias. Autoantibodies targeting Ca channels have
been identified in 2 major pathologies, DCM and CHB. In
addition, several autoantibodies are directly related to sudden
death in patients with DCM, including anti-N/K-ATPase, anti-
M2 muscarinic acetylcholine receptors, and anti-β1 receptor
antibodies, indirectly affecting the L-type VGCCs. Early risk
stratification to effectively prevent adverse outcomes in DCM
has been challenging. Recent studies confirmed the presence
of autoantibodies directly against Ca channel α1C subunit in
DCM, which was identified as a strong predictor for ventricular
arrhythmias and sudden cardiac death, indicating that anti-α1C
Ca channel antibodies might be a valuable biomarker to predict
sudden death in DCM.

The association of anti-Ro autoantibodies with CHB
is generally accepted, but the predictive value of these
autoantibodies is still low despite overwhelming experimental
data demonstrating causality between anti-Ro antibodies and
electrocardiographic abnormalities seen in CHB (Figure 2).
This indicates that anti-Ro antibodies are necessary, but
not sufficient, for inducing the clinical electrocardiographic
phenotype. To date, two hypotheses have been proposed to
explain the molecular mechanism(s) by which maternal anti-Ro
antibodies lead to the development of CHB in the fetal hearts
(79, 121). The “apoptosis hypothesis” (Figure 3) suggests that
intracellular antigens translocate to the surface of cardiomyocytes
undergoing apoptosis during physiological remodeling, thereby

exposing the antigens to the circulating maternal anti-Ro
antibodies. Binding of anti-Ro antibodies to the cell surface
antigens promotes pro-inflammatory and pro-fibrotic responses
(122, 123), causing the fibrosis of the AVN, which eventually
leads to the development of the irreversible AVB (124, 125).
The “Ca channel hypothesis” explained in this review is based
on molecular mimicry, whereby anti-Ro antibodies directly
cross-react and subsequently inhibit the cardiac Ca channels’
activity, thereby causing sinus bradycardia and AVB (77, 78, 108)
(Figure 4). This occurs by anti-Ro autoantibodies binding to
Ca channels and the resulting inhibition of ICaL (Acute effect,
Figure 4). The subsequent cross-linkage and downregulation
of Ca channels and lysis by lysosomes followed by intracellular
Ca dysregulation leads to cell death/apoptosis, inflammation,
and fibrosis of the AVN (Figure 4). The ultimate proof of
direct autoantibodies’ involvement in CHB is provided by the
identification of the site of action on the different subunits of
cardiac Ca channels (126–128), including α1C and α1D subunits
of L-type VGCCs and α1G subunit of T-type VGCCs (Figure 4).
Although autoantibodies are utilized as diagnostic or prognostic
markers in other pathologies, unfortunately, to date, there is
no specific maternal marker for assessing the increased risk of
having CHB children during an anti-Ro positive pregnancy.
It is possible that, instead of having a single CHB-inducing
antibody specificity, future studies may focus on several different
specificities that may act synergistically to induce AVB in
fetal hearts.

Peptide-based therapeutic approaches are one of the growing
classes of novel therapeutic agents. The development of short
non-immunogenic peptides and their use as decoy targets
for pathogenic autoantibodies is expected to minimize and/or
prevent autoantibody association with ion channels and their
functions. This therapeutic path awaits further development
and progress.
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