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INTRODUCTION

The capacity to convey oxygen (O2) from the atmosphere in tomitochondria essentially determines
maximal aerobic metabolism in humans (1–6). The inherent constitution of the O2 transport
and utilization chain is asymmetrical, not all steps have the same importance (7, 8). Intracellular
biochemical mechanisms that could in theory limit O2 utilization are overbuilt in relation to
the potential delivery of O2 through the circulatory system (2, 3, 9). Peak oxygen consumption
(VO2peak), a hallmark of aerobic capacity elicited by incremental exercise involving more than half
of total muscle mass, is mainly determined by the circulatory capacity to deliver O2 to working
muscle even in the presence of compromised muscle oxidative capacity (5, 7, 8). Glaring evidence
of the impact of the circulatory system on VO2peak includes conditions such as heart failure (HF),
intrinsically linked with impaired cardiac output and thus limited convective O2 delivery (2, 6).
VO2peak is a strong and independent predictor of survival in HF patients used to determine
eligibility for cardiac transplantation (6, 10, 11). After diagnosis of HF, survival estimates do not
exceed 50% at 5 years (12, 13).

Understanding the physiology of O2 delivery and thereby VO2peak in HF may facilitate the
identification of target mechanisms and the advent of effective treatments. While classic empirical
studies in HF patients support the primary role of impaired cardiac pumping capacity in the
limitation of VO2peak (14, 15), a recent paradigm based on theoretical assumptions attribute
the main importance to skeletal muscle abnormalities in O2 diffusion from capillaries in to
mitochondria (16). Given the radical change of rehabilitation programs implicit in the “skeletal
muscle” paradigm, herein we sought to shed light on the foundation of this relatively new tenet in
the HF field. In particular, a fundamental aspect will be clarified: the measurement and calculation
of O2 diffusion in skeletal muscle.

O2 TRANSPORT ASSESSMENT: DE FACTO MEASUREMENT OF
O2 DIFFUSION IN SKELETAL MUSCLE

The transport of O2 in living organisms follows well-known physical phenomena. O2 molecules
move via (i) convection, due to the bulk motion of fluids, and (ii) diffusion, spontaneously
spreading out from a region of high concentration to a region of low concentration. Along the
O2 cascade, convection is the mode of O2 transport between the atmosphere and the lungs, and
between pulmonary capillary blood and tissue microvascular beds, respectively determined by
the bulk motion of air and circulating blood. Diffusion of O2 mainly occurs from alveoli in to
pulmonary capillaries, and from tissue microvascular beds in to mitochondria. With respect to
the measurement of O2 transport, both convection steps (air-to-lung, blood circulation) can be
measured with relatively high accuracy in humans bymeans of spirometers, air/blood gas analyzers,
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FIGURE 1 | Common schematic illustration of convective and diffusive components of oxygen consumption (VO2) by proponents of abnormalities in skeletal muscle

O2 diffusion. Leg O2 consumption is represented as a function of leg microvascular partial pressure of oxygen (PO2). Black lines depict Fick and “Diffusion” lines for

healthy control individuals; red lines refer to heart failure (HF) patients. The intersection of these lines reflects the VO2 achieved (blue circles). Curved lines are derived

from the established Fick Principle. Straight “Diffusion” lines are calculated by the product of skeletal muscle O2 diffusion capacity (DMO2) and O2 pressure gradient.

Given that DMO2 cannot be directly measured, the “Diffusion” lines are intrinsically dependent on VO2, which is at least in part determined by cardiac output (Q), i.e.,

convective O2 delivery, according to the Fick Principle. Hence, “Diffusion” lines are compounded representations of convective and diffusive components of VO2.

arterial/venous blood samples and indicator-dilution/ultrasound
techniques (17, 18). These well-established researchmethodsmay
also be used to assess lung O2 diffusion. The final O2 diffusion
step in the skeletal muscle microcirculation, however, cannot yet
be directly measured. The level of resolution required to capture
O2 extraction in microvessels supplying active muscle fibers is
beyond reach owing to technical limitations including temporal
and spatial constraints (8, 19).

The possibility seemingly exists, nonetheless, to make use
of partial measurements and multiple assumptions to deliver
a quantitative value for skeletal muscle O2 diffusion capacity
(DMO2) (20–22). Notably, in the field of HF (16), some clinical
researchers are currently applying a method for estimating
DMO2 conceived almost 3 decades ago (20–22). Herein, DMO2

is portrayed as the ratio of skeletal muscle O2 consumption
(VO2) and O2 pressure gradient between microvessels and
mitochondria (21, 23, 24).

DMO2 =

skeletal muscle VO2

O2 pressure gradient

At first sight the notion of DMO2 appears consistent, albeit
a close scrutiny of the actual measurements reveals salient
incongruences. Skeletal muscle O2 consumption—calculated
by the product of leg blood flow (LBF) and the difference
between femoral arterial and venous O2 content (16, 21)—is
primarily determined by convective O2 delivery, since LBF is
substantially impaired (up to −40%) in HF conforming to the
reduced pumping capacity of the failing heart (6, 25). Moreover,
femoral vein O2 content is close to zero in HF patients at
VO2peak (2). Therefore, the first component (numerator) of

the DMO2 equation, i.e., skeletal muscle VO2, is essentially a
function of convective O2 delivery (LBF × arterial O2 content)
a fundamental mathematical flaw for a variable claimed to
represent diffusive O2 transport (Figure 1).

The O2 pressure gradient between skeletal muscle
microvessels and mitochondria is also estimated from femoral
arterial and venous O2 content measurements, both pertaining
to the macro- instead of microcirculation (16, 21). A myriad
of assumptions are thus necessary to infer the postulated
denominator of the DMO2 equation (20). For instance, the
inherent heterogeneity of leg microvascular blood flow (26, 27),
which even at VO2peak perfuses tissues (e.g., adipose tissue,
bone, inactive muscle) not demanding a high VO2, is neglected
(20, 21). Similarly, altered capillarization as well as anatomical
and/or functional shunting within the lower limb, which may
have a substantial influence in HF patients at VO2peak (28, 29),
is ignored (16, 21). Taken together, the estimation of the O2

pressure gradient entails as a necessary premise that all blood
flow downstream of the femoral artery perfuses active muscle
fibers, in a perfect match between O2 delivery and metabolic
demand, an untenable shortcoming (26–28).

Considering the actual measurements underpinning the
concept of DMO2, its mathematical equation would be more
accurately expressed as:

DMO2 =

LBF × arteriovenous O2 difference

Blood flow distribution × O2 pressure gradient

Hence, the numerator and denominator of DMO2 comprise
variables reflecting convective O2 delivery, LBF and blood flow
distribution, respectively. The observation of reduced DMO2
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in HF patients is therefore not surprising (16, 23, 24). To
conclude from these studies that mechanisms underlying skeletal
muscle O2 diffusion should be primarily targeted for therapy is
questionable (30). Caution should be taken in the interpretation
of lower DMO2 in HF patients, which can be largely attributed
to abnormalities in convective O2 delivery, let alone presenting
DMO2 results as the main buttress of a new paradigm (31, 32).
Further research taking advantage of technological developments

in measurement accuracy and resolution of O2 dynamics in
skeletal muscle will have to elucidate its role in the limitation of
VO2peak in HF populations.
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