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Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this

process is the development of subclinical non-atherosclerotic intimal lesions before

the appearance of pathologic intimal thickening and advanced atherosclerotic plaques.

Intimal thickening is associated with several risk factors, including oxidative stress due

to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS

producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH)

oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and

senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation,

and migration. Lineage tracing studies using murine models of subclinical atherosclerosis

have revealed the contributory role of medial smooth muscle cells (SMCs), resident

vascular stem cells, circulating bone-marrow progenitors and endothelial cells that

undergo endothelial-mesenchymal-transition (EndMT). This review will address the

putative physiological and patho-physiological roles of ROS in controlling vascular cell

fate and ROS contribution to vascular regeneration and disease progression.

Keywords: NOX, NAPDH oxidase, smooth muscle (physiology), endothelial cells, adventitial cells, stem cells,

intimal thickening, arteriosclerosis

INTRODUCTION

Arteriosclerosis occurs when the arterial blood vessels that carry oxygen and nutrients from the
heart to the rest of the body become thick and stiffen thereby restricting blood flow to vital organs
(1). It is a common feature of aging while pulmonary hypertension, peripheral arterial disease
(PAD), transplant arteriosclerosis and in-stent restenosis (ISR) following balloon angioplasty are all
significant clinical outcomes peroxidation (2–5). Atherosclerosis is a specific type of arteriosclerosis
and refers to the specific build-up of lipids, cholesterol and other substances in and on the artery
wall forming a plaque which can further restrict blood flow (6). It is considered the main cause of
cardiovascular disease and is characterized by the early development of subclinical atherosclerosis
due to pathologic intimal thickening (PIT) within atherosclerotic-prone regions of the vasculature
(7). Subclinical atherosclerosis is an early indicator of atherosclerotic burden and its reversal can
prevent the progression to symptomatic cardiovascular disease (CVD) (1). For the purpose of this
review, subclinical atherosclerosis refers to the early intimal thickening that occurs prior to the
accumulation of lipid and early plaque formation (8).
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Reactive oxygen species (ROS) are a class of highly reactive
molecules derived from O2 metabolism (9). Members of the
ROS family include: superoxide (O2−), alkoxyl radical (RO·),
peroxyl radical (ROO·), hydroxyl radicals (OH·), peroxynitrate
(ONOO−), hydrogen peroxide (H2O2), ozone (O3), and
hypochlorus acid (HOCl). Physiological concentrations of ROS
are important signaling molecules that maintain vascular
homeostasis whereas excessive ROS production may result in
oxidative stress leading to vascular disease progression. ROS
maintain vascular cell homoeostasis by controlling the phenotype
and fate of multiple cell types including endothelial cells (ECs),
vascular smooth muscle cells (SMCs), adventitial cells, myeloid
cells and resident stem/progenitor cells (10, 11).

Oxidative stress influences the onset and progression of
subclinical atherosclerosis by inducing early endothelial cell
activation, permeability changes to the endothelium, disruption
of glycocalyx, activation of myeloid and progenitor stem cells
leading to the eventual accumulation of vascular smooth
muscle (SMCs)-like cells within the intima (12–14). This
accumulation of cells promotes diffuse (DIT) and adaptive
(AIT) intimal thickening and is considered an important
nexus in the development of subclinical atherosclerosis.
These cells may originate from (i) medial SMCs (15), (ii)
resident vascular stem cells (16) (iii) circulating bone marrow-
derived mesenchymal stem cells (17) and (iv) endothelial
cells undergoing mesenchymal-stem-cell-transition (EndMT)
(18). Concurrently, innate and adaptive immune cells that
enter the vasculature may also participate in the pathology
of hypertensive-induced arteriosclerosis by releasing several
mediators including ROS that cause vascular damage leading to
adaptive (AIT) and pathologic (PIT) intimal thickening (19). In
this context, ROS affect resident myeloid cells that reside within
intimal and/or adventitial layers of susceptible regions of arterial
vessels that display low-grade inflammation (20–22). Upon
exposure to hypercholesterolemia, these cells become laden with
oxidized LDL and acquire foam cell morphology prior to the
recruitment of monocytes that differentiate into macrophage
foam cells (6).

Once thought to be nothing more than harmful by-
products of cellular metabolism, it is now clear that low—
moderate ROS levels contribute to cellular functions such as
differentiation, migration, adhesion, senescence, growth and
apoptosis (23). The main ROS producing systems in-vivo
are reduced nicotinamide dinucleotide phosphate (NADPH)
oxidase (NOX) (11), xanthine oxidase (XO) (24), the electron
transport chain in the mitochondria (25), cytochrome P450
(26), lipoxygenases, heme oxygenase and cyclooxygenases (27),
myeloperoxidase (28), monoamine oxidases (29) and uncoupled
nitric oxide (NO) synthase (30). ROS can also be generated from
exogenous sources such as UV light, air and water pollution,
alcohol, tobacco smoke, transition and heavy metals, industrial
solvents, pesticides, high temperature (31) (Figure 1). Table 1
lists the seven isoforms of NOX expressed in mammals. While,
NOX represents the major source of vascular superoxide anion
that generates oxidative stress (45), endothelial ROS is also
generated in the mitochondria from the partial oxygen reduction
to form superoxide and also participates in the activation of these

cells following cholesterol loading (46). Similarly, macrophages
produce elevated levels of mitochondrial ROS in a NOX-
independent fashion (47).

Initially O2− is formed from the reduction of molecular O2.
O2− is the most pathologically relevant molecule due to its high
chemical reactivity, therefore O2− requires rapid reduction to
H2O2 by the enzyme superoxide dismutase (SOD) (48). H2O2 is
thought to be the main ROS molecule involved in intracellular
signaling. This reaction may also occur spontaneously in a
process known as dismutation. O2− may react with H2O2 in
the presence of iron (released from O2− oxidative damage to
proteins containing FeS clusters) to generate damaging OH-
radicals, or O2− may also react with NO to form ONOO−
(31). ROS are important mediators and signal modifiers upon
stimulation by growth factors (49, 50), cytokines (51), hypoxia
(52), shear stress (53), and cyclic strain (54). In response, many
important pathways are activated such as GPCR, Notch, Wnt-β-
catenin, MAPK, JAK-STAT, NF-κB, and PI3K/AKT (55–60).

ROS acts as an intracellular signal through reversible
oxidation of amino acid residues, most commonly cysteine (61).
This induces a conformational change in the sensor protein
and influences their function, stability, subcellular localization
and protein-protein interaction. H2O2 is the most studied ROS
mediator due to its stability and its ability to diffuse through
the phospholipid bi-layer (62). H2O2 has been implicated in
a variety of cellular processes (63), including proliferation and
migration (64), differentiation (65), and apoptosis (66). O2−

signaling is less understood due to its poor stability and the
difficulty to specifically target O2− in vitro or in vivo (67).
In spite of its low stability and poor diffusion, it can oxidize
thiol groups of proteins in the immediate vicinity of where it
was generated (68). O2− signaling has been associated with
major epigenetic processes, including DNA methylation, histone
methylation and histone acetylation (69). ROS also possess
antimicrobial functions, important in phagocytosis and pathogen
destruction (70).

Generation of ROS is tightly regulated by the ROS
scavenging system, which are enzymes that neutralize ROS. These
include SOD, catalase, heme-oxygenase-1 (HO-1), NADPH
quinone reductase and, gamma-glutamylcysteine reductase (48).
Oxidative stress is normally induced when the production of
ROS overcomes the ROS scavenging system. This facilitates
lipoprotein/phospholipid oxidation, protein denaturation, and
DNA damage through free-radical-mediated chain reaction,
primarily through the reduction of guanine residues to 8-
oxoguanine (71). OH· radicals can also cause single/double
strand breaks in DNA (71). The anti-oxidant defense response,
primarily SOD, regulates ROS signaling by limiting the
concentration of ROS to low or moderate levels, controlling
the redox profile of the cell and ensure that ROS are
localized close to their intended targets (70). SOD1 inhibition
by tetrathiomolybdate increased intracellular O2− and H2O2

levels and attenuated growth factor mediated ERK1/2 signaling
in endothelial and tumor cells (48). Glutathione peroxidase
(GPx-1) has also an important anti-oxidant role in the
generation of ROS. GPx-1 is inversely associated with CVD and
important for maintenance of a normal level of GSH. It can
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FIGURE 1 | Enzymatic sources of superoxide anion (·O2−). The major enzymes responsible for ROS generation in the vasculature include mitochondria (mtROS),

NAD(P)H oxidase, xanthine oxidase, and uncoupled NOS. NAD(P)H oxidase is a multi-subunit enzyme, comprising gp91phox (or its homologs, NOX1 and NOX4),

p22phox, p47phox (or NOXO1), p67phox (or NOXA1), and p40phox. Smooth muscle cell (SMC), endothelial cell (EC), Myeloid Cell (monocytes and macrophages),

vSC (vascular stem cell). The mitochondrial electron transport chain produces mtROS. Mitochondrial complexes I and II use electrons donated from NADH and

FADH2 to reduce coenzyme Q during the process of oxidative phosphorylation (OXPHOS). Leakage of electrons at complex I and complex III from electron transport

chains leads to partial reduction of oxygen to form superoxide [Quinol QH2, quinone Q and C cytochrome c].

also protect mitochondria against ROS-induced reoxygenation
damage in vivo (72).

The overall consensus is that ROS production when not
compensated for by scavenging endogenous antioxidants will
lead to the rise of ROS beyond a “normal” or “physiological”
threshold level. This results in a process termed “oxidative
stress.” Intracellular ROS generation may be pathological or
physiological (73). ROS is invariably generated from cellular
metabolism or in response to various exogenous stimuli. While
the main endogenous source of ROS is the electron transport
chain of the mitochondria and cytosolic generation by NOX,
other ROS sources are referred to as “professional” generators,
capable of producing high levels of ROS in a spatial and
temporal manner (74). NOX derived ROS has been implicated in
cancer (75), diabetes (76), neurodegenerative disorders (77) and
CVD (78).

VASCULAR MITOCHONDRIAL
ROS (MTROS)

Mitochondria are unique in that they are not only a
major source of ROS but are also particularly susceptible to

oxidative damage by ROS. Consequently, mitochondria suffer
oxidative damage with age that contributes to mitochondrial
dysfunction (79). Under physiological conditions, mitochondrial
metabolism results in the build-up of potentially damaging ROS
which are neutralized by mitochondrial permeability transition
pore (mPTP) openings that maintain healthy mitochondrial
homeostasis. However, adaptive and maladaptive responses
can occur that involve activation of mitochondrial channels
such as mPTP and inner membrane anion channel (IMAC)
resulting in intra- and intramitochondrial redox-environment
changes leading to ROS release. Physiological levels of ROS
produced in the mitochondria (mtROS) are critical components
of downstream signaling pathways including those regulating
immune responses and autophagy (59, 80).

Mitochondria have a four-layer structure, including
outer mitochondrial membrane, intermembrane space,
inner mitochondrial membrane, and matrix. Generation of
mtROS occurs during the process of oxidative phosphorylation
(OXPHOS) at the electron transport chain (ETC) located on
the inner mitochondrial membrane. Five big protein complexes
are involved in this process. These ETC complexes are named
complex I (NADH dehydrogenase (ubiquinone), 45 protein
subunits), complex II (succinate dehydrogenase, 4 protein
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TABLE 1 | Isoforms of NOX.

Isoform Expressed Role References

NOX1 Colon, vascular smooth

muscle cells, and stomach

Cell growth (32, 33)

NOX2 Endothelial cells and

neurons

Phagocytosis. Greatly

implicated in disease states

due to association with

inflammation.

(34, 35)

NOX3 Mainly in fetal kidney and

liver tissue. Also in inner

ear.

Development of otoconia in

the inner ear

(36–38)

NOX4 A variety of cell types

including vascular

endothelial, smooth

muscle and mesenchymal

stem cells

DNA damage (39–42)

NOX5 Lymphocytes of spleen

and lymph nodes and in

testes

Calcium dependent enzyme (43)

DOUX1 Thyroid Thyroid hormone synthesis

and host defense

(44)

DOUX2 Thyroid Thyroid hormone synthesis

and host defense

(44)

subunits), complex III (ubiquinol-cytochrome c reductase,
10 protein subunits), complex IV (cytochrome c oxidase, 19
protein subunits), and complex V (ATP synthase, 19 protein
subunits). Electrons donated from nicotine adenine dinucleotide
(NADH) at complex I and flavin adenine dinucleotide (FADH2)
at complex II pass through ETC and ultimately reduce O2

to water at complex IV. Positively charged protons (H+)
are actively pumped from the mitochondrial matrix into the
intermembrane space, resulting in the increased negative
charges in the mitochondrial matrix and the upregulated
positive charges in the intermembrane space, and thus creating
a mitochondrial membrane potential (1ψm) across the
inner mitochondrial membrane. This proton-motive force
allows complex V - ATP synthase (ATP-ase) to generate ATP
from adenosine diphosphate (ADP) and inorganic phosphate
when protons re-enter the mitochondrial matrix through
the complex V enzyme. However, the process of ETC is not
perfect and leakage of electrons occurs at complex I and
complex III resulting in partial reduction of oxygen to form
superoxide (O2.−). It has been estimated that 0.2–2.0% of
O2 consumed by mitochondria generates the superoxide
(O2.−). There are three leakage events: complex I leaks O2.−
toward the mitochondrial matrix, while complex III leaks
O2.− toward both the intermembrane space and mitochondrial
matrix (79) (Figure 1).

Overall, there are 11 sites of ROS production (superoxide
and/or hydrogen peroxide) identified in mammalian
mitochondria related to substrate metabolism, electron transport
and oxidative phosphorylation (81). However, because mtROS
and ATP production are both coupled to electron transport
chain activity, it is unclear how mtROS is induced independently
of ATP synthesis. Recent studies now suggest that mtROS is

activated via unique calcium entry–mediated increase of proton
leak and mitochondrial O2 reduction (46).

The regenerative cycle of mtROS formation and release is
termed ROS-induced ROS release (RIRR). Reversible mPTP
channel opening and associated ROS release constitutes an
adaptive housekeeping function of potentially toxic levels
of ROS (and Ca2+). At higher ROS levels, longer mPTP
channel openings release a ROS burst leading to destruction
of mitochondria, and if propagated from mitochondrion to
mitochondrion, of the cell itself. The destructive function of
RIRR serves a physiological role through removal of unwanted
cells or damaged mitochondria. It may however also cause
the pathological elimination of vital and essential mitochondria
and cells. The adaptive release of sufficient ROS into the
vicinity of mitochondria may also activate local pools of redox-
sensitive enzymes involved in protective signaling pathways that
limit ischemic damage to mitochondria and cells in that area.
Maladaptive mPTP- or IMAC-related RIRR may also be playing
a role in aging (79).

Collectively, both O2.− and H2O2 are considered the primary
mtROS but have different fates. Given its electrophilic property
and short half-life, O2.− undergoes radical-radical reaction
with nitric oxide (NO) to form peroxynitrite (ONOO2.−)
within mitochondria, a detrimental oxidant capable of induction
of DNA damage, disruption of mitochondrial integrity, and
irreversible modification of protein. In contrast, H2O2 is
electrophobic and more stable and hence abundant within
mitochondrion a (>100 times greater than that of O2.−) thereby
rendering mitochondrial H2O2 an ideal signaling molecule in
mammalian cells (63).

Importantly, ROS generation in the mitochondria appears to
be an important aspect of ROS production for both endothelial
cells (82) and intimal myeloid cells (primarily monocytes and
macrophages) in atherosclerosis (83, 84).

VASCULAR NADPH OXIDASE (NOX)

Vascular NADPH oxidases (NOXs) are ROS generating
oxidases (85) Table 2. With the exception of NOX5, all
NOX enzymes are heteroprotein transmembrane complexes
with a core catalytic subunit and a number of regulatory
subunits (NOX1, NOX2, NOX4, and NOX5 are expressed
and functionally active in human vascular cells. In humans,
NADPH oxidase had been thought to be a phagocyte
specific enzyme (its catalytic unit: gp91phox) mediating
bacterial killing by producing a burst of O2− (86). The
p22phox, a membrane protein, forms a heterodimer with
gp91phox, thereby stabilizing gp91phox and enhancing
its O2−-producing activity. The ubiquitous expression of
p22phox in non-phagocytic cells led to the identification
of NOX1, a homolog of gp91phox, in non-phagocytic
cells and facilitated the discovery other NOX proteins
(45) (Figure 2).

NOX1, 2, 3, 4, and 5 along with Duox1 and 2 and are present
in the plasma membrane, endoplasmic reticulum (NOX 2, 4, and
5), the mitochondria membrane and nuclear membrane (87).
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TABLE 2 | Vascular NOX isoforms.

Cell NOX expressed References

Endothelial cells NOX1, NOX2, NOX4, and NOX5 (86)

Smooth muscle cells NOX1, NOX2, NOX4, and NOX5 (87)

Resident MSC-like stem cells NOX1, NOX2, and NOX4 (88)

Adventitial fibroblasts NOX1, NOX2, NOX4, and NOX5 (89)

Intimal myeloid cells NOX1, NOX2, NOX4, and NOX5 (90)

The classical NOX complex (NOX2) is comprised of the gp91-
phox which is the main catalytic subunit that transfers NADPH
electrons via FAD and the haem groups to O2 and constitutively
forms a heterodimer with p22-phox on the membrane (91).
Classical NOX is also comprised of three cytosolic subunits p47-
phox, p67-phox and p40-phox along with the G-protein Rac
(92) (Figure 2).

All NOX homologs have 6–7 transmembrane domains with
two haem binding regions containing histidine residues and
a NADPH binding region on the intracellular C-terminus to
facilitate O2− production. The different isoforms of NOX
contain homologs of the NOX2 gp91-phox subunit. Structural
homology of the catalytic core is preserved within NOX1, NOX3,
NOX4, NOX5, DUOX1, and DUOX2, however regulation,
localization and function slightly vary across isoforms (93).

NOX1, 2, 3, and 5 mainly produce O2−, while NOX4,
DUOX1, and DUOX2 generate mainly H2O2. NOX generates
O2− by a complex reaction once NADPH binds to the cytosolic
COOH terminus. Initially the electrons donated from NADPH
are used to reduce FAAD to FADH. FADH is then used to reduce
O2 on the other side of the membrane (93).

NOX is activated by phosphorylation though phagocytic
particles, physiological or pathological cues such as
hyperglycaemia, altered cellular hypoxia, and inflammation
(76, 94, 95) Phosphorylation of p47-phox may be mediated
by several serine kinases including protein kinase C isoforms,
mitogen-activated protein kinases (MAPK), cyclic AMP
dependent kinase, p21-activated kinases (PAK), PKB/AKT,
protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K)
and non-receptor associated protein kinases (e.g. JAK and
SRC) (58, 96, 97).

NOX activators include cytokines (98), platelet derived
growth factor (99), epidermal growth factor (50), TGF-β1 (100),
mechanical forces such as pulsatile/oscillatory shear stress (101)
cyclic stretch (102), hypoxia (52), and G protein coupled receptor
agonists (55).

Protein-protein interactions among NOX and members of
the thioredoxin family, and transient oscillations in intracellular
concentration of various ions, may trigger the activation of NOX.
Nuclear factor erythroid 2- related factor 2 (NrF2) is a negative
regulator of NOX. Phosphorylation of p47-phox allows it to
bind to a p40-phox-p67-phox complex (103)and facilitates the
translocation of the trimer to the membrane where it binds to
p22-phox thus assembling the active NOX complex (92).

It has recently been reported that NOX enzymes are
present in extracellular vehicles (EVs) and microparticles (MPs)
released from various cells, including endothelial cells (104,

105). EVs have been implicated in a number of pathological
and physiological conditions such as cancer and atherosclerosis
(106, 107). During septic shock, platelet derived exosomes may
generate ROS throughNOX-2, which formsONOO- that induces
endothelial apoptosis (106). NOX2 is present in circulating
MPs from patients with hypercholesterolemia (108). However,
as NOX2 activation requires the translocation of its cytosolic
subunit p47 to the cytoplasmic membrane, it is important that
p47 is also localized at the membrane surface or in proximity of
the vesicle (85).

SUBCLINICAL ATHEROSCLEROSIS

The arterial wall is comprised of the intima (the innermost layer
of endothelial cells with some intimal myeloid cells surrounded
by a basal lamina), the media (consists mostly of smooth
muscle cells and some resident stem cells supported by the
extracellular matrix) and the adventitia (the outer most layer
containing a variety of cell types including fibroblasts, myeloid
cells, macrophages, adipocytes and pericytes) (109) (Figure 3).

Atherosclerosis is a chronic progressive inflammatory disease
and the leading cause of death worldwide (6). Despite
an extensive understanding of established/advanced lesion
morphologies that lead to myocardial infarction or stroke due
to thrombosis from acute plaque rupture or erosion, there
still exists a superficial understanding of the initiation and
progression of subclinical atherosclerosis. Central to this process
is the development of non-atherosclerotic intimal lesions referred
to as adaptive [AIT] or diffuse [DIT] intimal thickening,
before the appearance of pathologic intimal thickening (PIT)
leading to plaque formation in human vessels (7, 8, 110).
Intimal thickening (AIT/DIT) leads to lipid deposition within
the walls of the thickened artery and transpires before the
build-up of foam cells which results in atheroma formation
and restricted blood flow (1). Within the atheroma, there is
also a significant accumulation of synthetic SMCs that are
considered both protective when at the fibrous cap but also
alternatively atherogenic if they become macrophage-like cells
(6). Several studies have shown upregulation of NOX-based
NAD(P)H oxidases during the progression of AIT following flow
restriction due to carotid injury (111) and lipid diet (112). The
importance of intimal thickening to subclinical atherosclerosis in
advancing atherosclerosis has been clearly established in ApoE
gene deficient mice fed on a western diet in combination with
carotid artery ligation-induced injury (113, 114).

The origin of the SMC-like cells that contribute to DIT/AIT
andmake up the atheroma remains controversial. However, there
are four proposed mechanisms based on recent lineage tracing
analysis that include:

1) De-differentiation/reprogramming of a subset of medial
vascular smooth muscle cells (15, 115)

2) Myogenic differentiation of a resident vascular stem cells
(16, 116)

3) Myogenic differentiation of bone marrow-derived
mesenchymal stem cells (17)

4) Endothelial-mesenchymal cell transition (EndMT) (18, 117)
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FIGURE 2 | NADPH oxidase (NOX) activation. NOX comprises cytosolic (p47phox, p67 phox, p40 phox, and Rac) and membrane subunits (gp91 phox and p22

phox). During activation of NOX, cytosolic subunits comprise a multi-component enzyme and mi- grate to the plasma membrane to dock with the membrane

subunits. This multi-subunit enzyme produces a superoxide anion (O2·).

VASCULAR ROLE OF ROS

In the vascular bed, the main ROS of interest generated by NOX
are H2O2 and O2− (11). H2O2 in low concentration is a vital
signaling molecule under physiological conditions whereas O2−

is associated with oxidative stress leading to pro-inflammatory
and oxidative processes (Figure 3).

Cardiovascular risk factors such as hypercholesterolemia
(118), hypertension (100), diabetes mellitus (76), and smoking
(119) all increase ROS generation and decrease endothelial
NO production. There is compelling evidence to support the
role of ROS in intimal thickening leading to the progression
of atherosclerosis in vivo using rodent models (10, 71, 111).
Adaptive vascular lesions preferentially form within regions of
disturbed blood flow leading to enhanced ROS and pathologic
intimal thickening (8), and numerous human studies have
demonstrated several NOX proteins including gp91phox and
NOX4 contribute to increased intracellular oxidative stress in a
cell-specific manner and thus may be involved in the genesis and
progression of human coronary atherosclerotic disease (118). In
vivo studies on the specific role of NOX homologs in vascular
lesions have significantly advanced our understanding of the role
of superoxide and increased NOX expression in injury models in
mice (120), while antioxidant treatment with tempol or N-acetyl-
cysteine protects against injury-induced lesion formation (121).

ROS in Vascular Endothelium
The vascular endothelium plays a critical role in vessel
homeostasis by maintaining blood flow regulating blood flow,
controlling macromolecule and fluid exchange with tissues and

preventing leukocyte activation (122). NOX are in part localized
to the plasma membrane, producing extracellular superoxide
with a paracrine function but NOX 1, 2, and 4 are also localized
in intracellular compartments with a perinuclear distribution
(123). Sustained ROS levels contribute to endothelial dysfunction
and activation of an inflammatory phenotype leading to the
development of atherosclerosis (82). In vascular endothelial
cells the main source of ROS is the electron leakage from the
mitochondria (46).

Endothelial cell-dependent relaxation is primarily mediated
by endothelial-derived hyperpolarizing factor (EDHF) and nitric
oxide (NO), with H2O2 as the primary EDHF (39). NOX4
generates H2O2, which may react with NO and increase (124)
or decrease (125) endothelial nitric oxide synthase (eNOS)
expression and activity through a phosphoinositide 3-kinase-
dependent and the inhibition of AP-1 activity, respectively.
Flow, the preeminent stimulus for endothelial NO, also
promotes the endothelial release of other factors that impact
on vascular function, including activation of the lysosomal
biogenesis transcription factor EB (TFEB) to decrease mTOR
(mechanistic target of rapamycin) activity (80, 126). Indeed, ROS
may induce autophagy by activating the major Ca2+ release
channel on the lysosomal membrane through a TFEB pathway,
facilitating the removal of damaged mitochondria and excess
ROS (127). Moreover, athero-prone regions of the vasculature
have enhanced TFEB levels linked with a reduction in H2O2, and
superoxide (126).

Finally, proinflammatory lipids like lysophosphatidylcholines
(LPC) are known to stimulate ROS formation in atherosclerosis,
an effect that is attenuated by mitoTEMPO—a mitochondrial
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FIGURE 3 | NOX enzymes present within the vascular walls. Schematic depicts the repertoire of NOX enzymes within all three layers of the vascular wall, the

adventitia (i.e., fibroblasts, macrophages, and adventitial progenitor stem cells), the media (i.e., smooth muscle cells accounting for 90% of the vessel wall) and the

intima (i.e., endothelial cells/smooth muscle cells). Although all isoforms are expressed at some levels within all three layers there are distinct NOX profiles associated

with each layer. NOX4 is the predominant isoform in endothelial cells, NOX1 and NOX4 in smooth muscle cells, Nox4 in fibroblasts, and Nox2 and NOX4 in resident

vascular stem cells.

ROS scavenger. Therefore, an imbalance of redox-mediated
signaling in endothelial cells may precipitate endothelial
dysfunction that is a key event for the development of
atherosclerosis (46).

NOX4 is also involved in endothelial progenitor stem cell
proliferation, migration and cell survival after exposure to
TNF-alpha (128). Superoxide (O2−) attenuates endothelial cell
dependant relaxation, therefore SODmay play an important role
to limit intracellular O2− concentration in endothelial cells by
converting O2− to H2O2 (129).

ROS in Vascular Smooth Muscle Cells
The primary NOX isoforms in SMCs are NOX1 and NOX4
(130). Their localization and enzymatic activity differs in that
NOX1 is primarily found in the plasma membrane, caveoli
and endosomes, whereas NOX4 localizes to focal adhesions,
the endoplasmic reticulum, and mitochondria. NOX1 interacts
with multiple regulatory proteins to drive inducible O2−, while
NOX4 is constitutively active and primarily generates H2O2

(131). NOX1 and NOX4 have highly specialized roles within
smooth muscle cells (SMCs). Evidence suggests that NOX4
is involved in maintenance of SMC quiescence (132) while

NOX1 has a role in modulating SMC function (33, 133). Most
data to date has come from global transgenic murine studies
that reveal the overall effect of NOX1 and NOX4 in normal
and disease development (86). Ectopic expression of NOX1
in vascular smooth muscle promotes the production of ROS
in response to ANG II and causes eNOS uncoupling and a
decrease in nitric oxide bioavailability, resulting in impaired
vasorelaxation (134). More recent studies have focused on
SMC-specific transgenics that allow definition of the specific
contribution of SMC NOX proteins to SMC function and
phenotypic state, and to vascular disease development (86, 135).
Using NoxO1 or p47phox gene deleted animals, ROS production
stimulated by NoxO1 and p47phox limited endothelium-
dependent relaxation and maintained blood pressure. However,
NoxO1 and p47phox cannot substitute each other despite their

similar effects on vascular function. Deletion of NoxO1 induced

an anti-inflammatory phenotype, whereas p47phox deletion

rather elicited a hyper-inflammatory response (136).
Activation of NOX1 contributes to matrix degradation, and

the migration and proliferation of SMC (137). Protein kinase
C-beta1-mediated phosphorylation of NOX1 is necessary for
its interaction with the NOXA1 subunit and generation of
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superoxide (138). A peptide inhibitor of this process prevents
SMC migration (139). Induction of SMC proliferation and
hypertrophy leads to downregulation of NOX4 and upregulation
of NOX1 expression, respectively. NOX4 downregulation leads
to senescence of human vascular smooth muscle cells (140).

PDGF-BB-induced increases in NOX1 expression and H2O2

production promotes activation of c-Jun N-terminal kinase
(JNK), cyclin D and extracellular signal-regulated kinase
(ERK)1/2 signaling to enhance SMCmigration and proliferation,
respectively (141). On the other hand, Ang II-induced SMC
hypertrophy is regulated by NOX1 activation of Ras, p38
mitogen kinase activated protein kinase (MAPK)/protein kinase
B (Akt), and epidermal growth factor (EGF) receptor pathways
(142). NOX1 mRNA expression is enhanced in phenotypic de-
differentiated SMC (112). NOX1 deficient mice exhibit decreased
proliferation and migration in response to PDGF-BB, whereas
ectopic expression of NOX1 has the opposite effects (86).

In further agreement, ectopic SMC expression of human
NOX1 facilitated enhanced Ang II-induced vascular O2−

production, hypertension and vessel wall hypertrophy (143).
Contradictory data from global NOX1 knockdown suggest that
NOX1 deficiency may be protective after femoral wire-induced
injury by attenuating neointima formation and cell proliferation
(86). Indeed, vascular NOX1 levels are upregulated in carotid
arteries following balloon injury. Utilizing a combination of
genetic mouse models and cell culture studies, strong evidence
has recently emerged that the NOX1 coactivator protein,
NoxA1 also critically regulates SMC migration and phenotypic
modulation in stenotic and atherosclerotic vascular remodeling
(112, 144, 145).

In contrast to NOX1, NOX4 function is associated with
SMC contractile proteins in vitro and maintenance of SMC
in a quiescent contractile state (132). NOX4, as the primary
isoform in SMCs is responsible for the baseline levels of ROS
in maintaining the identity of differentiated SMCs (146). Indeed,
NOX4 knockdown results in a decrease in SMC differentiation
marker expression [smooth muscle myosin heavy chain 11 (SM-
MHC), smooth muscle alpha actin (ACTA-2) and calponin 1
(CNN1)], while NOX4 overexpression increases their expression.
NOX4 specifically may be required for maintenance of the
contractile-type stress fibers in SMCs. TGF-β1 stimulates SMCs
differentiation and specifically induces H2O2 generated by
NOX4 via the SMAD signaling pathway (132). NOX4 mediates
TGF-β1 induced SMC proliferation but not that by PDGF-BB or
interferon gamma. NOX4 knockdown also results in decreased
levels of serum response factor (SRF) required for CArG box
dependent expression of SMC contractile proteins. NOX4 and
CNN1 are both expressed within the neointima following balloon
injury while ectopic SMC expression of a NOX4 dominant
negative mutant reversed neointima formation following injury,
in part by suppressing epoxide hydrolase 2 which inhibits SMC
proliferation, migration and inflammation (147).

While not expressed in rodent vessels, NOX5 is present
in human and porcine cells and is preferentially expressed
in human coronary arteries and atherosclerotic lesions (43,
148). Putative regulators of NOX5 include interferon-gamma
(IFNγ) which increases NOX5 production (43) while NOX5

knockdown impairs PDGF-BB mediated proliferation and ROS
production (149)

Collectively, coordination of NOX1 and NOX4-dependent
signaling facilitates de-differentiation and subsequent migration
and proliferation of SMCs. Strategies such as those to inhibit
NOX1 phosphorylation or NOX4 silencing may mitigate the
development of cardiovascular disease.

ROS in Adventitial Cells
The adventitia used to be considered as an inert connective
layer comprised of adventitial fibroblasts wrapped around the
medial layer. However, accumulated data now suggests that
the adventitia is a major site of immune and inflammatory
cell trafficking that is facilitated by the vasa vasorum to
maintain the medial layer and provide an important gateway
for macrophage and leukocyte migration into the intima (150).
It is also an important stem/progenitor cell niche ready to
respond to arterial injury and thus acts as an essential regulator
of vascular wall structure by contributing to the reorganization
of the extracellular matrix (151). Adventitial cells express
NOX1, NOX2, and NOX4 isoforms (152). NOX2, p22phox,
p47phox, and p67phox are abundantly expressed in aortic
vascular adventitia and in cultured adventitial fibroblasts in vitro
(153). In contrast, NOX4 is weakly expressed in adventitial
fibroblasts of human coronary arteries (118). NOX can be
activated in adventitial cells by the similar vascular different
stimuli including cytokines, hormones, metabolic factors and
mechanical injury to stimulate the release of ROS (152). NOX1
and 4 are associated with hypoxic challenge in the adventitia
(95). The primary role of NOX within the adventitia may be
superoxide production and increased expression of adhesion
molecules leading to chemotactic movement of leukocytes and
their increased penetration into the vessel wall (142). Human
coronary artery adventitial fibroblasts express NOX2 and NOX4
that produce superoxide in response to angiotensin II (Ang II)
(118). This superoxide can be converted to H2O2 by extracellular
SOD thus raising the possibility that H2O2 derived directly from
NOX4 in the adventitial layer can also act as a paracrinemediator.

ROS in Intimal Myeloid Cells
Myeloid cells are present in the intima of the large arteries like the
aorta, where vascular lesions and atherosclerosis plaques develop
(154). NOX are primary sources of ROS in macrophages where a
tumor necrosis factor–like weak inducer of apoptosis (TWEAK)
fibroblast growth factor–inducible 14 (Fn14) TWEAK/Fn14
axis regulates NOX2-dependent ROS production (83). While
it remains unclear whether endogenous NOX in macrophage
has a direct impact on the progress of atherosclerosis, many
studies have revealed a significant role of NOX-derived ROS
in regulation of monocyte differentiation and macrophage
functions (155). Recent evidence also indicates that human
monocytes and macrophages express functionally active NOX5
(43) and that a NOX5-p22phox complex drives macrophage-
dendritic differentiation (156).

Mitochondrial ROS is also an important source of ROS in
macrophages and promotes MCP-1 production to promote
monocyte infiltration and lesion inflammation (157). Another
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potential source of ROS in macrophages is the XO. XO
inhibitors inhibit macrophage ROS formation, inflammatory
cytokine release, and atherosclerosis (158). XO breaks down
hypoxanthine and xanthine to uric acid and produces ROS,
both of which may affect the function of macrophages.
However, XO-dependent generation of ROS, rather than uric
acid, mediates inflammatory cytokine production (159).
Irrespective of origin, ROS can also significantly affect
macrophage function whereby heme scavengers inhibit
heme-mediated ROS production and ROS-mediated oxidative
damage (160).

PATHOLOGICAL ROLE OF ROS

Oxidative stress in arteriosclerosis results primarily from
the activity of NOX enzymes (9) (Figure 4). However, their
specific role in SMCs during the progression of subclinical
arteriosclerosis remains unresolved. While global NOX1
deficient mice develop less neointimal thickening after wire-
induced injury consistent with subdued SMC proliferation and
migration rates in vitro and enhanced NOX1 expression in
neointimal SMCs in vivo, SMC-specific ectopic expression of
NOX1 failed to increase DIT/AIT (86). This enhanced NOX1
expression was associated with ERK1/2 (extracellular signal-
regulated kinases 1/2) activation and enhanced MMP-9 (matrix
metallopeptidase 9) (33). Gene expression network analysis
of human arteriosclerotic vessels suggests the network hub
gene glutathione peroxidase-1 (GPX1) is the most significantly
downregulated following pathologic intimal thickening (161).
Decreased GPX1 expression in atherosclerotic mice led to
reductive stress via a time-dependent increase in glutathione
suggesting that GPX1-dependent alterations in oxido-reductive
stress promote vascular remodeling.

Endothelial NOX4 plays a critical role in the control of
atherosclerosis where ROS is athero-protective via NOX4-
dependent inhibition of inflammation and vascular remodeling
(162). Ectopic expression of endothelial NOX4 in ApoE deficient
mice reduced lesion formation, increased Treg numbers and
decreased levels of effector T cells and chemokines (162).
However, downregulation of NOX4 in human aortic ECs
increased the expression of profibrotic CTGF (connective
tissue growth factor), while decreasing endothelial H2O2 and
reducing the levels of p-SMAD3 (phosphorylated mothers
against decapentaplegic homolog 3) (40). NOX4 knockdown
in vivo also leads to increased fibrillar collagens I and III in
plaques, which is associated with elevated transforming growth
factor-β expression and p-SMAD3 levels in diabetic lesions (135).
The response of endothelial cells to endoplasmic reticulum (ER)
stress during the progression of arteriosclerosis is governed
by NOX4 and H2O2 (163). ER stress increases H2O2 in ER
in a NOX4-dependent manner leading to oxidation of Ca2+-
ATPase, elevated cytosolic calcium and RasGRF (Ras-specific
guanine nucleotide releasing factor) activation. NOX generated
ROS also impacts on XBP1 splicing (X-box-binding protein 1),
a key protein that promotes EC apoptosis and atherosclerosis
formation (164).

The presence of NOX4 in adventitial fibroblasts and the
adventitial location of ROS production following AIT/DIT
in murine models of vascular remodeling highlights their
fundamental importance to vascular pathology and regeneration
(165) (Figure 5). The functional significance of NOX4 in
adventitial fibroblasts has led investigators to suggest an “outside
in” process of vascular remodeling. p22phox protein and ROS
production both increase within the adventitial layer of injured
carotid arteries (111) while NOX4 overexpression stimulates
migration and proliferation, as well as matrix gene expression,
of adventitial fibroblasts (166). NOX4 also mediates TGF-β1
activation of fibroblasts, which promotes differentiation into
a profibrotic myofibroblast phenotype and matrix production
(167). Small molecule inhibitors of NOX4 reduce adventitial
ROS generation and subsequent vascular remodeling (89). This
“outside in” process is further supported by recent lineage tracing
analysis using Gli-Cre-LoxP transgenicmice supporting a role for
adventitial cells in contributing to DIT/AIT through hedgehog
signaling pathways (151, 168) Notably, interaction of NOX4
with hedgehog has recently been demonstrated in gastric cancer
cells (169). Overexpression of the hedgehog target gene, Gli1,
inhibited the anti-mitogenic effect of NOX4 knockdown while
concomitant overexpression of NOX4 increased Gli1 expression,
an effect reversed by Gli1 depletion. Further, ROS generated by
NOX4 was required for GLI1 expression, as shown by use of the
ROS inhibitor, diphenylene iodonium (DPI).

In arteriosclerosis, innate and adaptive immune cells also
enter the vasculature and participate in the pathology of AIT
and PIT by releasing several mediators including ROS that cause
vascular damage (170). Upon exposure to hypercholesterolemia,
these cells get loaded with oxidized LDL and acquire foam
cell morphology prior to the recruitment of monocytes that
differentiate intomacrophage foam cells. Atherosclerotic patient-
derived monocytes/macrophages have exaggerated IL-6 and IL-
1β levels, which was highly dependent on mitochondrial ROS
but not NOX2 (171). Moreover, 8-oxoguanine glycosylase, a
major DNA glycosylase responsible for removing mitochondrial
oxidative stress–induced DNA damage, plays a protective
role in atherosclerosis by preventing excessive inflammasome
activation in macrophages, further supporting the critical role
of macrophage mitochondrial oxidative stress in promoting
atherosclerosis. While macrophages produce ROS through XO,
there is still a lack of solid evidence demonstrating the role of
macrophage XO in atherosclerosis (172).

ROS AND RESIDENT VASCULAR
STEM CELLS

It is widely accepted that the regulation of stem cell self-
renewal and differentiation is crucial for tissue homeostasis, and
in particular, vascular remodeling and fibrosis (173). Indeed
several recent studies have highlighted the critical importance
of the cellular oxidation-reduction (redox) state in modulating
the balance between stem cell self-renewal and differentiation
(41, 174). As a result, the study of ROS regulation in regenerative
medicine has rapidly evolved to define the putative roles

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 August 2019 | Volume 6 | Article 89

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Burtenshaw et al. NOX and Intimal Thickening

FIGURE 4 | The role of NOX isoforms in vascular disease progression. Schematic represents the role of NOX 1/4 enzymes in the progression of arteriosclerosis. A

healthy artery is depicted with three distinct layers, the outermost layer; the adventitia, the middle layer; the media and the innermost layer; the intima. The activity of

NOX 1/4 enzymes and subsequent production of ROS leads to the progression of arteriosclerosis. This is characterized by the accumulation of neointimal SMC-like

cells within the medial and intimal layers (intimal medial thickening), an induction of adventitial fibrosis represented by a slight increase out the adventitia, and a

distinctive narrowing of the lumen subsequently resulting in restricted blood flow.

FIGURE 5 | The role of NOX isoforms in vascular stem cell populations. Schematic represents the effect of NOX 1,2, and 4 enzymes on stem cell activity within the

vasculature. There are two major resident stem cell populations that are effected by NOX enzymes, adventitial Sca1/S100β+ and resident vascular mesenchymal-like

stem cells. NOX2 is predominantly associated with hypertensive vessels and promotes the secretion of monocyte chemoattractant protein (MCP-1) and interleukin 6

(IL-6) whilst NOX 1/4 are associated with hypoxic challenge and fibrosis in adventitial progenitor cells. Proliferation, self-renewal and differentiation of resident vascular

stem cells is driven by NOX 1,2, and 4 as the production of ROS- mediates P13K/AKT dependent signaling whilst orchestrating a redox-mediated regulatory

mechanisms of stem cell function of vascular repair.

of oxidative stress in dictating the fate of multi-potent and
pluripotent stem cells.

In adult vessels, resident vascular stem cells (rVSCs) are
present in all three layers and are important in maintaining
vessel homeostasis (16, 151, 175) These progenitor cells
express various stem cell markers including Sca-1, cKit,

CD34 and Flk1, S100β, Sox10, Sox17, and Nestin, are multi-
potent and can differentiate into lineages of mesoderm and
neuroectoderm origins including SMCs, osteoblasts, adipocytes
and chrondrocytes (173). The influence of rVSC behavior on
the development of subclinical atherosclerosis may be critical.
Hence, a greater understanding of the regulatory mechanisms
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that control stem/progenitor cell expansion, migration, and
differentiation is essential for targeted therapies. Accumulating
evidence suggests that rVSCs are mobilized by local signal
molecules in their microenvironment. Importantly, rVSCs are
normally quiescent but can be activated in response to injury
to participate variously in endothelial regeneration, adventitial
fibrosis and/or neointimal SMC-like cell accumulation that drives
subclinical arteriosclerosis and neointima formation (173). Cell
fate mapping studies using transgenic mouse models have greatly
extended our understanding of the fate of these cells and that of
their progeny during pathologic vessel remodeling, and how they
might be influenced by the redox state (71). While little is known
about ROS control of resident vSCs, in general, these progenitors
adopt a mesenchymal stem-like phenotype before they undergo
myogenic differentiation to SMC-like cells and accumulate with
the neointima during subclinical atherosclerosis (116). Vascular
mesenchymal-like stem cells (MSCs) are multipotent stem cells
that are defined by three main characteristics: plastic adherence,
ability to naturally differentiate into a diverse set of tissues within
the mesoderm lineage, and of self-renewal (173).

It is clear that NOX–derived ROS is a major regulator of MSC
cell fate (41). There are conflicting reports on the antioxidant
levels at baseline for MSCs and their subsequent resistance to
oxidative stress (176, 177). This may be due to differences in the
timing of MSC isolation, cultivation and exposure to oxidative
insult as cellular senescence and cell age increase oxidative stress.
Nevertheless, NOX1 and NOX4 derived ROS is hypothesized to
be a redox messenger for rVSC derived MSC proliferation and
differentiation (178). In general, low levels of ROS are associated
with MSC maintenance and expansion in pluripotent embryonic
stem cells (ESCs) and multipotent adult stem cells, whereas
increased levels are associated with stem cell differentiation
(174, 179). Pharmacological or genetic approaches to alter stem
cell metabolism have been shown to directly influence stem
cell activity since ROS generation in both embryonic and adult
stem cells is mainly dependant on glycolysis (180). There is a
large difference in energy metabolism and cellular redox status
between pluripotent stem cells and terminally differentiated cells.
As low levels of ROS are required in stem cells to maintain
quiescence and self-renewal, it is likely that rVSCs and their MSC
progenitors reside in a specialized microenvironment that is low
in O2 (41).

Physiological low levels of ROS, either from exogenous H2O2

or hypoxia, play an important role in the regulation of MSC
cell fate decision through activation of NOX-1 and NOX-4
(181, 182). In particular, ROS regulates cell expansion by (i)
activation of miR-210 that triggers ERK1/2 and AKT activation in
MSCs (ii) secretion of chemokines (e.g., CCL-2, CCL-4) through
the activation of p38-mitogen-activated protein kinases (MAPK)
pathway (183) and (ii) release vascular endothelial growth
factor (VEGF) to promote angiogenesis (184). In contrast, high
endogenous levels of ROS not only promote oxidative stress
to disrupt adhesion through the down-regulation of key focal
adhesion molecules including focal adhesion kinase (FAK), Src,
and integrin expression (185), but also DNA damage (186)
and a reduction in telomere length leading to MSC senescence
(187). Oxidative stress also causes cell cycle arrest by inhibiting

phosphorylated retinoblastoma (pRB) expression via a p38
MAPK/P16 pathway (188), disrupts mitochondrial cardiolipin-
cytochrome c complexes and induces BAX-BAK dimerization
to drive overall apoptosis and cell death (189). Finally, ROS
may alter stem cell fate by influencing the epigenetic landscape
via DNA methylation, post-translational histone modifications,
ATP-dependent alterations to chromatin and non-coding RNA
transcripts (69).

Myogenic Differentiation of Stem Cells- the
Role of ROS
There is a direct correlation between NOX-derived ROS
and modulation of multiple stem fates. Differentiation of
mesenchymal stem cells is stimulated by differentiation factors
such as TGF-β (190), epidermal growth factors (EGF) (191),
wingless type MMTV integration site (wnt) proteins (192),
fibroblast growth factor (FGF) (193). Many redox sensor proteins
play a key role in altering stem cell fate, such as transcription
factors NF-κB (194), forkhead box O (FOXO) (195), nuclear
factor erythroid 2 (NRF2) (103) and the p53 (TRP53) tumor
suppressor (196). Differentiation signals induce NOX4 in stem
cells suggesting intracellular H2O2 may act as a non-specific
intracellular differentiation signal and influence other activated
pathways in promoting specific lineages (197).

MSCs undergo myogenic differentiation to SMC like-
cells upon stimulation with TGF-β1, mechanical stress and
sphingosylphosphorylcholine (SPC), and with co-cultivation
with vascular endothelial cells (198). Little is known about how
ROS contributes to myogenesis in rVSC but SPC promotes
SMC differentiation in human MSCs, which is dependent on
ROS activation of the DJ-1 pathway (199). ROS can also induce
myogenic differentiation during the early stages in various
stem cells when NOX4 is activated by TGF-β1 and/or PDGF-
BB to generate ROS (H2O2 and O2−). NOX4-derived H2O2

up-regulates serum response factor (SRF) gene transcription
and protein translation, which when phosphorylated binds
CArG elements within the promoter-enhancer region of SMC-
specific genes to regulate myogenic differentiation (132). NOX4-
derived O2− also activates MAPKwhich increases SRF-mediated
gene transcription activation to further drive differentiation
(139, 200). At the later stage of myogenic differentiation,
NOX4 is recruited to SMC myofilaments to maintain cells
in a differentiated state (197). NOX4 also drives myogenic
differentiation from mouse embryonic stem cells (ESCs) in-vitro,
mediated by NRF-2 (200). Anti-oxidants such as selenium may
also dictate stem cell differentiation, as they influence the cellular
redox profile (201).

Endothelial to Mesenchymal
Transition (EndMT)
Endothelial to mesenchymal transition (EndMT) is a process
whereby an endothelial cell undergoes a series of molecular
events that lead to a change in phenotype toward a mesenchymal
cell (e.g., myofibroblast, smooth muscle cell) (202). EndMT plays
a fundamental role during development, and recent evidence
suggests that EndMT may be involved in cardiovascular diseases
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(CVDs), including atherosclerosis, pulmonary hypertension,
valvular disease, and fibroelastosis. In particular, EndMT has
been implicated in the progression of subclinical atherosclerosis
as “transitioning” cells and is readily detected in human
plaques (117). Oxidative stress is known to be involved in
EndMT and subsequent vascular damage through TGF-β (203).
Brain Arnt-like protein-1 (BMAL1) suppresses ROS production
and a positive relationship exists between loss of BMAL1
expression and EndMT in atherosclerotic plaque vulnerability
in human carotid plaques. In-vitro, BMAL1 inhibits oxidized
low-density lipoprotein-induced intracellular ROS accumulation
and subsequent EndMT in human aortic endothelial cells (204–
206). Endothelial-specific NOX2 overexpression in transgenic
mice enhances EndMT and has pronounced pro-fibrotic effects
in the heart (207). Moreover, exposure of endothelial cells to
H2O2 inhibits endothelial specific lineage genes and promotes
EndMTdue to TGF-β (208). Similarly, hypoxia promotes EndMT
of human endothelial cells (117) by upregulating unregulated
EndMT genes, SNAIL1 and SNAIL2 (209).

ANTIOXIDANTS EFFECT ON
ATHEROSCLEROTIC DISEASE

Extensive Cochrane meta-analysis of clinical studies suggests no
significant benefit of anti-oxidants in CVD (210). Despite this,
higher dietary intake and/or blood concentrations of vitamin C,
carotenoids, and α-tocopherol (as markers of fruit and vegetable
intake) were all associated with reduced risk of cardiovascular
disease independent of anti-oxidant effects (211). Nevertheless,
patient cohorts at high risk of cardiovascular disease exhibit a
low plasma concentration of anti-oxidants such as β-carotene,
α-tocopherol, and ascorbic acid (212). Epidemiological studies
confirm an inverse relationship between plasma concentration of
anti-oxidants and degree of atherosclerotic disease (213). EUK-
207, an anti-oxidant therapy reduces endothelial P-selectin, von
Willebrand factor A1-domain and platelet adhesion in mouse
models of atherosclerosis concomitant with reduced plaque area
and macrophage content. ROS scavenging may also affect stem
cell differentiation, as complete scavenging with a flavoprotein
inhibitor NAC completely inhibited human embryonic stem cell
derived CD34+ differentiation (214). In general, anti-oxidants
are beneficial to stem cell activities by [i] mitigating oxidative
stress through neutralization of free radicals and increasing
the expression of antioxidant enzymes and [ii] influencing the
differentiation fate of precursor stem cells

Patient cohorts with high plasma concentrations of reductants
including cryptoxanthin, lycopene and α-carotene have lower
intimal thickening compared to subjects with a low concentration
of these anti-oxidants (215), and an inverse correlation exits
for α-carotene and β-carotene and subclinical atherosclerosis
(216). Lycopene, which has the highest reducing capacity

among the carotenoids (650mV), significantly decreased plaques
in transgenic mice while improving endothelial function
(217). Moreover, there is an inverse correlation between the
plasma concentration of the anti-oxidant Vitamin E and the
development of cardiovascular diseases (210, 218). Another anti-
oxidant, selenium (Se), is incorporated into proteins known as
selenoproteins to reduce H2O2 and lipid/phospholipid hydro-
peroxidases by Se-dependent glutathione peroxidases (GPXs),
while low levels of GPx-1 (the primary selenoprotein in
mammals) activity are associated with atherosclerosis and
severity of disease (219). Finally, despite limited bioavailability
and rapid degradation, dietary anthocyanins are antioxidants
with potentially significant cardiovascular benefits (220).

CONCLUSIONS

Subclinical atherosclerosis is characterized by intimal thickening
due to the accumulation of neointimal SMC-like cells derived
from a heterogeneous population of parent cells including
differentiated SMCs, resident vascular stem cells, bone-marrow
derived MSCs and EndMT. The heterogeneity reflects the
variable phenotypes and functions of these cells depending
on the severity of the injury to the vessel wall. Indeed,
many investigators are speculating that these phenotypes may
represent the various different stages of resident stem cell
mediated differentiation. Redox/ROS signaling through the
activity of NOX and or mtROS controls the maintenance of
these phenotypes and their contribution to intimal thickening
and subclinical atherosclerosis.

While global and cell-specific knockdown studies have
presented compelling evidence for the role of NOX isoforms in
controlling cell fate during intimal thickening, similar studies
that address the functional consequences of NOX knockdown
on specific stem cell populations and intimal myeloid cells are
required. Moreover, elucidation of the mechanisms dictating the
migration, proliferation, andmyogenic differentiation of resident
vSCs vascular stem cells through NOX-dependent pathways will
provide vital information for the development of more targeted
therapies for treating subclinical atherosclerosis.
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