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Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a primary electrical

disease characterized by a normal resting electrocardiogram and induction of malignant

arrhythmias during adrenergic stress leading to syncope or sudden cardiac death

(SCD). CPVT is caused by mutations in the cardiac ryanodine receptor (RyR2) or in the

sarcoplasmic reticulum protein calsequestrin 2 genes (CASQ2). The RyR2 mutations

are responsible for the autosomal dominant form of CPVT, while CASQ2 mutations

are rare and account for the recessive form. These mutations cause a substantial

inballance in the homeostasis of intracellular calcium resulting in polymorphic ventricular

tachycardia through triggered activity. Beta blockers were for years the cornerstone

of therapy in these patients. Sodium channel blockers, especially flecainide, have an

additive role in those not responding in beta blockade. Implantation of defibrillators needs

a meticulous evaluation since inappropriate shocks may lead to electrical storm. Finally,

cardiac sympathetic denervation might also be an alternative therapeutic option. Early

identification and risk stratification is of major importance in patients with CPVT. The aim

of the present review is to present the arrhythmogenic mechanisms of the disease, the

current therapies applied and potential future perspectives.
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INTRODUCTION

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a primary electrical disease
characterized by a normal resting electrocardiogram and induction of malignant arrhythmias
during adrenergic stress leading to syncope or sudden cardiac death (SCD) (1). CPVT phenotype
is a result of mutations of Ryanodine receptor (RyR2) and calsequetrin 2. The RyR2 mutations
account for the commonest phenotype and they are inherited through an autosomal dominant
manner. CASQ2 mutations represent the recessive form (2, 3).

CPVT is responsible for SCD especially among children and young adults. According to
previous reports, the incidence of arrhythmias in CPVT patients was 32% over 8 years (2), but
the true frequency of the disease is unknown. This is due to the fact that unlike other inherited
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channelopathies such as long QT syndrome, it is present not only
with a structurally normal heart, but also without resting ECG
abnormalities (2).

Beta blockade is the main therapeutic option. Sodium channel
blockers, such as flecainide, have an additive role to those not
responding to beta blockers, along with left cardiac stellate
sympathectomy. Implantable cardiac defribrillators (ICDs) are
life -saving therapy for the majority of patients with cardiac
channelopathies, however CPVT patients need to be carefully
selected, since inappropriate shocks may lead to adrenergic
stimulation and electrical storm, despite optimal programming.

CPVT AND ARRHYTHMOGENESIS

Arrhythmogenesis in CPVT patients is attributed to mutations
in different proteins resulting in bidirectional ventricular
tachycardia through different arrhythmogenic mechanisms.
Arrhythmias produced by gain-of-function mutations in RyR2
are postulated to result from destabilization of the channel with
increased diastolic SR Ca2+ leak in ventricular myocytes, leading
to delayed afterdepolarizations and triggered activity via the
Na+/Ca2+ exchanger current. Yet, new evidence has shown
that the cardiac Purkinje network appears to be involved in
the initiation of bidirectional VT and polymorphic ventricular
tachycardia in this disease (4). It is estimated that over 160
mutations causes CPVT 1. Most of them cause a gain of function
of the RyR2 channels (1–3), whereas others, such as CASC2
gene, regulate RYR receptor through other proteins (junctin and
triadin) resulting to a leakage of Ca in diastole.

According to previous published data (5), gene mutations
responsible for CPVT lead to ventricular arrhythmia through the
alteration of the Ca2+ homeostasis. Specifically, mutations in the
RyR2 and CASQ2 genes lead to a leakage of Ca2+ from the SR in
diastole, particularly under adrenergic stress (exercise, emotional
stress), resulting in delayed after-depolarizations and therefore
vulnerable to ventricular arrhythmias. Other less prevalent
gene mutations like KCNJ2, triadin (TRDN), junctin (JCN),
calmodulin (CALM1 and CALM2), and NKYRIN-B (6) may
predispose to CPVT as well as in the future, other not yet
identified genes might be found responsible for the disease.

CLINICAL PRESENTATION-DIAGNOSTIC

EVALUATION

Nevertheless, irrespective of the responsible mutation, CPVT
is characterized by polymorphic ventricular tachycardia under
adrenergic stress. Apart from syncope less specific signs and
symptoms, such as dizziness or palpitations might be exerted (7).
The first manifestation of the disease occurs during childhood
and the majority of patients have experienced syncope episode
or cardiac arrest by their adulthood (7). The study of Hayashi
et al. (2) depicted that the earliest a CPVT is diagnosed the
worse the prognosis is. This can be attributed, at least in part,
to the fact that children performing strenuous physical activities
are more sensitive to external stimulations (children have more
opportunities to engage in strenuous activities), (1) patients

with more severe forms of CPVT will be diagnosed earlier,
and (2) beta-blockers are frequently underdosed in children
if based on weight given increased hepatic clearance. Sudden
cardiac death or syncope in first degree family members is
detected in one third of CPVT patients (8). Despite its life
threatening nature, CPVT remains often unnoticed. This is due
to normal baseline electrocardiograms on top of incomplete
penetrance (8, 9) and thus variable expressivity. Some authors
have reported bradycardia, and others have observed U waves
in electrocardiograms (10). CPVT is unmasked by a treadmill
stress test (11). When patients start exercising ventricular
ectopy develops, increasing in complexity as the heart rate
increases. Specifically, dynamic exercise during a BRUCE
protocol induces premature ventricular complexes that may
degenerate to more complex ventricular tachyarrhythmias or
even sustained VT (12, 13).

THERAPEUTIC MANAGEMENT

Beta Blockers
Therapeutic management for patients with CPVT includes beta
blockers without intrinsic sympathomimetic activity. Nadolol
is the beta-blocker of choice in a high dosage, 1–2 mg/kg.
The incidence of arrhythmic events in CPVT patients on beta-
blockers is still high. Other non-selective beta-blockers are
equally effective especially propranolol. Clinical follow up with
holter monitoring and treadmill stress test should be performed
so that the optimal therapy is adjusted (14).

In the study of Priori et al. (14), there is significantly lower
incidence of SCD in patients on beta-blockers. Hence, the event
rates in the patients on therapy were not negligible. This could be
attributed to poor therapy compliance. Priori et al. suggest that
taking different beta bockers than nadolol could be associated
with higher incidence rates. Furthermore, data from treadmill
stress tests reveal that it is not the ultimate tool during follow up,
despite the fact that it is widely used as a diagnostic tool, due to
low sensitivity and specificity (14).

Chatzidou et al. (15) suggested that patients presenting with
electrical storm independently of the underlying mechanism
should be treated with oral propranolol as the preferred beta-
blocker agent.

Flecainide
The study of van de Weerf et al. (16) supports the use of
flecainide on top of beta blockers as it reduces ventricular
arrhythmias during exercise. This is of major importance, since
several studies have demonstrated a significant event rate despite
conventional therapy (2, 9, 17–23). Therefore, adding flecainide
in combination with β-blocker therapy should be considered.

In CPVT the rise of intracellular Ca2+ activates the
electrogenic Na+/Ca2+ exchanger (NCX), which produces
a transient inward current (ITi). ITi generates delayed
afterdepolarizations, which can lead to triggered activity,
and the initiation of ventricular arrhythmias (24). Flecainide
directly targets the molecular defect in CPVT by inhibiting
RyR2 channels and preventing arrhythmogenic Ca2+ waves.
Flecainide’s Na+ channel blockade further reduces the rate of
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triggered beats (5, 25, 26). This dual action could explain why
flecainide is so effective in severe CPVT and provides a rationale
for combination therapy with β-blockers. The rationale for
flecainide use for treatment of CPVT is supported by in vitro
studies demonstrating that flecainide blocks RyR2 in lipid
bilayers (27) suppresses calcium waves in CASQ2-knockout
myocytes, abolishes delayed afterdepolarization–mediated
triggered activity, and reduces exercise induced ventricular
arrhythmias inCASQ2 and RYR2 mouse models. The efficacy of
flecainide in human patients with CPVT has been demonstrated
in the 3 retrospective cohorts. Kannankeril et al. (25) supported
that a median dosage of 300 mg/d was required to achieve
target trough drug levels. One could speculate that chronotropic
incompetence from combination therapy with β-blocker plus
flecainide would result in lower levels of exertion during exercise
and thus a lower arrhythmia score. However, maximal workload
achieved during each exercise test did not differ significantly,
suggesting similar levels of effort across the three exercise tests.

Liu et al. support that the antiarrhythmic effect of flecainide
is that it reduces the availability of sodium channels, thus
preventing the development of triggered APs (28).

Radwanski et al. suggested that flecainide may exert its
antiarrhythmic action by antagonizing catecholamine-dependent
augmentation of Na+ influx via sodium channel isoforms, and
Nav1.6 in particular (29).

Left Cardiac Sympathetic Denervation
In patients who are refractory to maximal pharmacologic
treatment, left cardiac sympathetic denervation (LCSD) could be
an alternative, with significant reduction in arrhythmic events,
as noted by De Ferrari et al. (30). However, the procedure is
not widely available and is associated with complications such as
pneumothorax and Horner syndrome (30).

Implantable Cardioverter Defibrillator
An ICD, usually the ultimate solution for primary or secondary
prevention of SCD for other channelopathies should be used
in CPVT patients who, despite optimal medical management
or/and other therapies such as left cardiac sympathectomy
continue to be in danger. Patients who have experienced an
aborted cardiac arrest before the initiation of therapy, should
be on medical therapy together with an ICD implantation
(31). Hence, implantation of an ICD is a technical challenge
in a pediatric population and problems such as inappropriate
shocks, proarrhythmic effects of the ICD, and the need for a
lifetime protection requiring multiple reinterventions should be
addressed when the decision is taken (32).

Current knowledge suggests an ICD implantation to survivors
of cardiac arrest, or when syncope or sustained VT persists
despite maximal tolerable beta blockade (14). Nevertheless, ICDs
should be used with caution since they can trigger electrical
storms via a vicious circle of adrenergic stimulation by the
delivered shocks in CPVT patients (31).

FUTURE PERSPECTIVES

Arrhythmic events among probands and family members are
still challenging. To the best of our knowledge a reliable
risk stratification tool lacks in patients with CPVT. Cardiac
events may happen in previously asymptomatic mutations
carriers, even with negative treadmill tests. Consequently, there
is an emerging need to better clarify the individuals at risk
for future events. Apart from meticulous family screening
mutations carriers identified should be treated with beta-blockers
even after a negative exercise test, which can change with
time (14).

All CPVT patients should have a genetic diagnosis, that
might further assist to an individualized treatment. Moreover,
in concordnace with other cardiac channelopathies a risk
stratification model should be developed in order to identify
patients at higher risk. Novel therapeutic strategies are also
needed, especially for non-responders to current therapeutic
options. An interesting perspective for the future is gene-
therapy, which entails a therapy targeted at correcting the genetic
mutation responsible for the disease (33, 34).

CONCLUSION

Current evidence suggests that risk stratification in mutation
carriers is mandatory along with new therapies, especially for
young patients, who survived aborted cardiac arrest or those with
poor beta-blocker efficacy.

Beta-blockers is still the cornerstone in treating CPVT
patients. ICDs should be considered only as a last resort taking
into account their potentially harmful effect in CPVT patients,
especially in children.
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