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The epicardial surface of the heart is readily accessible during cardiac surgery and

presents an opportunity for therapeutic intervention for cardiac repair and regeneration.

As an important anatomic niche for endogenous mechanisms of repair, targeting the

epicardium using decellularized extracellular matrix (ECM) bioscaffold therapy may

provide the necessary environmental cues to promote functional recovery. Following

ischemic injury to the heart caused by myocardial infarction (MI), epicardium derived

progenitor cells (EPDCs) become activated and migrate to the site of injury. EPDC

differentiation has been shown to contribute to endothelial cell, cardiac fibroblast,

cardiomyocyte, and vascular smooth muscle cell populations. Post-MI, it is largely

the activation of cardiac fibroblasts and the resultant dysregulation of ECM turnover

which leads to maladaptive structural cardiac remodeling and loss of cardiac function.

Decellularized ECM bioscaffolds not only provide structural support, but have also

been shown to act as a bioactive reservoir for growth factors, cytokines, and

matricellular proteins capable of attenuating maladaptive cardiac remodeling. Targeting

the epicardium post-MI using decellularized ECM bioscaffold therapy may provide

the necessary bioinductive cues to promote differentiation toward a pro-regenerative

phenotype and attenuate cardiac fibroblast activation. There is an opportunity to leverage

the clinical benefits of this innovative technology with an aim to improve the prognosis

of patients suffering from progressive heart failure. An enhanced understanding of the

utility of decellularized ECM bioscaffolds in epicardial repair will facilitate their growth

and transition into clinical practice. This review will provide a summary of decellularized

ECM bioscaffolds being developed for epicardial infarct repair in coronary artery bypass

graft (CABG) surgery.

Keywords: extracellular matrix, biomaterials, epicardium, heart failure, cardiac surgery, bioscaffold,

myocardial infarction

INTRODUCTION TO HEART FAILURE

Heart failure is a chronic and progressive condition characterized by maladaptive structural cardiac
remodeling and poor cardiac pump function. The most common cause of heart failure is damage
to the cardiac muscle caused by ischemic injury, otherwise known as myocardial infarction (MI)
(1). There are an increasing number of individuals living with heart failure, with 960,000 new
cases reported each year in the US alone (2). As a result, an estimated >8 million individuals
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will be living with heart failure in the US by 2030 (3). Surgical
revascularization remains the primary treatment modality for
patients who have suffered from an MI. However, nearly one in
every five heart failure patients is readmitted for heart failure or
other related causes within 30 days (1). Therefore, heart failure
is often referred to as a “revolving door condition” due to high
rates of readmission. Given its increasing prevalence and high
rate of readmission, it is necessary to improve our understanding
of the surgical management of heart failure. Extracellular matrix
(ECM) bioscaffolds may be the key to unlocking the potential of
the epicardial surface of the heart with the ultimate goal of driving
endogenous mechanisms of repair and attenuating progressive
heart failure following ischemic injury.

THE CURRENT SURGICAL MANAGEMENT
OF HEART FAILURE

According to current guidelines, the primary objective in the
surgical management of MI is to restore blood flow to the infarct
region in order to preserve myocardial viability and alleviate
symptoms (4, 5). Revascularization may be achieved by coronary
artery bypass graft (CABG) surgery or percutaneous coronary
intervention (PCI), and has been shown to improve survival
in patients (4–8). A recent meta-analysis including twenty-one
studies and 16,191 patients found revascularization by CABG
or PCI was beneficial compared to medical treatment alone in
patients suffering from ischemic heart disease and reduced left
ventricular ejection fraction (LVEF) (9). The survival benefits
of surgical revascularization are clear, and the completeness of
revascularization is integral to preserving myocardial viability
(4). Despite surgical intervention, studies have documented 12
and 22% readmission rates in patients who have undergone
CABG or PCI, respectively, due to heart failure (6, 10).

For patients who progress to end-stage clinical heart failure,
cardiac transplantation remains the gold standard treatment
modality (11, 12). However, limited donor supply and an
increasing number of eligible patients for cardiac transplants
have driven the need for innovative alternative strategies.
Mechanical circulatory support (MCS), specifically the left
ventricular assist device (LVAD), has vastly improved since
the seminal work of Dr. Michael E. DeBakey, Dr. Denton
A. Cooley, and others (13–16). MCS may be utilized as a
bridge to recovery, bridge to transplantation, or as a destination
therapy in patients who are ineligible for cardiac transplantation
(17, 18). INTERMACS (Interagency Registry for Mechanically
Assisted Circulatory Support) includes >15,000 patients from
158 hospitals; it reports a 1-year survival rate of 80% and 2-
year survival rate of 70% in patients receiving a continuous-
flow device (17, 19). Importantly, despite the improvements
made in MSC technology, a number of complications are still
associated with its use (19–22). Adverse events reported at
2-year follow up of 133 patients treated using a continuous
flow LVAD include, bleeding requiring blood transfusion (81%),
cardiac arrhythmia (56%), right-sided heart failure (20%), LVAD-
related infection (35%), stroke (18%), LVAD-thrombosis (4%),
and pump replacement (9%) (23). Therefore, an opportunity

exists to better understand and address the underlying cellular
and molecular causes of heart failure in order to improve the
prognosis of patients with heart failure.

TAKING A STEM CELL-BASED APPROACH

An array of stem cell-based approaches have emerged in the past
two decades with the aim of restoring myocardial function and
preventing the progression of heart failure. Despite the numerous
clinical trials conducted and their important contribution to our
current understanding of the treatment of heart failure following
MI, an efficacious stem cell-based therapy with clinically relevant
outcomes has yet to emerge (24–26). Clinical trial data regarding
the use of a stem cell-based approach in patients suffering from
acutemyocardial infarction or ischemic cardiomyopathy remains
variable and inconclusive (24, 25, 27).

In the case of acute myocardial infarction, earlier trials such
as BOOST (BOne marrOw transfer to enhance ST-elevation
infarct regeneration) and REPAIR-AMI (Reinfusion of Enriched
Progenitor Cells and Infarct Remodeling in Acute Myocardial
Infarction) showed improved LVEF in patients treated with bone
marrowmononuclear cells (BM-MNCs) (28–30). However, these
improvements were not replicated in future studies using BM-
MNCs, including but not limited to, BOOST-2 (BOne marrOw
transfer to enhance ST-elevation infarct regeneration-2), LATE-
TIME (Late Timing in Myocardial Infarction Evaluation), and
SWISS-AMI (SWiss multicenter Intracoronary Stem cells Study
in Acute Myocardial Infarction) (24, 31–33).

Similarly, in the case of ischemic cardiomyopathy, patients
with advanced heart failure who received BM-MNC therapy
displayed a 9% improvement in LVEF at 4-months follow-up
compared to baseline (34). However, the FOCUS-CCTRN (First
Mononuclear Cells injected in the United States conducted by
the CCTRN) trial showed a modest 2.7% LVEF improvement in
patients treated with BM-MNC compared to placebo, alongside
no significant improvement in infarct size (35). Furthermore,
CHART-1 (Congestive Heart Failure Cardiopoietic Regenerative
Therapy) found no significant difference amongst advanced
heart failure patients (n = 157) receiving cardiopoietic cell
therapy compared to sham control (n = 158) at 39-weeks
follow-up (24, 36).

In addition to the variable clinical trial results discussed, poor
stem cell engraftment at the site of delivery and the inherent
conflict of introducing stem cells to an injured and hostile cardiac
environment present significant hurdles to directing optimal cell
function and tissue recovery (37, 38). The recent controversy
surrounding c-kit+ cardiac stem cells and interruption of the
CONCERT-HF (Combination of Mesenchymal and C-kit+
Cardiac Stem Cells as Regenerative Therapy for Heart Failure)
trial has significantly contributed to uncertainty regarding the
clinical efficacy of this approach (39–45).

THE PARACRINE HYPOTHESIS

Despite the challenges associated with a stem cell-based
approach, it has become clear that stem cells largely exert
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FIGURE 1 | Surgical implantation of acellular extracellular matrix (ECM)

bioscaffold on the epicardial surface of the heart promotes endogenous

mechanisms of repair by way of bioactive paracrine signaling. Image, in part,

provided courtesy of Dr. Holly Mewhort, Section of Cardiac Surgery,

Department of Cardiac Sciences, Cumming School of Medicine, Libin

Cardiovascular Institute of Alberta, University of Calgary, Calgary,

Alberta, Canada.

their effects in a paracrine fashion (41, 46–53). The ability
of bone marrow-derived cells to produce a potent angiogenic
growth factor response, enhance endothelial cell proliferation,
and improve perfusion and function in models of ischemic
injury has been described (49, 53–55). Specifically, autologous
bone marrow cells are capable of producing a vascular
endothelial growth factor (VEGF)-dependent response that
drives angiogenesis and improves perfusion in a porcine
model of MI (54). Moreover, human mesenchymal stem cell
conditioned media (MSC-CM) has been shown to reduce MI
size, enhance capillary density, and improve overall cardiac
function compared to control media using a porcine model
of MI (56, 57). Overall, it is the paracrine factors produced
that play a fundamental role in mediating the effects of stem
cell therapy.

The question, therefore, becomes “is the delivery of cells
necessary for a therapeutic effect?” Given the challenges
associated with a stem cell-based approach, our research group
alongside many others have directed their attention toward
modulating the local cardiac microenvironment and paracrine
response, without the administration of stem cells, in order
to direct endogenous mechanisms of cardiac repair (48, 51,
57–62). In particular, our research group has shown the
benefits of using acellular bioactive extracellular matrix (ECM)
scaffolds for epicardial infarct repair (63–66). By providing an
optimal ECM microenvironment with the necessary paracrine
growth factors, the aim is to limit infarct expansion by
attenuating cardiac fibrosis and to promote vasculogenesis in
order to improve blood flow to the infarcted myocardium
(63, 65, 67) (Figure 1).

TARGETING THE EPICARDIUM IN
CARDIAC SURGERY

A unique opportunity exists to enhance endogenous repair
mechanisms of the heart at its epicardial surface. In the case
of routine cardiac surgery, surgeons gain access to the heart
by way of sternotomy followed by cardiotomy, at which point
they are presented with the epicardial surface of the heart. The
epicardium is a promising anatomic niche that is involved in
early cardiac development, the production and regulation of
ECM components, paracrine signaling, and response to ischemic
injury (68).

This thin outermost mesothelial layer of the heart contributes
to normal cardiac development as it gives rise to multipotent
cardiac progenitor cells, called epicardium derived progenitor
cells (EPDCs) (68, 69). EPDCs have been found to differentiate
to coronary vascular smooth muscle cells and cardiac fibroblasts
by way of epithelial to mesenchymal transition (EMT) (70–
73) (Figure 2). Studies have also reported EPDC differentiation
to endothelial cell and cardiomyocyte populations (74–77).
However, the contribution of EPDCs to endothelial cell and
cardiomyocyte populations remains highly debatable and further
lineage tracing is warranted to ascertain the extent of this
contribution (71, 73, 77–82) (Figure 2).

During early cardiac development, the epicardium dictates
myocardial maturation and compaction, and the formation of
the coronary vasculature and Purkinje fibers (68, 83–85). Beyond
its contribution to various cell populations, the epicardium has
been shown to be a key player involved in paracrine signaling
and the modulation of ECM components (82, 86–90). This
makes the epicardium an ideal candidate that may be targeted
to manipulate ECM remodeling and promote endogenous repair
and regeneration of the adult human heart.

ISCHEMIC INJURY LEADS TO ECM
REMODELING

Normally, the epicardium is quiescent in the healthy adult human
heart, yet it may hold great regenerative capacity (68, 83, 91,
92). Following an MI, EPDCs become activated and migrate
to the site of injury, where they have been shown to largely
differentiate into vascular smooth muscle cells or fibroblasts (70,
92, 93) (Figure 2). The expression of markers including, Wilms
tumor protein (Wt1), T-box transcription factor 18 (Tbx18), and
retinaldehyde dehydrogenase 2 (Raldh2), has been reported in
activated EPDC populations (69, 82, 92). Recent findings have
further highlighted the heterogeneity within EPDC populations
following an MI based on the differential expression of stem-
cell antigen 1 (Sca-1), CD44, and CD90; these subpopulations
may present clinically relevant targets (94). Overall, activation
of the epicardium has been shown to play an important role
in supporting the development of new vasculature by way of a
robust paracrine response (79, 92). EPDC derived conditioned
media has been reported to induce functional recovery in a
mouse model of MI by way of a robust fibroblast growth factor-2
(FGF-2) and VEGF mediated angiogenic response (92). Clearly,
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FIGURE 2 | Epicardium derived progenitor cell (EPDC) activation, mobilization, and differentiation following myocardial infarction. EPDCs may differentiate into cardiac

fibroblasts, vascular smooth muscle cells, or possibly into endothelial cells or cardiomyocytes. Intervention using acellular ECM bioscaffold therapy may be used to

direct EDPCs toward a pro-reparative, vasculogenic fate.

an opportunity exists to direct EPDCs toward a pro-reparative
or pro-vasculogenic fate, and away from a pro-fibrotic fate.
As mentioned above, the completeness of revascularization is
critical to the preservation of myocardial viability following an
MI (4). Therefore, the aim is to promote vasculogenesis in
order to improve blood flow to the infarcted myocardium, and
to limit infarct scar expansion by attenuating the activity of
cardiac fibroblasts.

Cardiac fibroblasts play an essential role in normal heart
function, not only structurally and mechanically, but with
regards to the biochemical and electrical properties of the
cardiac environment as well (95–99). In the event of an
ischemic injury and the resulting disruption of the local
microenvironment of the infarcted myocardium, these
fibroblasts become activated. Activated fibroblasts, known
as myofibroblasts, are the key mediators of ECM remodeling
(96, 98, 100, 101). Fibrotic remodeling of the infarcted
myocardium is exacerbated by the migration and activation of
additional cardiac fibroblasts at the site of injury. Of note, the
epicardium is a significant source of these migratory cardiac
fibroblasts (79, 82, 92, 93, 102–104). Myofibroblast activity at
the site of MI leads to dysregulation of ECM homoeostasis,
resulting in the deposition of a collagenous scar (98, 104, 105).
Initially, this response is crucial in preventing ventricular
free wall rupture at the site of an MI. However, persistent
myofibroblast activation when left unchecked leads to infarct
scar expansion, diastolic, and systolic dysfunction due to
structural cardiac remodeling, and eventually end-stage clinical
heart failure (97, 98, 105–108).

Therefore, targeting the epicardium post-MI by providing
the necessary bioinductive cues capable of promoting a pro-
reparative phenotype rather than a pro-fibrotic phenotype
is compelling. Our research group and others believes
that acellular ECM bioscaffolds offer an ideal approach by
which the post-MI cardiac environment may be directed
toward a pro-reparative phenotype by way of bioactive
signaling (Figures 1, 2).

BIO-ENGINEERED MATERIALS FOR
EPICARDIAL INFARCT REPAIR

Collagen is commonly studied for ECM bioscaffold-based infarct
repair as it is the primary component of the cardiac ECM
(109–111). Acellular type I collagen cardiac bioscaffold has been
shown to preserve contractility, reduce cardiac fibrosis, and
attenuate LV remodeling using a murine model of MI (112, 113).
Additionally, acellular type I collagen cardiac bioscaffold therapy
has been reported to promote a pro-vasculogenic response, which
is accompanied by increased vessel density in the injured heart
(112–115) Other natural bioscaffolds, such as fibrin, gelatin,
Matrigel, alginate, and chitosan-based scaffolds, have also been
investigated for infarct repair and regeneration (111, 116–
119). Acellular fibrin-based scaffolds leverage the blood clotting
cascade to polymerize in situ, and have been reported to preserve
cardiac function and improve neovascularization in a rat model
of MI (111, 120, 121). Despite the potential of these acellular
strategies, there are challenges associated with the use of natural
bioscaffolds, such as rapid degradation and poor mechanical
performance (111, 122).

Promising results have also been found using synthetic
scaffold solutions, which typically include the use of polylactic
acid (PLA), polyglycolic acid (PGA), poly-ε-caprolactone
(PCL), polyester urethane urea (PEUU), polytetrafluoroethylene
(PTFE), or varying combinations of the aforementioned
materials (110, 122, 123). For example, polyester urethane urea
(PEUU) scaffold implantation in a rat model of MI is capable of
improving overall contractile function and cardiac remodeling
(124). While the mechanical properties of synthetic scaffold
solutions are highly tunable, they lack the biological complexity
required to target the epicardial surface of the heart by way of
paracrine signaling and bioactive factors.

As such, the development of decellularized tissue-derived
ECM bioscaffolds remains a focal point within the field.
These acellular ECM bioscaffolds facilitate directing endogenous
mechanisms of repair and regeneration at the site of ischemic
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injury by way of bioactive paracrine signaling (63–65, 109,
125–128) (Figure 1). Acellular ECM bioscaffolds retain the
native ECM architecture and composition, including a variety
of embedded growth factors, of the tissue from which they
were derived (125, 126, 129). These complex bioscaffolds
may be exploited to provide an optimal microenvironment
capable of enhancing blood flow and attenuating cardiac
myofibroblast activity at the site of an MI. Of the tissue-derived
ECM bioscaffolds, acellular porcine-derived small intestinal
submucosa (SIS) ECM is best characterized in the literature with
regards to epicardial infarct repair. We have previously described
the collection of acellular ECM bioscaffolds available for a variety
of indications in cardiac surgery (98).

The small intestine is a highly vascularized organ and
therefore the composition and structure of SIS-derived
ECM bioscaffold is proposed to be highly conducive to
revascularization itself (109, 126). Specifically, 90% of SIS-
ECM bioscaffold is type I collagen, fibronectin, laminin, and
glycosaminoglycans (GAGs) ECM components (109, 130). The
role of fibronectin and laminin in endothelial cell adhesion
and the maintenance of vascular structures, respectively,
has been characterized (109, 131–133). Additionally, GAGs
play an important role in binding the growth factors and
cytokines within the ECM and therefore present a possible
target for modifying tissue-derived ECM bioscaffolds with
signaling factors (109, 134). Finally, SIS-ECM itself has
been shown to naturally contain essential growth factors,
both bound by GAGs and embedded within the ECM itself,
including fibroblast growth factor-2 (FGF-2), VEGF, and
hepatocyte growth factor (HGF), which play key roles in
vasculogenesis (109, 135).

In the context of epicardial infarct repair, our research group
has highlighted the promise of acellular SIS-ECM bioscaffold,
CorMatrix R© ECM (CorMatrix Cardiovascular Inc., USA) (63–
66). We have shown that the interaction of human cardiac
fibroblasts with CorMatrix R© ECM results in a robust fibroblast
growth factor-2 (FGF-2) dependent cell-mediated paracrine
response capable of stimulating new blood vessel assembly (65).
This is recapitulated in vivo, using a rat MI model: animals
treated via surgical implantation of CorMatrix R© ECM post-
MI compared to animals treated with sham or inactivated
CorMatrix R© ECM displayed an FGF-2-dependent increase in
vascularity, reduced LV dilatation, improved ejection fraction,
and improved contractility (65). Further studies using a large
pre-clinical porcine ischemia-reperfusion model have similarly
demonstrated that surgical implantation of CorMatrix R© ECM
improves vascularity and functional recovery of the infarct
region (63, 64) (Figure 3). Other groups have assessed SIS-
ECM bioscaffold in surgical reconstruction of septal defects,
vascular or outflow tract augmentation, and valve reconstruction,
and have yielded positive results (136). However, long-
term patient follow up is required to truly understand the
impact of this intervention. Notably, our research group
is characterizing the clinical use of commercially-available
CorMatrix R© ECM in an on-going first-in-human phase I clinical
trial (NCT02887768) for epicardial infarct repair at the time of
surgical revascularization (CABG surgery).

FIGURE 3 | Surgical implantation of porcine-derived acellular small intestine

submucosa (SIS) extracellular matrix (ECM) bioscaffold (CorMatrix® ECM,

CorMatrix Cardiovascular Inc., USA) over the site of ischemia-reperfusion injury

on the anterior wall of the left ventricle, in a porcine model. Image provided

courtesy of the Fedak Research Group (Dr. Holly Mewhort and Jeannine

Turnbull) Campbell Family Cardiac Translational Laboratory, Libin

Cardiovascular Institute of Alberta, University of Calgary, Calgary,

Alberta, Canada.

Beyond SIS-ECM bioscaffold therapy for epicardial infarct
repair, acellular ECM bioscaffolds derived from other tissue
sources, such as the urinary bladder (UB), amniotic membrane
(AM), and cardiac tissue have been investigated (137–140). Given
the fact that ECM bioscaffolds are a function of the physiological
requirements of the tissue from which they are derived, the tissue
source will influence each bioscaffold’s ability to direct cardiac
repair. UB-ECM bioscaffold has been reported to outperform
PTFE synthetic scaffold, and displays favorable tissue integration
and replacement in a porcine MI model (139). More recently,
an acellular pericardium-derived ECM bioscaffold was shown
to support neovascularization and neoinnervation, alongside
improved LVEF, cardiac output, and reduced infarct size in a
porcine MI model at 30-day follow-up (137). Future work should
continue to investigate acellular ECM bioscaffolds derived from
various tissue sources in the context of epicardial infarct repair.

Additionally, augmentation of the aforementioned
bioscaffolds with additional growth factors and/or modified
RNAs, may also play an important role in modulating the local
paracrine environment and enhancing their therapeutic effect.
While the specific details and challenges are beyond the scope
of this review, modified RNAs may be utilized to promote
angiogenesis following an MI (141–143). Intramyocardial
injection of VEGF-A modified RNA has been reported to
enhance Wt1+-EPDC to endothelial cell differentiation and
to promote functional vessel formation in a mouse model
of MI (143). Similarly, our research group has shown that
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enhancement of SIS-ECM with additional FGF-2 further
improves ECM homeostasis and cardiac function in a rat model
of MI (63, 66). Overall, acellular tissue-derived ECM bioscaffolds
are a promising therapeutic strategy for the modulation of
cardiac repair at the site of an MI. The important role that
bioactive paracrine signaling plays in directing endogenous
mechanisms of repair at the site of an MI should remain a focal
point moving forward.

CONCLUSION

A unique opportunity exists to augment surgical
revascularization via CABG surgery using acellular ECM
bioscaffold therapy. The epicardial surface is readily accessible
in open heart surgery. As it is an anatomic niche responsible
for normal cardiac development and paracrine signaling, which
becomes activated in response to ischemic injury, we can
leverage the epicardium to direct endogenous repair at the site
of an MI. Acellular ECM bioscaffold therapy has been shown

to improve vascularization and attenuate cardiac fibroblast-
mediated ventricular remodeling following an MI by way of its
bioactive signaling. By providing an optimal ECM bioscaffold
signaling environment the goal is to shift the damaged cardiac
tissue toward a pro-reparative phenotype, and away from a
pro-fibrotic phenotype, and to improve overall revascularization
of the tissue. Overall, by targeting the underlying cellular and
molecular causes of heart failure using acellular ECM bioscaffold
therapy, this innovative strategy may be able to significantly
improve the prognosis of patients who have suffered from anMI.
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