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Platelets are important actors of cardiovascular diseases (CVD). Current antiplatelet

drugs that inhibit platelet aggregation have been shown to be effective in CVD treatment.

However, the management of bleeding complications is still an issue in vascular diseases.

While platelets can act individually, they interact with vascular cells and leukocytes at sites

of vascular injury and inflammation. The main goal remains to better understand platelet

mechanisms in thrombo-inflammatory diseases and provide new lines of safe treatments.

Beyond their role in hemostasis and thrombosis, recent studies have reported the role of

several aspects of platelet functions in CVD progression. In this review, we will provide a

comprehensive overview of platelet mechanisms involved in several vascular diseases.
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Since their first description by Osler (1) and later by Bizzozero (2), platelets have gained a lot of
attention in many biological processes. Among the earliest evidence that platelets are crucial for
human hemostasis, is based on platelet transfusions in thrombocytopenic patients that can restore
hemostatic function. Platelets play a critical role in hemostasis bymaintaining the integrity of blood
vessels. They provide the first line of defense following injury, forming thrombi that patch-up
damaged endothelial tissue and thereby play an indispensable role in hemostasis. However,
dysregulated platelet activation can lead to thrombosis, myocardial infarction and stroke. Platelets
are also involved in the development of atherosclerosis in coronary or carotid arteries, which is
commonly the trigger for thrombosis. Plaque rupture is a common cause of arterial thrombosis
and leads to the exposure of thrombogenic components to the flowing blood. The current dogma
is that arterial thrombi are composed of aggregated platelets and venous thrombi are enriched in
fibrin. However, this view has been challenged with landmark works by several groups on the role
of platelets in venous thrombosis (3, 4). Themolecular mechanism of thrombus formation has been
extensively reviewed in detail elsewhere (5). Here we will provide a brief description of the role of
platelets in clot formation and discuss their implication in vascular diseases.

PLATELET MECHANISMS IN ARTERIAL THROMBOSIS AND
VASCULAR INFLAMMATION

At sites of vascular injury, the subendothelial extracellular matrix (ECM) is exposed to the blood,
to which platelets promptly adhere in order to limit hemorrhage and promote tissue healing. This
matrix contains several adhesive macromolecules such as collagen, von Willebrand factor (vWF),
laminin, fibronectin and thrombospondin, all of which serve as ligands for different platelet surface
receptors. Among these subendothelial substrates, the thrombogenic fibrillar collagens type I and
III are by far the most potent mediators of platelet adhesion due to their strong platelet activating
potential and affinity for vWF. Transient adhesion of platelets (tethering) depends largely on
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vWF and its receptor, the GPIb-V-IX complex. Platelets express
multiple surface receptors that directly or indirectly interact with
collagen, among which integrin α2β1 (GPIa/IIa) and the Ig-
like receptor glycoprotein VI (GPVI) are the most important
ones. Integrin α2β1 predominantly mediates adhesion, whereas
GPVI is the collagen-activated receptor in platelets. GPVI is a
transmembrane protein of 62 kDa and belongs to the family
of immunoreceptor tyrosine-based activation motif (ITAM)
receptors. GPVI binds to the Fc receptor γ chain (FcRγ) which
triggers the signaling cascade. Activation of platelets by GPVI–
collagen interactions leads to the activation of phospholipase
C and the subsequent mobilization of the second messengers
calcium (Ca2+) and diacylglycerol (DAG). DAG is critical for
protein kinase C (PKC) activation, a key event in platelet
granule release and integrin activation (6). Ca2+ regulates various
adhesive platelet responses such as integrin activation and the
release of ADP and thromboxane A2 (TxA2) that can activate
the G protein-coupled receptors (GPCRs), ADP purinergic
receptors P2Y1 (7) and P2Y12 (8) and the thromboxane receptors
(TP) TPα and TPβ. These second wave mediators allow the
recruitment of circulating platelets which reinforce thrombus
formation on collagen surfaces (9). In the clinic, pharmacological
inhibition of TxA2 generation and/or the P2Y12 receptor are
effective strategies to reduce thrombus formation at sites of
vascular injury (10). Importantly, GPVI plays a central role in
collagen-induced exposure of procoagulant phospholipids at the
platelet surface, allowing efficient thrombin generation (11) and
platelet activation. Of note, human platelets express the thrombin
receptors, PAR1 and PAR4, whereas mouse platelets express a
PAR3/PAR4 complex (12).

The specificity of GPVI is not restricted to collagen. Laminin
as well as fibronectin, present in the basement membrane, have
been shown to support platelet adhesion and spreading through
α6β1 and GPVI (13, 14). The exclusive expression of GPVI
on platelets makes it an attractive target. A recent placebo-
controlled phase 1 study evaluated the safety and tolerability
of a humanized Fab anti GPVI (Act017) in healthy donors.
This study reported no bleeding events or increased of the
bleeding time suggesting a promising effect of targeting GPVI
in thrombotic diseases (15). The hemITAM receptor, C-type
lectin 2 (CLEC2), may also contribute to platelet activation and

Abbreviations:AAA, abdominal aortic aneurysm; ACS, acute coronary syndrome;

BAPN, beta 3-aminopropionitrile fumaralt salt; CalDAG-GEFI, calcium and

diacylglycerol-regulated guanine nucleotide exchange factor I; CLEC2, C-type

lectin 2; COX-1, cyclooxygenase-1; CVD, cardiovascular diseases; DAG,

diacylglycerol; DAPT, dual antiplatelet treatment; EC, endothelial cells; ECM,

extracellular matrix; FcRγ, Fc receptor γ chain; GPCRs, G protein-coupled

receptors; GPIbα, glycoprotein Ibα; GPVI, glycoprotein VI; ILT, intra-luminal

thrombus; IR, ischemia-reperfusion; ITAM, immunoreceptor tyrosine-based

activation motif receptors; MI, myocardial infarction; MMP, matrix-degrading

proteinases; NETs, neutrophil extracellular traps; oxLDL, oxidized low density

lipoproteins; PAF, platelet-activating factor; PAR, protease-activated receptor;

PDGF, platelet derived growth factor; Pg, Porphyromonas gingivalis; PKC, protein

kinase C; PLA, platelet-leucocyte aggregates; PLD1, phospholipase D1; rt-PA,

recombinant tissue plasminogen activator; ROS, reactive oxygen species; STEMI,

ST-segment elevation myocardial infarction; tMCAO, transient middle cerebral

artery occlusion model; TP, TXA2 receptor; TxA2, thromboxane A2; vWF, von

Willebrand factor.

thrombus formation in the deeper layers of the ECM. The known
ligand for CLEC-2 is podoplanin which is expressed by type-1
alveolar cells, fibrotic reticular cells, lymphatic endothelial cells
(EC) but not by vascular ECs.While the role of CLEC-2 in arterial
thrombosis is still not clear (16–18), a recent in vitro study shows
that podoplanin-expressing perivascular mesenchymal stromal
cells are able to protrude through ECs and activate platelets
in a CLEC-2 dependent manner (19). However, further in vivo
studies are needed to support this observation in the context of
inflammation or vascular injury.

Platelets are also known to play an important role in
inflammation by recruiting leukocytes. This crosstalk has
been well-studied and contributes to the increased leukocyte
infiltration in tissue. The molecular mechanism of this cross-
talk has been experimentally documented in different organs
and in various inflammatory situations. Experimental studies
show that thrombocytopenic animals have a significant reduction
in leukocyte numbers in inflamed organs (20–22). Similarly,
mice deficient for the main platelet adhesion receptors (P-
selectin, GPIbα, GPVI, β3 integrin) show reduced tissue
inflammation (23–25). Importantly, the direct interaction
between platelets and leukocytes not only occurs locally but
also in circulation. Increased levels of neutrophil/platelet and/or
monocyte/platelet aggregates have been reported in patients with
various inflammatory diseases (26–28). Platelet activation and
secretion have been shown to recruit leukocytes, upregulate
adhesion molecules by EC and destabilize EC junctions.
Platelets can release a variety of chemokines (e.g., platelet
factor 4, IL1β, PAF, RANTES) that can up regulate endothelial
adhesion molecules (ICAM, αvβ3) (29), as well as the release
of Weibel palade content and open endothelial junctions
(30). Among the pro-permeable platelet factors, the GPVI-
dependent serotonin release has been shown to contribute
to the inflammation in the joints of arthritic mice (31).
Furthermore, the release of soluble factors by platelets is also
central to stimulate leukocytes. For example, platelet–released
adenine nucleotides or platelet factor 4 and PDGF can favor
superoxide anion generation by neutrophils (32). Conversely,
activated neutrophils through leukocyte-released substances,
such as platelet-activating factor (PAF), elastase, and cathepsin
G, may induce platelet aggregation and secretion (33). The
overall effect of the platelet-leukocytes interaction on tissue
integrity can be either beneficial or deleterious depending of the
inflammatory situation. This dichotomous aspect of the platelet-
leukocyte interaction is further documented by the formation
of neutrophil extracellular traps (NETs) that entrap bacteria
(34) but also cause significant damage to the surrounding tissue
(35). Based on the intertwined interaction between platelet and
leukocyte in pathological situations, platelet/leukocyte aggregates
(PLA) are rather important regulators of disease than just a
read-out for platelet activation. The use of platelet inhibitors in
patients with cardiovascular disease (e.g., clopidogrel, aspirin,
eptifabitide) has been shown to reduce leukocyte recruitment,
cytokine release and subsequently improve disease outcome.
For instance, clopidogrel pretreatment in addition of ASA
therapy was shown to reduce the C-Reactive protein (CRP)
level, an inflammatory marker, in patients with percutaneous
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coronary intervention (36). Apart from antiplatelet therapy, anti-
inflammatory agent such as colchicine has been used in various
settings of cardiovascular disease (e.g., myocardial infarction)
by inhibiting interleukin- 1 production by neutrophils (37, 38).
Considering the anti-inflammatory properties of antiplatelet
therapy, one could speculate that antiplatelet therapy could
be considered as either a complementary or a second line
of treatment to inflammatory medications (e.g., colchicine) in
vascular disease.

ROLE OF PLATELETS IN EARLY AND LATE
STAGES OF ATHEROSCLEROSIS

Atherosclerosis is a chronic inflammatory vascular disease
involving ECs, vascular smooth muscle cells and mononuclear
cells. Atherosclerosis classification as an inflammatory disease
is based on the finding that immune competent cells and pro-
inflammatory cytokines are abundant in atherosclerotic lesions.
It is characterized by the formation of an atheromatous plaque
mainly composed of pro-inflammatory oxidized low density
lipoproteins (oxLDL) and foam cells accumulation in the intima
of medium or large arteries, in high-shear stress areas. It results
in vessel occlusion inducing CVD onset (39). The role of platelets
in early atherosclerosis have been proposed by pioneer studies.
Russel Ross postulated in his “response to injury theory” that
“lesions of atherosclerosis result from injury to the artery wall”
and result in “subtle arterial endothelial cells desquamation” (40).
Of the many possible injuries, mechanical stresses may occur
at particular anatomic sites and lead to the detachment of ECs
from the artery wall and subsequently platelet adherence (41).
Recent studies also reported endothelial breaches in the intima
of human coronary arteries as well as in ApoE mice at sites of
flow perturbation leading to the infiltration of red blood cells and
leukocytes (42). Almost 30 years after Russel Ross hypothesis, the
Massberg group in a landmark paper showed that in high-fat diet
fed ApoEmice, platelet adhesion to the endothelium precedes the
development of atherosclerotic lesions and leukocyte recruitment
in atherosclerotic plaque supporting a major role of platelets in
atherogenesis (43). Mechanistic studies showed that prolonged
blockade of platelet adhesion in atherosclerosis animal model
reduces leucocyte recruitment in arterial wall and results in fewer
lesion formation (43). To decipher the involvement of platelets
in this disease, several genetically modified mice lacking diverse
platelet receptors were used in animal models of atherosclerosis.

Platelet glycoprotein Ibα (GPIbα), the ligand-binding subunit
of the GPIb-V-IX receptor complex is known to interact with
several proteins like vWF, P-selectin, Mac-1 and α-thrombin
(44–47). Injections of anti-GPIbα antibodies in 10 weeks old
ApoE−/− mice reduced both platelet transient and firm adhesion
to the vascular surface of the common carotid. Genetic depletion
of the GPIbα subunit leads to severe thrombocytopenia and
reduced atherosclerosis progression with smaller lesion area
(48). This reported protective effect could be a consequence
of thrombocytopenia since mice with extracytoplasmic GPIbα
domain genetic deletion (IL4R/GPIbα mice) develop milder
thrombocytopenia and are not protected against atherosclerosis

(48). It indicates that GPIbα binding site for vWF, P-selectin,
Mac-1 and α-thrombin might be dispensable for atherosclerosis
development. This is quite surprising since vWF genetic
depletion is protective in an animal model of atherosclerosis (49).
Similarly, a role for Mac1/GPIbα interaction has been shown in
leukocyte recruitment at sites of vascular inflammation (50, 51).
The subunit GPIbβ has been also investigated in atherosclerosis
by using GPIbβ−/−/ApoE−/− mice fed a chow diet for 30 weeks.
Despite the moderate thrombocytopenia of those mice, GPIbβ
was found dispensable in atheroprogression (52).

Overall, these studies suggest that redundant mechanisms in
platelet recruitment occur at site of developing atherosclerosis.
The integrin αIIbβ3 can also mediate platelet adhesion via
vWF binding, especially in modest shear stress condition as in
large arteries. GPIIb genetic depletion results in reduced platelet
adhesion at sites of vascular injury, decreased inflammatory
processes and fewer atherosclerotic plaque formation (53).
Integrin αIIbβ3 activation can be induced byGPIb-V-IX receptor,
but also by GPVI receptor (54). Several GPVI inhibition
strategies led to reduced platelet adhesion and attenuated
atherosclerosis in ApoE−/− mice (55).

Aside from platelet adhesion, platelet activation plays a
significant role in atherogenesis. The presence of activated
platelets was reported in the blood obtained from patients with
unstable atherosclerotic disease (56). Increased platelet reactivity
has been suggested as a potential mechanism contributing to the
accelerated atherosclerosis seen in diabetic patients, via capillary
microembolization and acute arterial thrombosis (57). Likewise,
circulating activated platelets are involved in the formation of
atherosclerotic lesions in ApoE−/− mice (58). Those activated
platelets interact with the atherosclerotic endothelium, leading
to the delivery of pro-inflammatory chemokines (e.g., CCL5
and CXCL4) promoting adhesion molecule expression (58). PLA
formation is required for neutrophil recruitment to inflamed
tissues as animal models studies revealed that platelets activate
neutrophils for an efficient adhesion to vascular endothelium
via integrin up-regulation (59). Platelets can also bind to the
inflamed endothelium, enhancing leukocytes adhesion to the
vessel wall (60–62). Indeed, deletion of P-selectin, a marker of
granule secretion, in platelets and/or ECs leads to significantly
impaired early atherosclerotic lesion development in mice (63,
64). In addition, several studies addressing the contribution
of platelet receptors have been conducted. The role of the
ADP receptor P2Y12 has been extensively studied throughout
the years. It has been shown that P2Y12 genetic depletion is
protective in ApoE−/− mice and mediates a reduced lesion
area, an increased fibrous content at the plaque site and
less inflammatory cells infiltration (65). However, the role
of P2Y12 expressed by vascular smooth muscle cells cannot
be excluded (66). Mice deficient for P2Y12 specifically in
hematopoietic cells were generated, and a reduced atherosclerotic
lesion formation was also reported (67). In contrast, treatment
of ApoE−/− mice with the P2Y12 inhibitor clopidogrel
bisulfate was associated with inconsistent results. Clopidogrel
administration induced delayed atherogenesis, a reduced lesion
size, slower progression of atherosclerotic lesion (68–70).
However, another study reported that clopidogrel-treated mice
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have the same atherosclerotic burden as control mice (70).
Moreover, clopidogrel administration in mice with established
atherosclerotic lesions show no longer beneficial effect (69).
A more recent P2Y12 inhibitor, ticagrelor, has been tested in
atherosclerosis models. Several studies conclude to a beneficial
effect of ticagrelor administration, reporting a reduced lesion
area and slower atherosclerotic lesion progression (71, 72).
Nevertheless, one study related no effect on atherosclerotic
lesion size in ticagrelor-treated mice, but showed an increased
fibrous cap area along with a diminished ratio necrotic
core/lesion area, indicating plaque stabilization process (73).
Pharmacological inhibition is more likely to give variable results
than a genetic approach. The differences in the experimental
conditions and the inhibitor dose may be responsible for the
discrepant results. The impact of the platelet thrombin receptor,
PAR4, has been also investigated in atherosclerosis. Indeed,
transfusion of thrombin-activated platelets into mice increases
plaque formation, suggesting that thrombin-induced platelet
activation might contribute to platelet-dependent atherosclerosis
(58). However, PAR4 deletion is not protective in ApoE−/−

mice (74) suggesting other platelet activators than thrombin
are involved.

Upon activation, platelets release soluble factors (e.g., PF4,
CD40L, RANTES, and TXA2) enhancing their activation and
leukocyte recruitment. Disruption of this amplification process
leads to diminished atherosclerotic lesion formation. Indeed,
PF4 or CD40L genetic deletion protects ApoE−/− mice from
atherosclerosis (75, 76). Inhibition of RANTES or its receptors
alters the progression of an established atherosclerotic lesion
(77, 78). Biological response modulators such as CD40L and its
receptor CD40 have been shown to exacerbate atherosclerosis
progression by promoting leucocyte recruitment via molecule
adhesion expression in vascular ECs (79).

Platelet TXA2 generation is the product of cyclooxygenase-1
(COX-1) activation and contributes to the platelet activation
amplification loop. The TXA2 receptor (TP) antagonist
administration induces a slight reduction of atherogenesis
(80), and TP deficient ApoE−/− mice showed delayed lesion
development and reduced atherogenesis compared to control
(81). Disruption of COX-1 expression in ApoE−/− mice
induces a decrease in atherosclerotic lesion formation, attesting
TXA2 deleterious role in this pathology (82). Acetylsalicylic
acid, also known as aspirin, is one of the most widespread
antiplatelet treatment and displays also anti-inflammatory
properties. This irreversible COX-1 inhibitor blocks the
formation of TXA2 in platelet, producing an inhibitory effect on
platelet aggregation. Most animal studies reported a beneficial
effect of low-dose aspirin administration in ApoE−/− mice.
Atherogenesis and lesion progression is reduced in aspirin-
treated mice compared to control (83–85). Low-dose aspirin also
delayed the progression of established and advanced vascular
atherosclerotic lesions (86). However, some studies reported no
effect of aspirin in ApoE−/− mice (70, 80), and one described a
deleterious long-term effect on atherosclerotic lesion progression
(87). Overall, these studies suggest a functional hierarchy and
redundancy between the different receptors in the role of platelets
in atheroprogression.

Downstream of the platelet receptors, the signaling molecule
GTPase Rap1 is a critical node in platelet response. The calcium
and diacylglycerol-regulated guanine nucleotide exchange factor
I (CalDAG-GEFI; RasGRP2) has been identified as the major
calcium sensor in platelets regulating the Rap1 activation (88).
Studies led by the Bergmeier group uncovered key roles of
CalDAG-GEFI in platelet responses: integrin activation, platelet
adhesion and secretion, TXA2 generation (89, 90). In an animal
model of atherosclerosis, mice lacking CalDAG-GEFI specifically
in hematopoietic cells have smaller lesions, reduced atherogenesis
and decreased inflammation in areas of plaque development
compared to control mice (67).

Even though the stenosis induced by atherosclerosis can
restrict blood flow and thus induces CVD, the main mechanism
implied in those diseases seems to be atherothrombosis. Indeed,
following plaque rupture, prothrombotic materials (collagen and
tissue factor) are exposed to the blood coagulation system leading
to thrombus formation, decreased blood flow and CVD onset
(39). Human postmortem studies showed that thrombi that
form on disrupted plaques (e.g., asymptomatic coronary disease)
appear small and non-occlusive (91). Animal models that can
recapitulate spontaneous rupture of atherosclerotic lesions are
very rare. To circumvent this issue, two experimental animal
models have been developed to study platelet mechanism in
thrombosis-induced plaque rupture. A model of ultrasound-
induced plaque injury and a model of acute plaque rupture using
a suture needle have been developed to test antiplatelet drugs
in mice (92, 93). Ultrasound treatment resulted in a fissure at
the shoulder region of the plaque leading to plaque material
exposure (collagen) and unstable thrombus formation. Unlike
the ultrasound model, the needle model is characterized by a
frank rupture with larger and stable thrombi. At the site of plaque
rupture, smaller thrombi were observed after P2Y12 or thrombin
or integrin αIIbβ3 inhibition in both models (92–94). The role
of GPVI seems to be more pronounced in the ultrasound model
presumably due to a higher amount of thrombin generated in the
needle model (93). The role of the different platelet molecules in
mouse atheroprogression has been summarized in Table 1.

The protective role of these drugs is difficult to assess in
human clinical trials since atherosclerosis by itself is almost
always asymptomatic. Thereby, their efficacy is studied in CVD
with an atherosclerotic origin such as myocardial infarction (MI)
and stroke.

PLATELETS CONTRIBUTE TO
THROMBO-INFLAMMATION DURING
STROKE

According to the World Health Organization, an estimated 7
million people died from stroke worldwide in 2016. Stroke
represents the second most common cause of death and the third
most common cause of disability (95). Strokes have mainly an
ischemic origin (70%) and occur when an artery that supplies
blood to the brain is blocked by a blood clot (96). Hemorrhagic
stroke accounts for 15% of all strokes but they are responsible
for about 40% of all stroke deaths (National Stroke Association).
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TABLE 1 | A comprehensive analysis of platelet mechanisms in atheroprogression

in mice (↓ decrease, ↑ increase, = no effect on plaque development).

Molecule

targeted

Animal model Plaque

development

effect

References

PGI2 ApoE−/− IP−/− (chow diet) ↑ (81)

GPIbα ApoE−/− + Fab anti-GPIbα

(HFD up to 18 weeks)

↓ (43)

Ldlr−/−GPIbα−/− (HFD for 16

weeks)

↓ (48)

Ldlr−/− hIL4R/GPIbα (HFD for

16 weeks)

= (48)

vWF Ldlr−/−vWF−/− (HFD up to 22

weeks)

↓ (49)

αIIbβ3 ApoE−/−GPIIb−/− (HFD for 8

at 12 weeks)

↓ (53)

GPVI ApoE−/− + Fab anti-GPVI

(HFD for 12 weeks)

↓ (55)

PAR4 ApoE−/−PAR4−/− (HFD for 5

or 10 weeks)

= (74)

CD40L ApoE−/−CD154−/− (chow

diet)

↓ (75)

CD40 ApoE−/−CD40−/− (HFD for 4

weeks)

↓ (79)

PF4 ApoE−/−PF4−/− (HFD for 10

weeks)

↓ (76)

RANTES Ldlr−/− + RANTES inhibitor

(HFD up to 22 weeks)

↓ (77, 78)

TXA2 ApoE−/− + S18886 or aspirin

(chow diet)

↓ (80)

ApoE−/−COX-1−/− (HFD for 8

weeks)

↓ (82)

Ldlr−/− + aspirin (chow diet or

HFD up to 26 weeks)

↓ (83–85)

ApoE−/− + aspirin (chow diet

or HFD up to 12 weeks)

= (70, 80)

ApoE−/− + aspirin long

treatment (HFD up to 16 weeks)

↑ (87)

CalDAG-GEFI CalDAG-GEFI−/− in

hematopoietic cells (HFD for 12

weeks)

↓ (67)

P2Y12 ApoE−/−P2Y12−/− (HFD up to

20 weeks)

↓ (65, 67)

ApoE−/− + Clopidogrel (chow

diet or HFD between 8 at 12

weeks)

↓ (68, 70)

ApoE−/− + Clopidogrel (HFD

for 6 months)

= (69)

ApoE−/− + Ticagrelor (HFD for

20 weeks)

↓ (71, 72)

ApoE−/− + Ticagrelor (HFD for

12 weeks)

= (73)

An ischemic stroke can occur in two ways: embolic stroke caused
by thromboembolism of cardiac origin or thrombotic stroke
with in-situ blood clot. Atherosclerosis in major intracranial
arteries leads to changes ranging from minor wall thickening
to luminal stenosis, and is one of the most common causes of

stroke worldwide (97). The middle cerebral arteries are the most
common lesion site, followed by the basilar artery, the internal
carotid arteries, and the intracranial vertebral arteries (98).
Intracranial atherosclerotic disease may occur concomitantly
with systemic atherosclerosis.

The current treatments for acute ischemic stroke are the
use of a thrombolytic agent as recombinant tissue plasminogen
activator (t-PA) (99) and mechanical thrombectomy (100).
Nevertheless, in some patients, the recanalization by
thrombolysis is not efficient and the persisting thrombus
leads to severe brain damage. Recent clinical findings show that
clots retrieved from stroke patients have a thick compact outer
shell enriched in NETs and fibrin which might contribute to
reperfusion resistance (101, 102). Following thrombolysis, the
overall recanalization rate is 46% (103). However, reocclusion
after initial recanalization occurs in 14–34% of patients and
is associated with clinical deterioration and poor outcome
(104–106). Reocclusion has been attributed to increased platelet
aggregation caused by the local thrombus and endothelial injury.
Thus, the start of antiplatelet therapy early after thrombolysis
might reduce the risk of reocclusion and thereby improve
functional outcome.

Animal models were used to decipher platelets involvement
in stroke. The most common stroke animal model used is
the transient middle cerebral artery occlusion (tMCAO) in
mice and rats. Thrombocytopenic mice were submitted to
transient occlusion of the middle cerebral artery, and 24 h
after ischemia/reperfusion, infarct area was determined (107).
Platelet depletion did not significantly affect the lesion area, but
thrombocytopenic mice presented multiple hemorrhagic foci in
the lesion whereas none were observed in mice with normal
platelet count. Nevertheless, platelet adhesion and activation have
been investigated in several stroke studies in mice. Blockade or
genetic deficiency of GPIbα improves stroke outcome without
hemorrhagic transformation after tMCAO (108). Similarly, vWF
deficiency is also associated with smaller infarct volumes and
no bleeding was observed after tMCAO in those mice (109).
Interestingly, the role of the GPIbα-vWF axis in hemostasis
can be decoupled from the one in brain injury highlighting a
proinflammatory role of GPIbα. The contribution of platelet
activation receptors has been investigated during ischemia-
reperfusion injury after tMCAO. Inhibition or genetic deficiency
of GPVI, the collagen and fibrin receptor, has been shown to
reduce the infarct volume and to improve stroke outcome (108,
110). Supporting the beneficial role of blocking the collagen
receptor during a stroke, a recent study showed that GPVI
inhibition plus intravenous infusion of rt-PA is safe in term
of bleeding and has a better outcome than rt-PA alone (111).
GPVI seems an attractive target in stroke since (i) it’s only
expressed on platelets, (ii) patients with a GPVI deficiency have
no or mild bleeding phenotype (112), (iii) GPVI inhibition
leads to a significant reduction of thrombus formation (113,
114), (iv) a novel humanized Fab anti GPVI (ACT017) in
healthy donors didn’t show bleeding complications (15). Overall,
targeting GPVI in thrombosis can be a novel approach and
compared to the current antiplatelet drugs, GPVI inhibition does
not compromise hemostasis. Nevertheless, other larger studies
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need to be conducted in patients with CVD to validate the
use of anti-GPVI antibodies. Notably, the protective effect of
GPIbα and GPVI inhibition can also be observed in aged mice
presenting comorbid factors such as atherosclerosis, diabetes
or hypertension (115). Indeed, platelets from patients with
comorbid factors are in a hyperactivated state (116). Enhanced
platelet intracellular calcium responses to LDL cholesterol have
been observed in diabetic patients with and without hypertension
(117). Similarly, platelets from diabetic patients have been
reported to have reduced sensitivity to prostacyclin (118) and
hyperaggregate in response to platelet agonists (119). Other
changes in platelets from diabetic patients include an increased
expression of some platelet receptors GPIbα and αIIbβIIIa (120)
and an alteration of platelet membrane fluidity (121). Therefore,
studies including comorbid factors should be performed to
further assess the validity of future antiplatelet drugs in the
context of CVD.

Other platelet receptors are involved in platelet activation
during the ischemia-reperfusion mouse model. The thrombin
PAR4 receptor is expressed not only in platelets but also in
the central nervous system (122). In a transient stroke mouse
model, its systemic deletion reduces the brain infarct volume and
attenuates cognitive function deficit (123). Intravital microscopy
studies showed fewer platelet/EC interactions in PAR4−/− mice
compared to control mice. Thus, PAR4 deficiency seems to be
neuroprotective in transient middle cerebral artery occlusion,
partially through the attenuation of cerebral microvascular
inflammation. In addition, mice deficient for Gαi2, G protein
downstream of the ADP receptor P2Y12, were subjected to
tMCAO, then functional outcome and infarct size were assessed
24 h later (124). Gαi2 deficiency leads to a reduced lesion area and
better functional outcome than control mice. Apart from platelet
adhesion and activation, platelet granule secretion contributes to
stroke. Mice lacking platelet α-granules (Nbeal2−/−) and mice
lacking platelet dense granules (Unc13d−/−) showed a higher
mortality rate due to intracranial hemorrhage. Nevertheless,
the surviving animals developed significantly smaller brain
infarctions and had a better outcome compared to WT mice
(125). Platelet aggregation mediated by the integrin αIIbβ3 seems
dispensable at sites of ischemia/reperfusion injury. Blockade
of αIIbβ3 integrin increases intracranial hemorrhage risk in
tMCAO mice (108, 126) and among the surviving mice, the
treatment did not show any improvement (115) suggesting that
platelet aggregation is dispensable for brain injury but still
important for securing hemostasis in tMCAO.

Overall, these data suggest a deleterious role of platelet
adhesion, activation and secretion in the stroke pathophysiology.
On the opposite, platelet aggregation, which plays a crucial role
in thrombus formation, is not required for stroke progression.
Thus, the non-classical role of platelets, through their pro-
inflammatory properties, may prevail in stroke disease. A
comprehensive table summarizes platelet mechanisms studied in
tMCAOmodels (Table 2A and Figure 1).

In humans, several antiplatelet drugs have been tested
in stroke outcome. Among them, numerous studies have
investigated the benefits and risks of aspirin for primary
prevention in population at risk, during the acute management
of cardiovascular events and in secondary prevention among

patients with CVD. In elderly populations, the risk of
CVD is higher suggesting an increased benefit of aspirin
administration in primary prevention for cardiovascular events.
However, increased bleeding risk has also been observed in
this population (147). According to a meta-analysis of aspirin
primary prevention studies, reported by the Antithrombotic
Trialists’ Collaboration, aspirin did not reduce the risk of
stroke. In this meta-analysis, aspirin non-significantly reduced
the risk of ischemic stroke but increased non-significantly the
risk of hemorrhagic stroke (148). The JPPP (Japanese Primary
Prevention Project) clinical trial was designed to assess whether
primary prevention would reduce the risk of non-fatal stroke in
elderly Japanese patients (127). It appears that aspirin seems to
reduce the non-fatal ischemic stroke risk, but it tends to increase
the risk of hemorrhagic stroke. Recently, the ARRIVE (Aspirin to
Reduce Risk of Initial Vascular Events) clinical trial investigated
the benefits and risks of enteric-coated aspirin used in primary
prevention of cardiovascular events, in patients with an average
cardiovascular risk (128). Aspirin did not lower the risk of major
cardiovascular events nor stroke incidence. Moreover, rates of
gastrointestinal bleeding events and some other minor bleeding
events were higher in the aspirin treatment group with no
difference in the incidence of fatal events. The results of the
ASPREE (Aspirin in Reducing Events in the Elderly) clinical trial
investigating the role of aspirin in primary prevention of CVD
were published recently (129). They confirm that the use of low-
dose aspirin as a primary prevention strategy in older adults
results in a significantly higher risk of major hemorrhage and did
not trigger a significantly lower risk of CVD than placebo.

Low-dose aspirin efficacy has been widely established
in secondary prevention trials, in which the benefits of
reducing ischemic stroke rates have outweighed the risk of
hemorrhage (149, 150). A meta-analysis including eight clinical
trials involving more than 40,000 participants concluded that
antiplatelet therapy with aspirin started within 48 h of the
onset of ischemic stroke reduced the risk of early recurrent
ischemic stroke without a major risk of early hemorrhagic
complications (151). Moreover, long-term outcomes were also
improved. The ARTIS (Antiplatelet therapy in combination
with rt-PA Thrombolysis in Ischemic Stroke) clinical trial
compared the effects of early intravenous aspirin addition
to thrombolysis with standard treatment without aspirin
(130). Patients with acute ischemic stroke treated with rt-PA
thrombolysis were randomly assigned to intravenous aspirin
within 90min after the start of thrombolysis treatment or
to no additional treatment. In addition, in both groups,
oral antiplatelet therapy was started 24 h after thrombolysis
treatment. This trial concluded that early administration
of intravenous aspirin does not improve outcome at 3
months and increases the risk of intracranial hemorrhage
without evidence of a beneficial effect on early neurological
deterioration (131).

Current guidelines for the early management of patients with
acute ischemic stroke, from the American Heart Association and
the American Stroke Association, recommend starting aspirin
administration 24 h after thrombolysis (152). However, the
overall effect of aspirin in acute ischemic stroke is weak and better
acute therapies are therefore necessary.
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TABLE 2 | (A) A comprehensive analysis of platelet mechanisms in tMCAO mouse model and (B) in stroke patients (↓ decrease, ↑ increase, = no effect on infarct area or

bleeding risk).

A

Molecule targeted Animal model Effect on infarct

area

References

Platelets Thombocytopenia = (107)

α granules Nbeal2−/− ↓ (125)

Dense granules Unc13d−/− ↓ (125)

PAR4 PAR4−/− ↓ (123)

Gαi2 Gαi2fl/fl/PF4-Cre ↓ (124)

GPIbα Antibody anti-GPIbα ↓ (108, 126)

GPVI Antibody anti-GPVI ↓ (108)

αIIbβ3 Antibody anti-GPIIb/IIIa ↓ (108)

B

Molecule targeted Clinical trial Effect Bleeding References

TXA2 JPPP

Aspirin

↓ ↑ (127)

ARRIVE

Aspirin

= ↑ (128)

ASPREE

Aspirin

= ↑ (129)

ARTIS

Early aspirin addition to thrombolysis

= ↑ (130, 131)

P2Y12 CAPRIE

Clopidogrel vs. aspirin - Ischemic stroke patients

= ↑ (132)

CHARISMA

Clopidogrel + aspirin vs. aspirin alone

= ↑ (133)

MATCH

Clopidogrel + aspirin vs. aspirin alone

= ↑ (134)

CHANCE

Clopidogrel + aspirin vs. aspirin alone

↓ = (135, 136)

COMPRESS

Clopidogrel + aspirin vs. aspirin alone

= ↑ Tendency (137)

POINT

Clopidogrel + aspirin vs. aspirin alone

↓ ↑ (138, 139)

SOCRATES

Ticagrelor vs. aspirin

= = (140, 141)

PRINCE

Ticagrelor vs. clopidogrel (+ aspirin)

↓ Tendency ? (142, 143)

TARDIS

Aspirin, clopidogrel and dipyridamole vs. guideline treatment

= ↑ (144)

αIIbβ3 abESTT-II

Abciximab

= ↑ (145)

SaTIS

Tirofiban vs. placebo

= = (146)

Over the years, several other antiplatelet agents were
developed and then tested in clinical trials. A comprehensive
table summarizes the different clinical trials that assessed the
efficacy of antiplatelet agents in stroke outcome (Table 2B).

PLATELETS CONTRIBUTE TO
MYOCARDIAL INJURY

Acute coronary syndrome (ACS) occurs when the blood flow
is decreased or stopped in coronary arteries, leading to tissue

damage ranging from ischemia to infarction. This defect of
blood supply is mainly due to atherosclerotic plaque growth and
rupture, followed by a thrombus formation in coronary artery

(153). ACS is commonly divided into myocardial infarction (MI)

and unstable angina, considered to be an imminent precursor of

MI. Biomarkers of cardiac tissue damage such as troponin and

creatine-kinase myocardial band (CK-MB) are used to classify

ACS into unstable angina or MI, the latter one presenting
such blood biomarkers. A MI can have several consequences
such as heart failure, an irregular heartbeat or a cardiac arrest.
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According to the World Health Organization, in 2012 an
estimated 7.5 million people died from MI worldwide. Survivors
of MI are at increased risk of recurrent infarctions and have
an annual death rate of 5%, representing a 6-time increase
compared to people without coronary heart disease. MI can
also be classified into ST-segment elevationmyocardial infarction
(STEMI) and non-STEMI (NSTEMI) according to the patient
electrocardiogram. STEMI caused by a complete coronary vessel
occlusion, and NSTEMI due to a partial artery occlusion,
represent respectively 30 and 70% of all MI (154). Since unstable
angina has similar pathophysiology to NSTEMI, they are referred
together as non-ST-segment elevation ACS (NSTE-ACS) and
are grouped for care management decisions. Current guidelines
recommend an immediate treatment of ACS, but due to different
pathophysiology between STEMI and NSTE-ACS, separate
guidelines were edited. Guidelines for the management of NSTE-
ACS recommend a pharmacological treatment of ischemia (via
decreasing myocardial oxygen demand or increasing myocardial
oxygen supply) (155). Guidelines for the treatment of STEMI
recommend an immediate recanalization of coronary arteries via
reperfusion therapies such as primary percutaneous coronary
intervention and/or fibrinolysis strategy (156). Even though
recanalization is necessary to provide oxygen and nutrients to the
ischemic area, reperfusion by itself also exacerbates myocardial
damage (157). This pathologic process is named ischemia-
reperfusion (IR) injury. For long-term therapies, both guidelines
agree to strongly recommend the use of antiplatelet agents.

Indeed, the atherosclerotic origin of MI led to numerous
studies deciphering the platelet involvement in MI. A lower
platelet count or no significant difference of the platelet count
was observed between MI patients and stable angina or healthy
donors (158, 159). However, the mean platelet volume reflecting
platelet activation was higher in MI patients compared to
stable coronary artery disease patients at the time of acute
event (158). Increased levels of P-Selectin and CD63-exposing
platelet microparticles have been found in MI patients (160).
Plasma levels of vWF and serotonin are increased in patients
with coronary artery syndrome (161, 162) highlighting the role
of platelet activation in myocardial injury. Moreover, platelet-
leucocyte aggregates are an early marker of acute MI and are
also associated with myocardial no-reflow in STEMI patients
(163, 164). Ventricular wall rupture is a fatal complication of
acute MI and platelets seem to be involved in this phenomenon
since an intramural thrombus was observed within the infarcted
myocardium (165). Platelets potential involvement in this
process was confirmed by their depletion which reduced the
rate of myocardial wall rupture from 46 to 0% (166). Several
studies investigated platelet mechanisms involved in MI and in
myocardial (IR) injury.

Platelet activation is commonly observed in numerous
pathologies, including MI (158). This phenomenon is mediated
by specific platelet receptors that are involved in adhesion and
activation. Inhibition of GPIbα–involved in platelet tethering—
via a Fab anti-GPIbα did not change the infarct volume per
the area at risk (INF/AAR) (167). In accordance with the
results of GPIbα inhibition, depletion of the phospholipase D1
(PLD1), enzyme involved in GPIbα dependent αIIbβ3 activation,

did not protect mice from myocardial IR injury (167). These
findings suggest that GPIbα platelet receptor is dispensable in
MI pathophysiology. On the contrary, mice deficient for the
Fc receptor γ chain (FcRγ) coupled to GPVI were protected
from myocardial IR injury with smaller infarct size and reduced
leucocyte recruitment in the injured area (168). This was
confirmed by pharmacological inhibition of the collagen receptor
GPVI via a Fab anti-GPVI or soluble GPVI-Fc (Revacept) in
a mouse model of the left anterior descending artery ligation
with reperfusion. Inhibition of GPVI led to a reduced infarct
size (167, 169). These findings suggest that a therapeutic strategy
targeting GPVI could be a valuable approach in MI. This
could be relevant in humans since it was recently described
that patients with STEMI have an alteration of GPVI platelet
signaling (170). Indeed, platelets from STEMI patients have an
increased aggregation response compared to stable coronary
artery disease patients. This could be due to the increased number
of GPVI receptors observed in ACS patients (171). Therefore,
studies focused on GPVI inhibition seem promising. Currently,
a humanized Fab targeting GPVI without increasing the bleeding
risk in healthy controls is developed and characterized (15) but
their findings warrant further investigations in CVD patients
under current antiplatelet drugs.

The contribution of other receptors in MI was studied such
as CLEC-2, PAR receptors or P2Y12 in mice. Pharmacological
inhibition of CLEC-2 via Fab administration did not decrease
the INF/AAR in mice (167). The thrombin receptors, PAR1
and PAR4 receptors are expressed at the surface of platelets,
but also by cardiomyocytes (172, 173). It has been showed that
PAR1 deficiency did not affect the infarct size after myocardial
IR injury (174). However, interestingly, PAR1−/− mice had
reduced cardiac remodeling and decreased impairment of left
ventricle function compared to control mice. In contrast to
previous findings, PAR1 antagonist (SCH 79797) administration
was shown to reduce infarct size after myocardial IR injury in rats
(175). This discrepancy could be explained by off-target effects of
SCH 79797 or a PAR4 compensation. Genetic depletion of PAR4
led to the development of larger infarcts and more myocardial
apoptosis compared to control mice (176). However, another
study attributes a cardioprotective effect of PAR4 deletion after
myocardial IR injury as INF/AAR was decreased in PAR4−/−

mice compared to control mice (177). The administration of
PAR4 antagonists confirmed the previous findings. Indeed, PAR4
inhibition in rats decreased infarct size after myocardial IR injury
(178). The P2Y12 receptor, which signaling is mediated by the G

protein Gαi2, is involved in platelet activation. Gα
−/−
i2 deficient

mice have a reduced INF/AAR ratio suggesting a protective effect
of platelet activation inhibition (124). However, this G protein
may interact not only with P2Y12, but also with additional
G protein coupled receptor present in platelets. The use of
clopidogrel, a P2Y12 antagonist, decreased platelet accumulation
in ischemic myocardium and reduced the rupture rate from 45%
in control to 10% in clopidogrel treated animals (165, 166). In a
rat model of isolated hearts, the perfusion of platelets from acute
MI patients enlarges infarct area (179) while the concomitant
administration of cangrelor or abciximab decreases the infarct
size. As opposed to clopidogrel, aspirin administration did not
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reduce infarct size nor the rupture rate in mice (165, 180)
suggesting a relative hierarchy in the platelet receptors duringMI.

Platelet degranulation, a marker of platelet activation, triggers
the inflammatory responses by P-selectin exposure involved
in leukocyte recruitment. Nbeal2−/− and Unc13d−/− mice
lacking, respectively, alpha and dense granules did not show any
alterations in infarct sizes, arguing against a significant role of
degranulation in the pathophysiology of myocardial IR injury
(167). Nevertheless, blockade or genetic deficiency of P-selectin
can lead to smaller infarct sizes after myocardial infarction (181–
183) suggesting a possible contribution of the endothelial P-
selectin. Critical to platelet activation is calcium mobilization.
Cytosolic Ca2+ concentration is regulated by two major proteins:
STIM1 (endoplasmic reticulum Ca2+ sensor) and Orai-1 (Ca2+

channel). Genetic depletion in hematopoietic cells of STIM1 or
Orai-1 did also not reduce the INF/AAR ratio (167) hinting at
alternative platelet activation pathways.

The final step of platelet activation is their aggregation and
is mainly driven by αIIbβ3 activation. The inhibition of this
integrin via Fab anti- αIIbβ3 administration did not alter the
INF/AAR ratio when compared with control mice (167). In
another study, αIIbβ3 inhibition by abciximab seems to reduce
myocardial injury in isolated rat hearts through a reduction
of platelet adhesion to the endothelium or leukocytes (179).
This discrepancy can be probably explained by the different
experimental models which can have a different impact on
platelet activation. Platelet mechanisms in the MI model have
been summarized in Table 3A and Figure 2.

In humans, several clinical trials tested platelet inhibitors in
the context of MI. Currently, guidelines for the management of
NSTE-ACS and STEMI patients recommend aspirin intake for
long-term treatment for all patients without contraindications
(148, 155, 156). Moreover, the dual antiplatelet treatment
(DAPT) composed of aspirin plus a P2Y12 inhibitor is
recommended. Indeed, the CURE (Clopidogrel in Unstable
Angina to Prevent Recurrent Events) trial was designed to
assess the efficacy of the combination of aspirin and clopidogrel
compared to aspirin alone (184). Patients with NSTE-ACS
were enrolled within 24 h after symptom onset, and either
treated with the combination treatment or aspirin alone. The
DAPT significantly reduced the composite rate of death from
cardiovascular causes, non-fatal MI and stroke. The rate of each
component of this composite outcome also tended to be lower
in the DAPT group. However, the risk of major bleeding is
increased among patients treated with clopidogrel. TRITON-
TIMI-38 (Trial to Assess Improvement in Therapeutic Outcomes
by Optimizing Platelet Inhibition with Prasugrel—Thrombolysis
in Myocardial Infarction-38) is a phase III trial which enrolled
patients with ACS (NSTE-ACS and STEMI) within 72 h after
symptom onset (185). This trial was designed to compare the
efficacy of prasugrel with clopidogrel, both associated with
aspirin. The percentage of non-fatal MI (Clopidogrel: 9.5%;
Prasugrel: 7.3%) and stent thrombosis (Clopidogrel: 2.4%;
Prasugrel: 1.1%) was significantly reduced in patients treated
with prasugrel, but it caused more life-threatening bleedings
than clopidogrel treatment (from 0.9 to 1.4%). In conclusion,
this trial showed that prasugrel is more effective at preventing
ischemic events than clopidogrel in patients with NSTE-ACS

or STEMI. However, this beneficial effect is accompanied by
an increased rate of major bleeding. The PLATO (Study of
Platelet Inhibition and Patient Outcomes) clinical trial aimed
to determine whether, combined to aspirin, ticagrelor is more
efficient than clopidogrel in patients with ACS, enrolled within
24 h after symptom onset (186). Patients receiving ticagrelor
had a significantly lower MI event rate (5.8%) compared to
clopidogrel-treated patients (6.9%). The rate of death from any
cause is also significantly lower for patients treated with ticagrelor
(ticagrelor: 4.5%; clopidogrel: 5.9%). It is important to note
that no difference in life-threatening bleeding was observed
between the two treatment groups (ticagrelor: 5.8%; clopidogrel:
5.8%). This trial found that, in patients who have an NSTE-ACS
or STEMI, treatment with ticagrelor compared to clopidogrel
significantly reduced the rate of death from vascular causes,
myocardial infarction, or stroke without an increase in the rate
of overall major bleeding.

These results were later confirmed by the PEGASUS-TIMI-
54 (Prevention of Cardiovascular Events in Patients With Prior
Heart Attack Using Ticagrelor Compared to Placebo on a
Background of Aspirin–Thrombolysis In Myocardial Infarction
54) trial which enrolled patient who had a MI 1 to 3 years earlier
(187). Patients either received ticagrelor plus aspirin or aspirin
alone. The ticagrelor treatment significantly reduced MI event
rate (from 5.25 to 4.53%) (188). Moreover, this protective effect is
consistent over time and this trial supports the use of prolonged
therapy in patients who continue to tolerate this antiplatelet agent
(189). Current guidelines recommend deliveringDAPT toNSTE-
ACS and STEMI patients, with aspirin plus ticagrelor or prasugrel
(155). Clopidogrel can be administered to ACS patients who
cannot receive the two previous antiplatelet agents.

Vorapaxar, a PAR1 inhibitor, has been tested in clinical
trials. The TRA 2P–TIMI 50 (Thrombin Receptor Antagonist in
Secondary Prevention of Atherothrombotic Ischemic Events—
Thrombolysis in Myocardial Infarction 50) clinical trial enrolled
patients who had a history of atherosclerosis within the previous
2 weeks to 12 months (190). Patients were randomly assigned to
either vorapaxar treatment or placebo. All concomitant medical
therapy, including the use of other antiplatelet agents, was
managed by the clinicians who were responsible for the care
of the patients. Patients receiving vorapaxar had a reduced
rate of MI event (from 6.1 to 5.2%) but presented an increase
in major bleeding (from 11.1 to 15.8%). This trial assessed
that inhibition of PAR-1 with vorapaxar reduced the risk of
cardiovascular death or ischemic events in patients with stable
atherosclerosis. However, it increased the risk of moderate or
severe bleeding, including intracranial hemorrhage. The findings
of TRA 2P–TIMI 50 clinical trial were confirmed by the TRACER
(Thrombin Receptor Antagonist for Clinical Event Reduction in
Acute Coronary Syndrome) trial. Investigators aimed to compare
vorapaxar administration with placebo, in addition to standard
therapy, in patients suffering from NSTE-ACS (191). The main
result observed is a decreased rate of MI event for patients treated
with vorapaxar. These data support the use of vorapaxar in MI
secondary prevention since it provided net clinical benefit in
patients at low risk for bleeding but high risk for ischemic events,
as it especially prevented stent thrombosis after MI. However, the
safety and efficacy of vorapaxar in STEMI patients have not been
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TABLE 3 | (A) A comprehensive analysis of platelet mechanisms in myocardial infarction (MI) mouse model and (B) in MI patients (↓ decrease, ↑ increase, = no effect on

MI or bleeding risk).

A

Molecule targeted Animal model Effect on M.I. References

Platelets Thrombocytopenia ↓ (166)

GPIbα Fab anti-GPIbα = (167)

Pld1 Pld1−/−
= (167)

GPVI Antibody anti-GPVI ↓ (167, 169)

Soluble GPVI-Fc ↓ (169)

FcRγ FcRγ−/− ↓ (168)

CLEC-2 Fab anti-CLEC-2 = (167)

PAR4 PAR4−/− ↑ (176)

PAR4−/− ↓ (177)

PAR4 antagonist ↓ (178)

Gαi2 Gα
−/−

i2 ↓ (124)

αIIbβ3 Fab anti-GPIIb/IIIa

Isolated hearts and perfusion of platelets

from acute MI patients

+ Abciximab

=

↓

(167)

(179)

δ granules Nbeal2−/−
= (167)

Dense granules Unc13d−/−
= (167)

Stim1 Stim1−/−
= (167)

Orai1 Orai1−/−
= (167)

TXA2 Aspirin = (165, 180)

P2Y12 Clopidogrel ↓ (165, 166)

Isolated hearts and perfusion of platelets

from acute MI patients

+ Cangrelor ↓ (179)

B

Molecule targeted Clinical trial Effect Bleeding References

P2Y12 CURE

Clopidogrel + aspirin vs. aspirin alone

↓ ↑ (184)

TRITON-TIMI-38

Prasugrel vs. clopidogrel (+ aspirin)

↓ Prasugrel ↑ Prasugrel (185)

PLATO

Ticagrelor vs. clopidogrel (+ aspirin)

↓ Ticagrelor = (186)

PEGASUS-TIMI-54

Ticagrelor + Aspirin vs. Aspirin alone

↓ ↑ (187–189)

PAR1 The TRA 2P–TIMI 50

Vorapaxar vs. placebo (+ concomitant

medical therapy)

↓ ↑ (190)

TRACER

Vorapaxar vs. placebo (+ standard

therapy)

↓ ↑ (191)

investigated yet. These clinical findings have been summarized
in Table 3B.

PLATELETS PARTICIPATE TO THE
DEVELOPMENT OF THE ABDOMINAL
AORTIC ANEURYSM (AAA)

Abdominal aortic aneurysm (AAA) is a permanent and
irreversible localized dilatation of the infrarenal segment of the

abdominal aorta caused by the degradation and remodeling of
the layers of the vessel wall and a chronic wall inflammation.
AAA can extend along the aorta (fusiform), or be localized
(sacciform). Major AAA risk factors are age, atherosclerosis,
hypertension, male gender, and smoking. In western countries,
AAA incidence is ∼0.4–0.67% annually and reaches 5–10% of
men and 1% of women over 65 years old (192). This pathology
is mainly asymptomatic and aneurysm rupture leads to death.
Endovascular and open repair of AAA remains the only effective
treatments. Nevertheless, many pharmacological therapies are
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FIGURE 1 | Overview of platelet receptors inhibition involved in stroke. Pharmalogical or genetic inhibition of platelet receptors or secretion shows a decrease of brain

infarct (↓ decrease, = no effect).

FIGURE 2 | Overview of platelet receptors inhibition involved in myocardial infarction. Pharmalogical or genetic inhibition of platelet receptors shows a decrease of

myocardial injury (↓ decrease, ↑ increase).

still under investigation like statins, angiotensin receptor blockers
and anti-platelets drugs (193).

AAA is characterized by chronic inflammation with a large
degradation of elastin and collagen fibers. It results in the
proteolytic activity of matrix-degrading proteinases including
matrix metalloproteinases (MMPs) leading to aorta dilatation.
Reduced vascular wall thickness and the lack of tissue repair
are associated with vascular smooth muscle cells apoptosis.
The adventitia neovascularization induces inflammatory cells
(lymphocytes, neutrophils and macrophages) infiltration in
the aortic vessel wall, maintaining a continuous level of
inflammation. This process contributes to the intra-luminal
thrombus (ILT) formation (194), which involves platelets and

coagulation activation. Overall, the ILT thromboinflammatory
status contributes to the outward remodeling and eventually to
the disruption of wall integrity (195, 196).

The ILT is structured in multilayers. In AAA patients, ILT
is often organized in three layers—luminal (in contact with
the blood), medial and abluminal (in contact with the wall).
Luminal ILT layer is biologically active and enriched in platelets,
neutrophils, red blood cells and a dense fibrin network (197).
The ILT has also been shown to contain weak pathogens like
Porphyromonas gingivalis (Pg) which contribute to leukocyte
recruitment (198). On the opposite side, the abluminal layer
has a marked fibrinolytic activity and contains few cells (199,
200). ILT evolution can lead to vessel wall weakness due to the
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high concentrations of reactive oxygen species (ROS), proteases
and cytokines. Indeed, a study showed that ILT thickness is
correlated with AAA diameter and MMP9 expression (201).
The main specificity of the ILT in AAA is its non-healing
property. The continuous release of neutrophil-derived proteases
from these thrombi prevents vascular healing. Indeed, the re-
endothelialization and adherence of mesenchymal stem cells
are prevented by neutrophil proteases (202). This protease-rich
thrombus is considered as the driving force in vessel wall rupture
leading to death (203). However, ILT formation mechanisms in
AAA are so far unknown.

TABLE 4 | (A) A comprehensive analysis of platelet mechanisms in abdominal

aortic aneurysm (AAA) animal models and (B) in AAA patients (↓ decrease, ↑

increase, = no effect on intraluminal thrombus ILT or aneurysm diameter).

A

Molecule

targeted

Animal model Effect

on ILT

References

αIIbβ3 Xenograft rats model

+ abciximab

↓ (197)

P2Y12 Xenograft model +

AZD6140

↓ (209)

Angiotensin II +

Clopidogrel

↓ (210)

P2Y12 and

TXA2

Angiotensin II +

Clopidogrel and

Aspirin

↓ (211)

B

Molecule targeted Clinical trial Effect on

aneurysm

diameter

References

TXA2 Aspirin ↓ (between 40 and

49mm)

(212)

P2Y12 Ticagrelor = (213)

Observational studies based on human tissue samples from
AAA patients provide information at the late stage of the disease.
In order to understand the mechanisms in the early steps,
different animal models have been used, including mice and rats.
The role of platelets and coagulation in ILT formation during
AAA has been recently reviewed elsewhere (194). To study the
role of platelets in AAA, two major models were used in mice
and rats. The hypertension model, induced by angiotensin II
in ApoE−/− or Ldlr−/− mice, reproduces important features of
human AAA with inflammation, smooth muscle cells apoptosis
and macrophage infiltration. However, aneurysms formed have
a suprarenal location and abluminal thrombus formation occurs
after an aortic dissection due to a false channel (204).

The main model in rats consists of elastin degradation via
elastase perfusion and presents the same characteristics as the
first model. However, in this model, aneurysms have an infrarenal
location and do not present a thrombus and hypertension
(205). This model was also developed in mice (206). A recent
study showed that administration of beta 3-aminopropionitrile
fumarate salt (BAPN, inhibitor of lysyl oxidase) in the drinking
water of elastase-treated mice resulted in ILT formation (207).
Both of these models (elastase and angiotensin II) do not
recapitulate all human characteristics but they contribute to
better understand the disease.

A xenograft rat model which consists of grafting decellularized
aorta of guinea pig into rat aorta has been shown to present
an ILT (208). With this model, abciximab treatment
(platelet aggregation inhibitor) reduces the aneurysmal
diameter and ILT activities accompanied by fewer P-
selectin expression and reduced vessel wall degradation.
These results suggest that platelets are involved in the
thrombus biological activity and aneurysm development
(197). Similar results were observed in rats after 10 and 42
days of AZD6140 treatment, a P2Y12 receptor antagonist.
A reduced ILT was observed as well as decreased MMP-9,
MMP-2 expression, leukocyte infiltration, media and elastin
preservation (209).

FIGURE 3 | Overview of platelet receptors inhibition involved in abdominal aortic aneurysm (AAA). Pharmalogical inhibition of platelet receptors shows a decrease of

AAA formation and intraluminal thrombus (ILT) formation (↓ decrease).
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Other studies with angiotensin II mouse model have shown
that clopidogrel treatment (inhibitor of P2Y12), or aspirin
(inhibitor of COX-2) reduces themacrophage infiltration,MMP2
and ROS production, suggesting that platelets play a role in
vascular inflammation during AAA progression (210, 211). A
reduction of thrombi, uPA, t-PA, and PF4 in the aorta was
also observed in aspirin or clopidogrel-treated mice but these
treatments have no effect on aorta diameter on established AngII-
aneurysm model (211). However, clopidogrel administration
in the early steps of AAA decreases the aorta diameter
(210). The same treatments in patients emphasize that anti-
platelet treatments can reduce AAA progression and rupture or
dissection (211). Low-dose of aspirin can prevent the progression
of AAA measuring from 40 to 49mm and no decrease of
AAA growth was observed in AAAs measuring <40mm (212).
The use of a P2Y12 receptor inhibitor as ticagrelor treatment
revealed a lack of difference in AAA size compared to placebo-
treated subjects, suggesting that ticagrelor has no effect on the
development of small AAAs. However, in this study, most of the
patients did not present an ILT (213). These results have been
summarized in Table 4 and Figure 3.

Nowadays, there is no definite treatment to decelerate
or stop AAA progression. Nevertheless, clinical and animal
studies mentioned above provide additional information on the
effect of platelets in AAA development, opening up treatment
prospects that may be in the long term substitutes of heavy and
invasive surgery.

CONCLUSIONS AND PERSPECTIVES

Over the past years, the field of platelets gained a lot of attention
in their contribution to vascular diseases. Platelet biology is at the
crossroads of several clinical specialties (cardiology, neurology,

pulmonology). The current use of antithrombotic drugs, aspirin,
and P2Y12 antagonists, is based on their inhibitory effect on
platelet aggregation. While those drugs show a beneficial effect in
CVD, they are still associated with some bleeding risks. Recent
studies provided a new understanding of the role of platelets
in vascular inflammation that extends beyond their role in
aggregation. The development of future anti-platelet drugs will
need to take into account the role of platelets in inflammation.
In addition, as most of the thrombosis and inflammatory studies
are conducted in healthy vessels, it is important to keep in
mind that the identified mechanisms need to be validated in
models relevant to CVD. Importantly, there is significant inter-
individual variability of antiplatelet therapy responses among
patients with CVD highlighting the need for tailored therapies to
each individual. Central to this approach is the development of
robust assays that can determine platelet reactivity in a patient-
specific manner.
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