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Cardiovascular regenerative medicine is an exciting new approach that promises to

change the current care of million people world-wide. Major emphasis was given to

the quality and quantities of regenerative products, but recent evidence points to the

importance of a better specification of the target population that may take advantage

of these advanced medical treatments. Patient stratification is an important step in

drug development. Tailoring treatment to the patient’s specificity allowed significant

improvement in cancer therapy, but personalized regenerative medicine is still at the

initial stage in the cardiovascular field. For example, new-borns with a congenital heart

condition and elderly people require dedicated therapeutic approaches, which adapt to

their lifetime needs. In these people, personalized treatments may overcome the benefits

delivered by standard protocols. In this review, we provide insights into these extreme

stages of life as potential targets for cardiovascular reconstitution.

Keywords: aging, regenerative, cardiovascular, stratification, personalized medicine, congenital heart disease,

bone marrow, frailty

INTRODUCTION

Cardiovascular regenerative medicine promises to change the clinical outcome of million people.
However, the translation from basic and preclinical research to the bedside has not maintained all
the initial promises. Several reasons can account for these discrepancies, especially the need for
further refinement of the drug or cell/gene product as well as the method and time of delivery.
However, it is important to pay equal attention to the population that can take the maximum
benefit from the new approach. Personalizing treatment for cardiovascular disease has had some
remarkable successes in uncovering new therapeutic targets. For instance, the observation that
inactivating mutations in the gene encoding the trafficking protein PCSK9 expose patients to
a much lower risk for heart attacks fueled the development of antibody therapy targeting this
protein. Other examples of cardiovascular drugs for which patient response is affected by the
genetic makeup include warfarin and clopidogrel, used to prevent coagulation problems. A recent
clinical trial with an antibody blocking the inflammatory cytokine IL-1β showed that individuals
with high blood C-reactive protein (CRP) levels could take the maximum advantage for prevention
of cardiovascular events (1).

Several biomarkers were proposed for improved prediction of the mode of action of stem cells
in cardiac disease. These include markers of extracellular matrix remodeling, such as collagen
degradation products, and inflammation, like TNF-α and CRP, which reflect continued immune
dysfunction and oxidative damage in the myocardium. For instance, in the randomized TRIDENT
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trial (Transendocardial Stem Cell Injection Delivery Effects
on Neomyogenesis), patients received transendocardial stem
cell injection (TESI) of allogeneic mesenchymal stem cells
(MSCs) at either a dose of 20 or 100 million cells (2). Results
indicate that only those who received 100 million cells had
improvements in left ventricular ejection fraction (LVEF), but
both groups experienced a significant reduction in TNF-α,
both in the circulation and intracellular in B-cell, indicating
the immunomodulatory effects of MSCs, which may play an
important role in their improving cardiac function.

The importance of pretreatment assessment of contractility
markers, such as the LVEF, in influencing the outcome of
cell therapy remains controversial. Two recent meta-analyses
of bone marrow cell therapy trials in patients with acute
myocardial infarction (MI) indicate that patients experienced
similar improvement in LVEF regardless of the baseline LVEF.
However, improvements in left ventricular end-systolic volume
were more pronounced in patients with lower baseline LVEF. In
contrast, in trials of chronic myocardial ischemia, the increase in
LVEF elicited by cell therapy was significant only in the group
with lower LVEF at baseline (3, 4).

Current regenerative therapies are generally delivered to
middle age populations, which show heterogeneous responses
to therapies. Here, we overview evidence for personalized
application of cardiovascular therapeutic approaches with
emphasis on the two extreme stages of life: new-born and elderly.

ADVANCED REGENERATIVE MEDICINE
APPROACHES TO MEND THE NEWBORN
HEART

Congenital heart disease (CHD) is characterized by an
abnormality in heart structure and is the most common
type of birth defect, with a reported prevalence of 9 per 1,000
births (5, 6). Despite the progress in the surgical management
of patients with CHD, often solutions are temporary and only
partially resolve the problem. Eventually, patients develop heart
failure (HF) which contributes to high morbidity and mortality
rates (7–9). In addition HF represents a major problem in the
growing group of subjects that survive into adulthood, which are
estimated to be 1.2 million in Europe only (10–12). HF is known
to occur in ≈25% of adult CHD (ACHD) patients by the age of
30, and the incidence increases with age (13). Therefore, new
therapies should be developed to integrate current approaches of
corrective cardiac surgery in newborns and infants with CHD.

Conventional Treatment of Congenital
Heart Disease
The ideal cure for CHD consists of definitive surgical correction.
In patients with Tetralogy of Fallot (ToF), a prototypical form
of complex CHD, the aim is to relieve the obstruction to blood
flow from the right ventricle (RV) to the pulmonary circulation
and close the ventricular septum defect. Reconstruction of RV
outflow tract (RVOT) involves resection of blocking muscle
bundles and implantation of a prosthetic valve pulmonary
conduit. Patients with complex CHD like TOF usually receive

reconstructive surgery in infancy. Nevertheless, even full
correction is not definitive. Re-interventions are necessary
during a patient’s life to substitute prostheses that become
incompetent (14).

A spectrum of prostheses in the form of conduits, patches
and valves is employed in congenital cardiac surgery, but none
of them is perfect. Non-biological prostheses, like mechanical
valves and Gore-Tex patches/conduits, have the advantage of
high availability but do not possess growth potential (15).
Moreover, mechanical valves require anticoagulation and can
cause hemolysis. Biological prostheses, like autografts derived
from patient’s own valves/pericardium and pulmonary artery
homografts from human cadavers, have excellent characteristics.
However, their availability is limited. Therefore, to date, animal-
derived grafts (xenografts made with bovine or swine valvular,
pericardial, or intestinal material) are the most common
type of biological prostheses in reconstructive cardiac surgery.
However, the manufacturing process makes grafts more prone to
thrombosis and degeneration (16, 17).

In recent years, the need to overcome the above-mentioned
limitations paved the way to a new, exciting medical-research
field, namely tissue engineering.

New Solutions From Stem Cell-Engineering
Landmark clinical work has demonstrated the potential of
biomaterials engineered with stem cells (SCs) for definitive
correction of organ defects (18, 19). The approach has been
proposed to improve the durability of cardiac prostheses and
thereby optimize long-term outcomes in CHD patients (20,
21). The underlying concept is that incorporation of SCs
shall confer prosthetic grafts with the characteristics of a
living tissue that grows in a physiologic manner in parallel
with cardiac and whole body growth and withstands the
impact of degeneration (Figure 1) (22, 23). Initial experimental
studies focused on preventing thrombotic complications by
coating prosthetic valve leaflets with autologous endothelial
cells (ECs)/endothelial progenitor cells (EPCs) (24). First-in-
human studies have provided initial evidence on feasibility
and effective use of surface-enhanced valvular grafts (25, 26).
However, to improve graft durability, additional aspects must be
considered. (A) Cell-graft interactions. The main goals are for
cells to: (i) colonize not only the surface but also the prosthesis
core, (ii) survive and replicate to generate a stable resident
population, (iii) dynamically synthesize ECM proteins in order
to support graft stability and growth, and (iv) secrete factors
favoring re-endothelialization, while preventing inflammation
and calcification. These qualities are inherent to the cells, but also
depend on proper interactions between the right cell and right
prosthesis. Combining cells and prostheses already available in
a clinical format may provide the means for swift exploitation,
thus it may be advantageous to test them first. (B) Cell potency.
Induced pluripotent SCs (iPSCs) generated by reprogramming
somatic cells would be an ideal source for patient-specific
therapy. However, recent reports have emphasized the pitfalls
of iPSC technology, including the potential for genetic and
epigenetic abnormalities, tumorigenicity, and immunogenicity
(27). Hence, lineage-committed PCs remain a safer option thus
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FIGURE 1 | Cartoon illustrating various tissue engineering strategies for full management of patients with CHD. Based on CHD diagnosis is made pre- or post-birth,

stem cells can be collected from fetal tissues, umbilical cord or leftovers from palliative cardiac surgery. After collection, cells are expanded in vitro and seeded in a

natural scaffold to generate a shaped patch- or conduit- graft to be implanted in the heart of CHD patients. The site of implantation of the graft is showed for (a) left

pulmonary artery (LPA) reconstruction, (b) right ventricle outflow tract (RVOT) reconstruction, and (c) main pulmonary artery (MPA) and RVOT reconstruction.

far. (C) Cell accessibility and scalability. Thanks to advances of
pre-natal cardiac imaging, it is now possible to recognize cardiac
defects in utero and thus design tissue engineering applications
for early primary correction. In this regard, fetal SCs could be
obtained during an ongoing pregnancy (mid-trimester amniotic
fluid or placenta specimens at the occasion of prenatal screening)
or at baby delivery (placental or umbilical cord samples) (28–30).

Additionally, storage protocols of umbilical cord blood cells
are well-established, thus allowing potential use for secondary
correction. Recently, the Mayo Clinic announced the first trial
with autologous umbilical cord blood cells to treat children
with hypoplastic left heart syndrome, a defect in which the left
ventricle is underdeveloped. SCs collected at birth are stored
until intra-myocardial injection during secondary reconstructive
surgery at 6 months of age (31).

Our group and others have reported that pericytes from
human fetal hearts and aortas possessmultilineage differentiation
potential and vasculogenic activity in vitro and in vivo (32–
34). Extending those observations, we have set up a standard
operating procedure (SOP) for expansion of pericytes from
remnants of neonatal surgery. We are currently proposing
the novel use of autologous cardiac pericytes collected during
palliative surgery for cellularization of cardiac prostheses (35).

In conclusion, in the future this novel, personalized stem cell-
engineering approach promises to provide definitive solutions for
the correction of CHD in the youngest patients.

THE AGING POPULATION AND THE
CLINICAL PROBLEM OF FRAILTY

It is worth considering that in parallel to the steps forwards
in the cure of early life cardiovascular dysfunction, the same
regenerative strategies that are under consideration for the
middle-aged population may not be effective for the growing
number of elderly people. In fact, the progresses in medicine and
the social modernization/secularization, in conjunction to the
decrease in birth rate concur to the aging of the world population.
At present, it is estimated that 16.1% of the European population
is over the age of 65 years, and this number is predicted to rise
to 22% by 2031, which corresponds to approximately 137 million
people (36, 37). This unprecedented demographic phenomenon
is causing a great social and medical alarm, due to the expected
increase of common diseases and geriatric syndromes, which
often comprise more than one disorder at a time. Furthermore,
many healthy older people become progressively unfit and
incapable of handling life changes and stress, affected by the
frailty syndrome. The term “geriatric frailty” was coined 30 years
ago to define a clinical state in which there is an increase in
an individual’s vulnerability to adverse events and harm when
exposed to a stressor. Primary frailty is not associated directly
with a specific disease. However, in many instances, frailty is
entwined with a pathological condition, like diabetes mellitus
(DM) or osteoarthritis (38, 39). The Frailty Index estimates∼23%
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of people aged 65 or older is frail and has an increased risk of
death. Furthermore, the presence of frailty increases the risk of
death attributable to an associated disease. For instance, a 12-
year follow-up study conducted on more than 1,200 patients
showed a strong synergic effect of frailty and osteoarthritis on
life expectancy (40). Frail population demands high medical and
social care, absorbing a significant amount of resources from the
national health systems.

Bone Marrow Stem Cell Frailty: A Model to
Reinterpret Whole Body Vulnerability
Novel experimental and clinical evidence indicates that the
status of the bone marrow (BM) predicts the global outcome
of vulnerable patients. The BM is the main reservoir of SCs in
adulthood. We believe that its status and the function of cells
released from BM into the circulation can reflect the general
regenerative capacity of the human body.

Our team has demonstrated that DM, which is frequently
associated with frailty (38, 39), causes a profound BM remodeling
in mice and humans, with reduction of the hematopoietic
tissue, microvascular rarefaction, adipose tissue accumulation,
and osteoporosis. Also, we showed that hematopoietic SC
(HSC) depletion was associated with increased oxidative stress,
DNA damage, and activation of apoptosis (41). Furthermore,
oxidative stress was responsible for an alteration of the BM
vascular barrier function, contributing to stem cell mobilopathy
(42). Landmark work from Fadini demonstrates that levels of
circulating proangiogenic progenitor cells inversely correlate
with classical cardiovascular risk factors and atherosclerotic
complications in the coronary, peripheral and cerebrovascular
districts. Another fundamental study in a large population
with coronary artery disease showed that reduced circulating
progenitor cell counts, identified primarily as CD34pos cells, are
associated with risk of death (43). A definitive meta-analysis of 21
studies, comprising 4,155 individuals, confirmed this association
(44). Together with the notion that CD34pos progenitor cells
maintain cardiovascular health, these studies suggest that
an impaired liberation of reparative cells from BM to the
circulation contribute to promoting cardiovascular vulnerability
(45). HSCs could also transfer harmful signals to the peripheral
vasculature. In this way, potentially restoring responses afforded
by BM-derived reparative cells could be transformed into a
dangerous phenomenon. This raises the possibility of developing
assays based on circulating cells for prediction of long-
term cardiovascular outcomes and eventually, new therapies
intercepting downstream signaling pathways. A few years ago,
we started a prospective study investigating if the abundance
and migratory activity of a subpopulation of circulating
mononuclear cells, namely, CD45dimCD34posCXCR4posKDRpos

cells, predict major amputation and cardiovascular death in
type 2 diabetic patients undergoing percutaneous transluminal
angioplasty for critical limb ischemia. Multivariable regression
model analysis at 18 months follow-up showed that in vitro
cell migration forecasts cardiovascular mortality independently
of other validated predictors, such as age, diagnosed coronary
artery disease, serum CRP, and estimated glomerular filtration
rate. In this model, doubling of migrated cell counts increases
the cardiovascular death hazard by 100% (46). We have now

confirmed the value of the predictor at 6 years follow-up and also
identified a potential molecular target responsible for circulating
cells to cause endothelial cell damage and death (Madeddu and
Spinetti, unpublished data).

Mechanistic studies indicate that aging and DM contribute
in impairing stem cell/progenitor cell mobilization via
dysregulation of the key lifespan determinant pathway
comprising the silent information regulator (SIR)T1, p66Shc,
and mammalian target of rapamycin (mTOR) (47–49). These
genes integrate longevity pathways and metabolic signals in
a complex interplay in which lifespan appears to be strictly
dependent on substrate and energy bioavailability (50). Recent
data from Fadini’s group indicates that cell-autonomous
activation of the Oncostatin M (OSM)-p66Shc pathway leads to
DM-associated myelopoiesis, whereas its transcellular hemato-
stromal activation links myelopoiesis to mobilopathy. Therefore,
targeting the OSM-p66Shc pathway may represent a novel
strategy to disconnect mobilopathy from myelopoiesis and
restore normal stem cell mobilization (51).

A large body of evidence indicates the implication of
microRNAs in stem cell senescence and vulnerability. We
have documented that DM remarkably alters the expression
of microRNAs implicated in the control of hematopoiesis
and vasculogenesis. In a cohort of subjects undergoing hip
replacement for arthrosis, we showed that DM downregulates
the microRNA-155 in BM HSCs, which results in induction of
HSC apoptosis via induction of the target gene Forkhead Box
O3a (FOXO3a) and cell cycle controllers p21 and p27kip1 (52).
P21 and p27kip1 inhibit cell cycle progression by binding to,
and inactivating, cyclin-dependent kinase complexes. Analysis
of cell cycle by flow cytometry confirmed that CD34pos cells
from diabetic BM are stalled at the G1 checkpoint and undergo
apoptosis with high frequency. Furthermore, we demonstrated
the upregulation of several anti-angiogenic microRNAs, such as
microRNA-15, 16, and 503, in circulating pro-angiogenic cells
from patients with ischemic complications (52, 53).

Of note, BM HSCs accumulate mutations during aging in
specific genes that lead to the generation of clonal leukocytes in
the peripheral blood harboring a 2% variant allele fraction. These
mutations occur in genes usually associated to acute myeloid
leukemia ormyelodysplastic syndrome but confer a low risk (0.5–
1% per year) of developing neoplasms. This condition in the
absence of morphological indication of a tumor is referred as
clonal hematopoiesis of indeterminate potential (CHIP). Since
CHIP carrier have an increased risk of all-cause mortality and
worsen heart failure estimated to be 40%, it is clear that this risk
factor will have to be taken into consideration in future patient
stratification strategies in the elderly (54–56).

Restoring BM Health in Vulnerable
Individuals
Evidence from our group and others have shown that age- and
DM-related BM stem cell dysfunction can be reversed by using
nutritional supplements and physical exercise, both interventions
exerting a salutary effect through a reduction in oxidative
stress and activation of pro-survival pathways (41, 49, 57). For
instance, both acute and regular exercise have been associated to
increase number of circulating progenitor cells via modulation
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of mobilizing factors such as the duo CXCL12/CXCR4, VEGF-
A, MMPs, and nitric oxide (57). Moreover, we demonstrated
the feasibility of reversing the BM pathology by dietary
supplementation of benfotiamine, a vitamin B1 analog and an
activator of the pentose phosphate pathway, which represents a
fundamental source of antioxidant equivalents and substrates for
DNA synthesis and repair. These interventions are more effective
if inserted in a preventive program. Therefore, recognition of
early stage of frailty is of pivotal importance to avoid residual
repair potential is exhausted, which may result in therapeutic
failure. We are currently exploring if the assessment of BM-
derived circulating proangiogenic cells could be a marker of
accruing cardiovascular frailty.

Caloric restriction has been reported the most powerful
intervention to retard aging and increase longevity in several
species. Studies in humans have confirmed the effect of caloric
restriction on the reduction of early signs of cardiovascular
diseases and cognitive decline (58, 59). Indeed, caloric intake
controls a broad range of functions and modifications of caloric
intake elicit several systemic and cellular responses, including
mitochondrial bioenergetics.

Although several signaling pathways have been associated
with the effect of caloric restriction on age-associated changes
and on longevity (e.g., AMPK pathway, IGF-1-like growth factor,
TOR, SIRT-1, among the most known), targeting these systems
did not recapitulate all the beneficial effects of diet pointing to
still unknown mechanisms (60).

It will be invaluable to determine if caloric restriction exerts
therapeutic benefits in frail patients.

FUTURE DIRECTIONS

The recognition of patients’ specificity for tailoring more
effective regenerative treatments opens new avenues to clinical

exploitation. This endeavor will be certainly helped by
concomitant advances in cardiovascular imaging and
mechanistic -omics investigation that will increase the current
knowledge that we have, at least in part, described in this
article. The enormous quantities of new data derived from these
approaches will require increased use of computing systems.
Artificial Intelligence is a technological tool capable of analyzing
and inter-linking voluminous data by scanning for appropriate
relationships. Companies are already training algorithms of
million clinical data points from images of coronary arteries
and creating intelligent platforms that can learn to detect
coronary artery disease using pattern recognition. A similar
approach uses coronary calcium scoring to predict a patient’s
risk. These platforms could be integrated with molecular data
on the regenerative potential of an individual leading to the
development of predictive models for personalized treatments
with pharmacological rejuvenation, or exogenous application of
engineered stem cells, therapeutic genes and regenerative tissue.
Less invasive surgical procedures will also be key to implant
advanced regenerative products improving the quality of life of
the very young and elderly.
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