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Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to

destructive changes in the connective tissue of the aortic wall. Aneurysm development

is silent and often first manifested by the drastic events of aortic dissection or rupture.

As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration

are absent, and the only available therapeutic recommendation is elective prophylactic

surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic

valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in

life. Although the pathophysiology of the increased aneurysm susceptibility is not known,

recent studies are suggestive of a transformation of aortic endothelium into a more

mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals.

This process involves the loss of endothelial cell features, resulting in junction instability

and enhanced vascular permeability of the ascending aorta that may lay the ground

for increased aneurysm susceptibility. This finding differentiates and further emphasizes

the specific characteristics of aneurysm development in individuals with a bicuspid aortic

valve (BAV). This review discusses the possibility of a developmental fate shared between

the aortic endothelium and aortic valves. It further speculates about the impact of aortic

endothelium phenotypic shift on aneurysm development in individuals with a BAV and

revisits previous studies in the light of the new findings.

Keywords: bicuspid aortc valve, aneurysm, endothelial to mesenchymal transition (EndMT), ascending aorta,

endothelial cell (EC)

INTRODUCTION

Thoracic aortic aneurysm (TAA) is a potentially deadly disease associated with progressive
expansion and degeneration of the aorta. One of the highest risk factors for developing TAA is
the possession of a bicuspid aortic valve (BAV) instead of the normal tricuspid aortic valve (TAV).
BAV is the most common congenital cardiac disorder, more frequent in males and Caucasians
and has a prevalence of 0.5–2% in the human population (1). Importantly, individuals with a BAV
have an 80 times increased risk of developing aortic aneurysm compared to the general population
(2). BAV is a complex disease with unknown etiology for the higher aneurysm susceptibility,
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and the importance of inheritance vs. exposure of ascending
aortas (AscA) to non-physiological hemodynamics is
currently debated.

The inheritance of BAV in human has been intensively
studied and is beyond the scope of this review. Briefly,
several genes i.e., NOTCH1, ACTA2, GATA4/5, NKX2.5, and
SMAD6 have been characterized in association with familial
non-syndromic BAV (1, 3–5). As yet, the high prevalence of
sporadic BAV is not compatible with the few characterized
genes for familial inheritance and this area of research is
still open for new findings. Regarding the influence of shear
stress, the last decade has witnessed a major breakthrough
in studying the non-physiological hemodynamics caused by a
BAV and its possible impact on AscA pathogenesis. Numerous
original research and review articles have been allocated to this
subject to which the interested readers can refer (6–12). With
increasing data obtained on non-physiological hemodynamic
of BAV patients, the common consensus emerging is that
both genetics and hemodynamics contribute to aortopathy
in BAV.

We and others have shown that ascending aortic aneurysm has
different etiologies in patients with BAV and TAV [e.g., (13, 14)].
A deeper insight into ongoing molecular processes in the AscA
prior to and after aneurysm manifestation is a prerequisite for
understanding and preventing aortic degeneration. Moreover,
discovering the inheritance of BAV aorthopathy, i.e., the
set of genetic and/or epigenetic alterations that leads to
AscA aneurysm coupled to a BAV, requires detailed cellular
and molecular knowledge of interactions between different
embryonic progenitors that act at the common window of
space and time to determine the fate of aortic valve and
AscA simultaneously.

Two recently published articles by us and others, showed
an alteration of intimal endothelium in aneurysmal (15) and
non-aneurysmal (16) BAV AscA to a more mesenchymal
phenotype and discussed the possible contribution of the
phenomenon endothelial mesenchymal transition (EndMT)
to the development of aneurysm in these patients. These,
and a number of other relevant observations, open up a
new avenue in the field of aneurysm. As is highlighted
in the title, this review will concentrate only on possible
mechanisms of induction and cellular/molecular impact of
the EndMT process on the higher susceptibility to develop
aneurysm in individuals with BAV. The second objective
is to explore if induction of this process in the intima and,
as we have observed and will discuss later in this review,
most probably also in the media, would clarify better the
differences in onset and extent of disease manifestation
and pathological changes induced by aneurysms in AscAs
of humans with a BAV. Hence, throughout this review
we use the term EndMT/EMT (epithelial mesenchymal
transition) to describe the result obtained from intima-media
of AscA and EndMT when observation is limited to the
endothelial layer. We hope this review will widen the scope
and add new dimensions and perspectives to the field of
aneurysm research.

EMBRYONIC DEVELOPMENT OF HEART:
RELATIONSHIPS BETWEEN AORTIC
VALVES AND ASCENDING AORTAS

To explore the possible connection between the formation of a
BAV and altered endothelial function in AscA, we should first
consider the developmental context within which the fate of
semilunar valves (aortic and pulmonic valves) and ascending
aortic endothelium is determined. This requires a short review
of the cardiac development and formation of cardiac cushion
or primordia of aortic valves from endocardium. In the coming
sections, we summarize a set of experiments done in transgenic
models that have aided us to gain a clearer picture of the
inter-connection between embryogenesis of aortic valves and
the AscA.

In the human embryo, the linear heart tube forms by
differentiation of cardiomyocytes within the primitive cardiac
mesoderm, termed the cardiac crescent, during the third week
of embryonic development (17). The heart tube is composed of
the inner lining/endocardium and an outer layer/myocardium,
separated by extracellular matrix known as cardiac jelly. Later
during gestation, the cardiac tube loops and elongates by the
addition of myocardium and mesenchymal tissues lying outside
the early heart; the second heart field (SHF) progenitors and
migrating cardiac neural crest cells (NCC). During looping, the
first manifestation of cardiac valve formation appears as the
expansion and swelling of the cardiac jelly in the atrioventricular
canal, and somewhat later in the outflow tract (OFT), form
the cardiac cushions via EndMT. Development and remodeling
of semilunar valves and OFT septation into the AscA and the
pulmonary trunk is accomplished by concerted interaction of
OFT cushion with NCC and SHF progenitors with the net
effect of complete separation of the systemic and pulmonary
circulation (14, 18–21).

The pioneering set of experiments performed by Jonathan
Epstein’s group (19, 22–24), provided a framework for explaining
the relationship between the morphogenesis of aortic valves
and AscA. According to this model, the development of the
aortic valve and primitive AscA is spatiotemporally related and
involves a coordinated signal exchange between endocardium,
SHF and NCC progenitors. Impaired function of each cardiac
progenitor influences the embryonic development of the other,
as well as the endocardia EndMT/EMT and cushion formation,
resulting in the formation of a BAV or other aortic valves
anomalies. One example of such interaction was shown
recently by formation of a BAV as a consequence of deletion
of an endothelial specific gene NOS3 in mice, manifesting
impaired distribution of NCC and SHF within the aortic valve
leaflets (21).

The model was further backed by experiments demonstrating
that proper formation and/or septation of the OFT into AscA
and pulmonary trunk was also tightly coupled to signals
generated from endocardial cushion and cardiac progenitors and
abolition of function in any of the involved compartment, SHF
(25, 26), NCC (27–29), or endocardium (30, 31) resulted in
defective aortic valve morphogenesis and/or septation of OFT.
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FIGURE 1 | Schematic representation of the endothelial to mesenchymal transition (EndMT) process. During EndMT, endothelial cells lose endothelial cell features

and acquire mesenchymal cell markers, resulting in junction instability, enhanced vascular permeability, and potentially cellular senescence. EndMT can be triggered

by various external factors and involves signaling pathways, such as TGF-β, WNT/β-catenin, FGFs and NOTCH that converge and induce the expression of EndMT

transcription factors ZEB1/2, Snail, Slug, and TWIST. EndMT/EMT may also be regulated by a number of microRNAs, the key microRNA family being miR-200 family

that acts by suppressing ZEB1 and ZEB2 mRNA expression by a negative feedback loop.

Nonetheless, to our knowledge, among all studies cited above,
only three (23, 25, 28) extended their observations to the
pathological changes of the AscA in connection to valve
anomalies, without any particular reference to the state of
aortic endothelium.

EndMT/EMT, A COMPLEX BIOLOGICAL
PROCESS ACTIVATED DURING NORMAL
PHYSIOLOGY AS WELL AS DURING
PATHOLOGICAL CONDITIONS

Epithelial mesenchymal transition (EMT) is one of the most
studied biological processes due to its fundamental role
in the onset of cancer metastasis. EMT program induces
epithelial cells to lose their adhesion, polarity and cell-
cell junctions, restructure their cytoskeleton and become
more invasive and motile i.e., acquire “mesenchymal” state
(see Figure 1). However, EMT is also essential for normal
physiological processes such as embryogenesis or wound
healing, but may be aberrantly reactivated in pathological
conditions (32, 33). EndMT, a specific form of EMT originally
discovered in endocardium during cardiac development (34),
shares many similarities with EMT and is activated during
similar biological processes and diseases (35–37). EndMT/EMT
can also be induced in response to certain environmental
changes such as oxidative stress, inflammation, or hemodynamic
changes (38). Several signaling pathways with major roles in
embryogenesis such as, NOTCH, TGFβ, WNT, FGF, EGF,
are also regulators of the EndMT/EMT program (33, 39).
Although several transcription factors monitor EndMT/EMT,
five of them, e.g., ZEB1/ZEB2, SNAI1/SNAI2, and TWIST

TABLE 1 | Occurrence and outcome of the different EndMT/EMT subtypes.

Subtype I II III

Biological context Embryogenesis Tissue repair Metastasis

Cell type produced Mesenchymal cells Fibroblasts Tumor cells

are considered to be the key factors for activation of
EndMT/EMT (40, 41).

Disruption of cell junctions is central to EndMT/EMT and
that is achieved partly by transcription regulation of the junction
proteins and partly by modification, turnover and degradation
of junction proteins via endocytosis (42, 43). An early event
in EndMT/EMT is the regulation of Cadherin superfamily
expression, for instance downregulation of E-cadherin/VE-
cadherin (CDH1/CDH5) in EMT and EndMT respectively,
and upregulation of N-cadherin also known as mesenchymal
cadherin (CDH2) (44, 45). Depending on the biological context
and the outcome, EndMT/EMT is divided into three subtypes.
Type I, which is activated during embryogenesis producing
mesenchymal cells, Type II, occurring during tissue repair
producing fibroblasts, and Type III, producing tumor cells
activated during the metastatic propagation of cancers (33, 46)
(Table 1).

Like many other biological processes, EndMT/EMT is
regulated by a number of microRNAs (47). One of the key
microRNA families governing this process is miR-200 family that
acts by suppression of ZEB1 and ZEB2 mRNA expression by a
negative feedback loop, thereby coordinating EndMT/EMT with
Cadherin expression (48, 49).
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ALTERED ENDOTHELIAL FUNCTION AND
ASCENDING AORTIC ANEURYSMS: AN
END TO SMC-ONLY DOGMA?

In spite of ample evidence presented for the role of endothelium
in regulating the development, remodeling and functional
integrity of vascular smooth muscle cells (VSMCs) (50–52), the
aortic media has been in the center of attention in the aneurysm
community. However, in late years, the involvement of the intima
in aneurysm development has been brought into focus (53–55),
which may be particularly interesting in the case of patients
with BAV considering the numerous patient-based studies
demonstrating exposure of non-physiological hemodynamic
forces to the BAV AscA. One of the first experimental indications
of endothelium involvement in aneurysm was the pioneering
experiment with the Angiotensin II (ANGII)–infusion mice
model where cell specific deletion of ANGII receptor, AT1a, in
endothelial cells (EC) could attenuate ascending aortic aneurysm
(56). Interestingly, the EC-specific transgenes showed structural
reorganization of aortic media emblematic of aneurysm, arguing
that the signals initiated in endothelium could induce aneurysm
and accompanying pathological changes in the SMC. In a review
article published 2013 (57), we discussed the intimal EC response
to shear stress and the mechanisms by which this response could
be relayed to and induce the pathological changes observed in
media of AscAs in BAV aneurysmal patients. Furthermore, a
recent and excellent review discusses the role of the endothelium
and the potential mechanisms by which it influences the media
layer in relation to the development of BAV-associated TAA, but
with no focus on the EndMT/EMT process (58).

CAN CHANGES IN
ENDOTHELIAL/ENDOCARDIAL
FUNCTIONS THAT GIVE RISE TO A BAV
ALSO INFLUENCE THE DEVELOPMENTAL
PROGRAM OF ASCENDING AORTA?

The crucial role of cells with endothelial/endocardium origin in
the morphogenesis of aortic valve and OFT have been established
by numerous experimental studies in transgenic animals (59–65)
(Table 2).

Several animal models with either a mutated endothelial
specific gene or EC specific gene mutations were shown to
develop progenies with BAVs. Mice deleted for endothelial
specific nitric oxide synthase (eNOS the product of NOS3
gene) gave rise to 40% progeny with a BAV (66). Laforest et
al. (67) were the first to propose that aberrant EC migration
and differentiation was associated with the formation of a
BAV in GATA5−/−mice mutants with 25% BAV progeny. EC-
specific GATA5 deletion also resulted in mice progeny with
a BAV, and GATA5−/− offspring with BAV had significantly
lower expression of endothelial specific markers, CDH5 and
TIE2, as well as decreased expression of eNOS in their left
ventricles and OFT in comparison to the wildtype, indicative of
altered endothelial function reminiscent of ROBO4 mutations in

TABLE 2 | Selection of transgenic mice studies analyzing the effect of certain

mutations on aortic valve formation and integrity.

Mutation Phenotype References

Nos3−/− 27% (15/55) of Nos3−/−embryos

with BAV

(21)

Nos3−/− 40% (5/12) of mature Nos3−/−mice

with BAV

(66)

Gata5−/− 25% (7/28) of Gata5−/−mice with

BAV

(67)

Endothelial cell-specific

Gata5−/−

21% (3/14) of mice with BAV (67)

Endocardial

lineage-specific Brg1−/−

Heart defects, semilunar valve

malformations, BAV (3/6 at E16.5)

(68)

Endothelium-specific

Gata4−/−

Diverse malformations affecting

processes leading to valve

formation

(69)

Deletion of Vangl2 in SHF Abnormal valve leaflets (70)

Robo1−/− Membranous ventricular septal

defects (6/10 at E14.5)

(71)

Robo1−/−;Robo1−/− Membranous ventricular septal

defects (3/3 at E14.5), BAV (3/3 at

E18.5)

(71)

Slit2−/− Membranous ventricular septal

defects (2/6 at E14.5), BAV (1/7 at

E18.5)

(71)

Slit3−/− Membranous ventricular septal

defects (2/5 at E14.5)

(71)

Robo4−/− Aortic valve defects (7/7), aortic

aneurysm

(15)

BAV, bicuspid aortic valve; SHF, second heart field.

human BAV (see below). Unfortunately, neither of these studies
addressed the extent or existence of concomitant aorthopathy
or the status of AscA intima. Nonetheless, EC-specificity of
NOS3 together with the fact that GATA5 is restricted mostly
to the endocardium, disappears at mid gestation stage, and is
required for early differentiation of cardiac progenitors into
endothelial/endocardial cells (72) hints to a connection between
BAV phenotype and disturbed endothelial function.

The association between functional integrity of AscA
endothelium, inheritance of a BAV, and development of
aneurysm has now been experimentally demonstrated in a
newly published report (15). In this study, the association
of heterozygous mutation of ROBO4, a gene important for
vascular integrity by regulating endothelial barrier function (73),
with non-syndromic familial inheritance of human BAV was
established. Histological examination of sections from AscA
of a patient with heterozygote mutation of ROBO4 and AscA
aneurysm compared to control individual with matching age
and sex demonstrated decreased intimal expression of ROBO4,
increased fibro-proliferative phenotype of intima and sub-intimal
region, and disrupted endothelial barrier function as judged
by albumin staining. Treatment of human aortic ECs with
siRNA against ROBO4 or expression of a mutant variant in
the presence of inhibited endogenous ROBO4 resulted in loss
of endothelial barrier function accompanied by downregulation
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of EC-adherence junction cadherin, CDH5, and tight junction
component TJP1 at mRNA and protein levels and transformation
of these cells to a mesenchymal state. Moreover, a direct
involvement of SLIT-ROBO signaling in the formation of cardiac
cushion and inheritance of BAV has been shown (71), and
expression of ROBO4 in the endothelium of the aortic valve
and proximal AscA was shown to persist throughout the mice
postnatal life (15). Loss of function mutations of ROBO4 in mice
revealed thickened aortic valves with or without BAV and in some
cases, AscA aneurysm. These animals showed low penetrance
andmale predominance characteristic of human BAV (15). These
observations nicely tied the inheritance of BAV and aneurysm
of AscA to EC breakdown of barrier function and acquisition of
mesenchymal state.

Changes in endothelial barrier function is most probably
only limited to the proximal AscA in BAV patients and should
have resulted from the impaired interaction between cardiac
progenitors at the point where the common fate of aortic valve
and AscA is determined. In line with that, using lineage tracing
of specific markers of SHF mesenchyme showed that these
progenitors could give rise to both SMC and endothelium of OFT
(31, 64, 74) and the SHF specific markers could be traced both
in the endocardium and endothelium of the developing AscA
(75, 76), implying close developmental ties between these tissues
in early embryogenesis. Indeed, it is thus likely that the impaired
interaction also alters the VSMC population in the BAV aorta,
rendering it more sensitive to TAA development.

IMPAIRED MESENCHYMAL BOUNDARIES
DURING DEVELOPMENT AND ITS
CONSEQUENCES FOR FORMATION OF
BAV AND ASSOCIATED AORTOPATHY

During the development of aortic valves and OFT, there is a
defined boundary for mesenchyme produced by endocardium,
NCC and SHF progenitors (77). A defective mesenchyme
production by each could be compensated for by the extension
of other compartments into the segment that was not their
normal niche. This change of mesenchymal boundaries and
compensation by others has been shown to give rise to abnormal
formation of aortic valves and septation of OFT (21, 31, 78, 79)
as well as progenies with BAV (21, 68). Normally, the AscA is
populated by a mosaic of SMCs arising from SHF mesoderm
and migrating cardiac NCC, and recently, it was demonstrated
in mice that NCC stemmed SMCs reside in areas close to intima
and SHF generated SMC lie closer to the adventitia (76, 80).
One possibility is thus that the impaired signal exchange between
cardiac progenitors during development of aortic valves andOFT
affects the distal OFT in such a way that a higher proportion
of cardiac NCC populate the AscAs in BAV, filling some of the
territory normally occupied by SMC of SHF origin.

One line of evidence supporting this hypothesis is the link
between cancer cells and embryonic neural cells. Inhibition of a
few chromatin modification enzymes in several cancer cell lines
resulted in the loss of malignant features and differentiation to
neuron-like cells. Further, a major part of mesenchymal marker

genes activated during cancer promotion were only expressed in
embryonic neural cells, including NCC, and not in other types
of embryonic cells suggestive of a common regulatory network
between tumorigenesis and neural development (81). If aortic
media has a higher content of SMC with NCC origin in BAV,
the appearance of EMT signals and cancer-related metabolic
pathways among differentially regulated pathways between BAV
and TAV is expected. In addition, the SMCs developed from
NCC are more ‘’immature” and proliferative and less contractile.
As the elastin deposition in arteries takes place during fetal
development, NCC-originated SMC may have different elastic
properties. Whether or not a diversion from normal proportions
of SMC could change the composition of collagen and elastic
fibers is not known. All these factors can contribute to increased
vulnerability of a cardinal vessel with high pressure function such
as aorta.

ENDOTHELIAL ABNORMALITY IN BAV
PATIENTS

Although it is almost impossible to disentangle the genetic from
hemodynamic causes, distortion of endothelial-related functions
in aneurysmal tissue of BAV patients has been described
in several patient-based studies. For example, circulating
endothelial progenitor cells as a marker of EC repair efficiency
were significantly lower in BAV compared to TAV patients
(82) as well as being lower in BAV patients with aortic
regurgitation or stenosis compared to functional BAVs (83). In
a study of male subjects of comparable age, systemic endothelial
dysfunction was reported in BAV patients with proximal aortic
dilation compared to non-dilated individuals with a BAV
(84). Using multivariate analysis comparing BAV and TAV
patients with dilated and non-dilated AscA, BAV morphology
turned out to be the main predictor of increased circulating
PECAM+ endothelial-specific microparticles, independent of
the type of cusp fusion or disease (31). Notably, circulating
PECAM+ microparticles were significantly decreased in patients
who underwent aortic valve surgery, establishing endothelial
damage in BAV individuals probably due to exposure to non-
physiological blood flow, although the possibility of an inherited
defect synergizing hemodynamic factors cannot be ruled out.
Several laboratories that focused on eNOS content in the AscA
reported a differential expression of eNOS between BAV and TAV
aneurysmal patients, both at transcriptional and translational
levels (85–88).

In a recent study, we provided cytological evidence for intimal
instability and induction of EndMT-like process in non-dilated
AscA of BAV patients due to downregulation and enhanced
protein turnover of VE-Cadherin (CDH5) in addition to
decreased expression of endothelial specific Claudin-5 (CLDN5).
Moreover, mRNA expression of N-cadherin (CDH2) increased
in dilated AscA of BAV patients compared to dilated AscA of
TAV patients (16). Further, we showed that alteration in cadherin
expression was accompanied by formation of pseudopodia and
stress fibers in endothelium of non-dilated BAV, which is a second
key hallmark of transition to a mesenchymal state.
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NON-PHYSIOLOGICAL SHEAR STRESS
AND INDUCTION OF EndMT/EMT

A pertinent issue to raise here is if the prenatal, as well as
lifelong exposure of BAV AscA to non-physiological flow, could
contribute to the induction of EndMT/EMT in AscA of adult
individuals. Using different set-ups, the influence of shear stress
on the induction of EndMT in EC have been studied (29, 89–
92). During embryonic development, subjecting the OFT to
increased hemodynamic load via banding was shown to enhance
the EndMT of the cardiac cushion in chicken embryos (93, 94).
Also, changes in blood flow by banding of thoracic aorta resulted
in enhanced EndMT/EMT in regions exposed to disturbed flow
in mice (29). Indeed, DNA methylation studies performed by us
further supported the notion that EndMT/EMT induction may
be partly due to the exposure of the AscA to disturbed flow.
Also, we further observed that the methylation signature in non-
dilated BAV aorta was significantly associated with a methylation
profile associated with oscillatory flow. Further, several key EMT
transcription factors, such as ZEB1, SNAI2 and TWIST1 became
hypomethylated in EC subjected to oscillatory flow indicating
their increased activity. In addition, BAV and TAV primary ECs
showed a different response to perturbed flow, with substantially
fewer genes changing their expression in BAV ECs, indicating an
impaired flow-response of BAV ECs.

In prenatal life, the exposure of cardiovascular system
to blood flow starts with the onset of the first heartbeat
and the early valve primordia has been shown to perform
functions that are equivalent to the mature valves of adult
heart (95, 96). For instance, ablation of NCC in quail embryos
resulted in malformation of the OFT endocardial cushion and
valves with consequent disturbed hemodynamic in OFT (31).
Hence, impaired EndMT during cushion formation causing the
formation of abnormal semilunar valves, would simultaneously
subject the primitive aorta to non-physiological hemodynamic
stresses at early stages of cardiogenesis. As hemodynamic factors
function hand in hand and in parallel to genetic factors from early
stages of OFTmorphogenesis, it is difficult to separate the relative
importance of each one for the induction of EndMT/EMT
in AscA.

CELL COMMUNICATION AND SMC
PHENOTYPE

Proper cell-cell communication between different arterial layers
is fundamental for vascular function and integrity. Intimal shear
stress and intimal/medial strain will be propagated to other
vascular layer, influencing structure and function. In response
to shear stress, EC-SMC communication can influence SMC
phenotype and proliferation (47, 50, 97–102) via mediators such
as microRNAs (31, 81, 103), gap junction (104), or activation of
certain signaling pathways through ligand receptor interaction
(105–108). Another possible route of cell-cell communication
is the inclusion of extra vesicular bodies by endocytosis that
can transfer molecular characteristics between different cell types
(109). Thus, a variety of molecular messengers are capable of

transferring the EndMT/EMT induced in one section to other
vascular compartments.

We have previously performed comparative studies on BAV
and TAV aortic intima-media specimen, from non-dilated or
dilated aortas, to investigate differences at genomic, proteomic
and epigenomic levels. First, by combining large-scale proteomic
pathway analysis on differentially-expressed proteins in non-
dilated aortas, we showed enrichment of genes belonging to
EMT, protein degradation and trafficking, cell junction dynamics,
apoptosis, cell cycle and cancer-related biological processes
(16). Second, to identify possible regulatory microRNAs (miRs)
underlying the observed protein signature, we combined
proteomic data with an in-silico network analysis approach (110).
This procedure identified the miR-200 family, known to be
important regulators of EndMT/EMT activity (48), as a key
modulator of the ongoing biological process that differs between
non-dilated BAV and TAV aorta. (48). Lastly, DNA methylation
studies further showed enrichment of EMT genes in non-dilated
AscA of BAV patients (111). Similarly, analysis of intima-media
in dilated AscA of BAV and TAV patients identified EMT as
the top GO term and several key transcription factors for EMT,
including ZEB1, SNAI2, and TWIST2, were hypomethylated in
dilated BAV aorta.

Collectively, these results, at the levels of mRNA expression,
proteomic, DNA methylation, and microRNA regulation
displayed an “EMT” signature in the aortic intima-media,
and a major consideration would be what EndMT/EMT-like
processes could mean for the state of medial SMC. One possible
explanation is the different proliferative capacity of aortic
SMC between BAV and TAV. Several upregulated proteins in
non-dilated aorta of BAV compared to TAV patients included
proteins associated with increased cell proliferation and invasion.
One clear example was Yes-Associated Protein 1 (YAP1) that has
been shown to regulate division and differentiation of VSMC
from cardiovascular progenitors (112, 113), particularly in NCC-
derived SMC (114). Furthermore, we documented significantly
higher expression of Ki67 protein in SMC nuclei of non-dilated
AscA of BAV patients (16). This result is in line with reported
‘’immaturity” of SMC in dilated and non-dilated AscAs of BAV
patients (14, 115). Compatible with that, an epigenetic study
of dilated AscA of BAV patients, found a strong and significant
non-CpG hypomethylation in aortic media that was interpreted
as high proliferative SMC in this region (116).

DOES REPAIR DEFICIENCY IN BAV
ASCENDING AORTA LEAD TO ANEURYSM
SUSCEPTIBILITY?

Repair deficiency may be due to genetically impaired production
or recruitment of stem/progenitor cells, and/or inefficient
induction of repair-promoting signaling pathways. In non-
regenerating adult tissues such as the aorta, the existence of
mechanisms that can instigate the terminally differentiated
VSMCs to resume proliferative cycle is vital for vascular repair. In
the past decade, reservoirs of different stem/progenitor cells that
can migrate and prime the vascular repair have been discovered
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(117) and the importance of functional stem/progenitor cells,
their number, and the maintained proliferative capacity in vessel
homeostasis have been discussed. Several different sources of
VSMC progenitors or stem cells that can dedifferentiate and
participate in repair and remodeling in physiological or disease
situations have been identified (118, 119). These cells either reside
within the adult VSMC tissues or reach the damaged VSMC via
circulation or migration from the neighboring tissues (117–119).
Adventitia, particularly in the aorta, has long been recognized as
a main niche for vascular progenitors. The source of progenitors
within adventitia is situated in the border area between the
outer media and inner adventitia within a region highly rich
in sonic hedgehog (SHH) signaling (119, 120). Nonetheless, in
several arteries including the aorta, a subset of adventitial stem
cells produced by fully differentiated residential VSMC has been
reported to migrate into the adventitia to enrich the adventitial
pool of vascular stem cells (58). One possibility for the higher
susceptibility of AscAs to aneurysm in individuals with a BAV is
an impaired function of the adventitia. Unfortunately, adventitia
in BAV has also been neglected by aneurysm researchers.
Studying adventitia, particularly the SHH rich region may be
relevant for high susceptibility to aneurysm in BAV patients.

Searching for markers of SMC immaturity, Roostalu et al.
(119) identified CD146/MCAM that was expressed by a small
sub-population of SMC in adult descending aortas at sub-
intimal regions and around aortic branch points and bifurcations,
which remained immature also in adult tissue. Interestingly, the
expression and activation of YAP1 protein, an inhibitor of VSMC
differentiation (112) and the regulator of CD146 transcription
(121), was also higher in these regions. This SMC sub-population
was shown to proliferate and perform arterial repair in the
case of minor injuries while severe injuries were repaired by
cells migrating from adventitia. Whether or not such a subset
of VSMC exists in human vs. mouse aorta and is populating
the branching points of coronary arteries or arteries stemming
from AscA or aortic arch is not clear. Nonetheless, we see
an upregulation of YAP1 protein in non-dilated AscA of BAV
patients (16) and gene expression analyses (13) revealed an
increase of CD146/MCAMmRNA in dilated vs. non-dilated BAV
AscA raising the possibility of increased immaturity in VSMC in
BAV resulted from dilation. A systematic study of the role and
regional distribution of CD146 expression and its relationship
to VSMC “immaturity” of AscA in BAV may further clarify
underlying mechanism of aortic dilation in BAV aortas.

PREMATURE AGING AND BAV
AORTOPATHY

One of the prime consequences of high proliferation of SMC and
repair deficiency is premature aging. In line with this, Grewal et
al. proposed that susceptibility to aneurysm in BAV was due to
the SMC immaturity while in TAV was due to inflammation and
enhanced aging (14, 115). This interpretation was questioned by
Forte and Della Corte who proposed “premature aging” instead
of immaturity being the cause of aortopathy in BAV (122). In
support of premature aging, significantly shorter telomere length

and lower wound healing capacity of aneurysmal SMC isolated
from BAV as compared to control donors and TAV was reported
(123). The two interpretations may not be mutually exclusive
and induction of EndMT/EMT in BAV aorta can reconcile and
encompass both proposals.

Aging and senescence are not equivalent and while aging
organisms accumulate senescent cells, senescence can function
as a response to a variety of stress situations unrelated to
aging. Telomere shortening was originally believed to be the
major cause of cellular senescence. However, several other
inducers of senescence independent of telomere shortening
have lately been identified, including hypoxia, oncogene-induced
senescence, exposure to UV or gamma radiation, loss of tumor
suppressing genes and mitochondrial dysfunction (124–127).
Cellular senescence induced by telomere shortening is an
intrinsic part of cell cycle check point causing permanent growth
arrest and endowing the organism with tumor suppressive
activity. Relevantly, cellular senescence and EndMT/EMT have
both been considered as biological mechanisms guiding cancer
progression and metastasis and recent findings marks the
discovery of a cross talk between the two processes (128, 129).
An example of such a crosstalk in non-cancerous cells is the
induction of EndMT described for aging human aortic EC
(130). Moreover, activation of all key transcription factors of
the EndMT/EMT process has been reported in senescence (128,
129). ZEB1 has particularly been shown to be the link between
cellular senescence and EMT (50). Thus, the immaturity in
BAV can turn into premature senescence with all accompanying
consequences. Our collective data on differentially regulated
pathways between BAV and TAV i.e., hypoxia, oncogene-related
pathways such as WNT or MYC, and UV response may well be
due to premature senescence (16, 110, 111), giving support to the
possibility of EndMT/EMT conversion to senescence and aortic
degeneration in BAV. Compatible with shorter telomeres and
senescence-induced activation of cell cycle checkpoint, we also
observed significantly increased protein expression of the cyclin-
dependent kinase inhibitor P27 (the product ofCDKN1B gene) in
non-dilated BAVAscA (16). Exposure to disturbed flow is a factor
that can turn immaturity to premature aging. Indeed, disturbed
flow was shown to stimulate senescence in ECs in mouse models
and cell culture by a P53/P21-dependent mechanism (131).

CONCLUDING REMARKS

The underlying molecular mechanisms for the BAV-associated
aneurysm susceptibility remain to be elucidated. BAV patients
differ in the extent and onset of medial degeneration and
some individuals with a BAV may never develop aneurysm.
The notion of disturbed signal exchange between cardiac
progenitors causing distorted mesenchymal boundaries in
aortic walls has backing in transgene studies and provides a
molecular framework to explain some of these ambiguities.
An extensive population of less differentiated, less contractile
SMCs with NCC origin in the sub-intimal area of the aorta,
the dysfunctional intima, in addition to constant exposure
to non-physiological blood flow, subject the walls to a high
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risk. The degree of aortic susceptibility may depend on
the location of the boundary and the magnitude of NCC
contribution. Several different genes mentioned above, and
many more yet to be discovered, can influence the boundary
determination in OFT that can explain the difficulties of
identifying responsible factors in the inheritance of non-
familial BAVs.

Another level of complexity that may influence the disease
outcome is the EndMT/EMT program itself. Recently, the
process of EndMT/EMT has been revisited and it is currently
defined as a way to provide more “plasticity” to the tissue. To
perform that task, many EndMT/EMT transcription factors also
interact with or recruit epigenetic modifiers in addition to their
direct role in the regulation of transcription (41, 132). Moreover,
the notion of EndMT/EMT being a transition between two
alternative states of “epithelial” and “mesenchymal” have been
challenged and most studies point to the tissues remaining in
an intermediate state harboring both epithelial andmesenchymal
features (40, 41). This state is termed partial or intermediate
EndMT/EMT or “metastable” and can even become a final state
of the tissues in some disease cases (40, 41). In the case of cancer,
the existence of some pre-cancerous stem cells maintaining some,
but not all, of the genetic features of cancer cells, that can
be complemented and produce a fully transformed cell upon
epigenetic changes have been reported (132). To extrapolate these

ideas to aneurysm, the non-dilated aorta in BAV may be in a
“metastable” state of EndMT/EMT or using cancer terminology,
in a pre-cancerous state that may stay stable or be shifted
further to a more mesenchymal state and aortic dilation. This
is supported by the more aggravated EMT signature in dilation
of BAV reported by us. In addition, the extent of the shift could
depend on a spectrum of events such as cellular context, different
pathways and/or different transcription factors initiating the
transition, degree of epigenetic modifications, environmental
cues, individual genetic background, and a wide range of other
factors that may influence the outcome of aortic diseases.
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