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Transforming growth factor-β (TGF-β) is a common mediator of cancer progression and

fibrosis. Fibrosis can be a significant pathology in multiple organs, including the heart. In

this review, we explain how inhibitors of TGF-β signaling can work as antifibrotic therapy.

After cardiac injury, profibrotic mediators such as TGF-β, angiotensin II, and endothelin-1

simultaneously activate cardiac fibroblasts, resulting in fibroblast proliferation and

migration, deposition of extracellular matrix proteins, and myofibroblast differentiation,

which ultimately lead to the development of cardiac fibrosis. The consequences of fibrosis

include a wide range of cardiac disorders, including contractile dysfunction, distortion of

the cardiac structure, cardiac remodeling, and heart failure. Among various molecular

contributors, TGF-β and its signaling pathways which play a major role in carcinogenesis

are considered master fibrotic mediators. In fact, recently the inhibition of TGF-β signaling

pathways using small molecule inhibitors, antibodies, and gene deletion has shown that

the progression of several cancer types was suppressed. Therefore, inhibitors of TGF-β

signaling are promising targets for the treatment of tissue fibrosis and cancers. In this

review, we discuss the molecular mechanisms of TGF-β in the pathogenesis of cardiac

fibrosis and cancer. Wewill review recent in vitro and in vivo evidence regarding antifibrotic

and anticancer actions of TGF-β inhibitors. In addition, we also present available clinical

data on therapy based on inhibiting TGF-β signaling for the treatment of cancers and

cardiac fibrosis.

Keywords: anticancer, antifibrotic, cancer, cardiac fibrosis, inhibitors of TGF-β signaling, transforming growth

factor-β (TGF-β)

INTRODUCTION

Transforming growth factor-β (TGF-β) is a crucial member of the TGF-β superfamily and its
sophisticated signaling pathways have pleiotropic effects that regulate several systems throughout
the body such as cell growth, cell differentiation, apoptosis, motility and invasion, tissue
remodeling, angiogenesis, and the immune response (1–6). TGF-β signaling dysfunctions are
frequently found in tumors and these dysfunctions play critical roles in tumor progression (e.g.,
development and metastasis) (7–9). In addition, TGF-β is a major profibrotic mediator that plays
an important role in the development of fibrosis (10). Due to the significant implication of TGF-β
signaling in cancer as well as in fibrosis (Figure 1), drug research into treatments for cancer and
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FIGURE 1 | Effects of TGF-β on tissue fibrosis and cancer. ECM, extracellular matrix; TGF-β, transforming growth factor-beta-β.

fibrosis has aimed to develop various approaches to inhibit TGF-
β signaling. Thus, the number of lead compounds used either
in animal models or in clinical studies related to cancer and
fibrosis is currently growing. Targeting TGF-β signaling pathways
could be a novel therapeutic strategy to treat a variety of fibrotic
disorders and cancers.

The synthesis and secretion of TGF-β, including its activity,
is markedly increased in experimental models of fibrosis
and in patients with tissue fibrosis (e.g., liver, lung, kidney,
and heart). Fibrosis is an important pathophysiological
phenomenon in many tissues. It is characterized by
fibroblast activation and accumulation, an imbalance of
extracellular matrix (ECM) production and degradation,
and myofibroblast differentiation, which results in the
accumulation of fibrotic scar and tissue stiffness, leading to
distortions of organ architecture and function [Reviewed in
(11, 12)].

Among fibrotic conditions in various organs, cardiac fibrosis
is a major pathologic disorder associated with a great number
of cardiovascular diseases resulting from an excessive ECM
protein deposition in the heart [Reviewed in (11, 12)]. The
etiologies of cardiac fibrosis and myocardial stiffness are
multifactorially developed in response to multiple risk factors
(13, 14) include myocardial infarction (MI), hypertension
(15), diabetes (16, 17), aging (16), and excessive alcohol
consumptions (18, 19) leading to the excessive deposition of
ECM. After cardiac injury, alterations in ECM homeostasis,
the upregulation and release of growth factors and cytokines,
and differentiation of fibroblasts into myofibroblasts dynamically
modulate cardiac fibroblast characteristics and functions, leading
to myocardial fibrosis. Myocardial fibrosis is associated with
fibrotic scar formation, myocardial stiffness, and the progression
of heart failure (HF) (20–23). Treatment of HF and cardiac
fibrosis still has limited efficacy and currently there is no
drug approved for the treatment of cardiac fibrosis. The
main reason is that the underlying mechanism of fibrosis
is still unclear. However, cardiovascular diseases remain the

leading global cause of death (22, 23) and understanding the
pathogenesis of fibrotic myocardial remodeling is crucial to
identifying innovative treatment strategies for patients with
cardiac fibrosis.

In the heart, activation of cardiac fibroblasts mainly by TGF-
β leads to alterations in cardiac ECM and cardiac remodeling
that play a major role in the development and progression
of heart diseases (10, 22). A significant number of preclinical
and clinical studies have reported that inhibition of TGF-
β signaling pathways by various strategies exhibited potential
effectiveness for the treatment of cardiac fibrosis. Cancers
and fibrotic diseases share the most common pathologies
associated with the activity of TGF-β (1, 2). Here, we review
the molecular mechanisms and signaling pathways of TGF-β
and their effect on cancer and cardiac fibrosis, and we also
summarize the role of inhibition of TGF-β for anticancer and
antifibrotic therapies.

Introduction of Cancer
Cancer is defined as a collection of diseases relating to
atypical cell growth. In physiological process, new cells
can grow, divide, and replace senescent or damaged cells.
However, this systemically process fails when cancer develops
as aged or injured cells remain survive, together with a
proliferation of unneeded new cells. These unnecessary
cells can divide, spread, and invade nearby tissues without
stopping. Also, the harm cells can possibly travel through
the blood or lymph system to invade remote tissues. This
atypical cell growth and spreading is known as carcinogenesis
(24). Widespread and recognized theory of carcinogenesis
is the DNA mutations that disrupt the normal balance
between proliferation and cell death. Variants of inherited
genes and environmental factors might play a pivotal
role in DNA mutations. In addition, viruses containing
oncogenes are recently known as a trigger of cancer cell
growth (24).
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Therapeutic Targets for Treatment of Cancers
Treatment of cancers can be achieved using several strategies
such as surgery, radiation, and especially drugs. Chemotherapy
is a conventional treatment by using toxic drugs to kill cancer
cells. Beyond fast-growing cancer cells, traditional anticancer
drugs using for chemotherapy damage healthy cells that rapidly
grow and divide, leading to multiple adverse effects (25).
Newer drugs for the treatment of cancers were subsequently
developed for a preferable safety issue and prevailing therapeutic
efficacy (25). Hormonal therapy is another strategy to cease
the growth of cancer which required certain hormones. Due
to the blockade, undesired effects of anti-hormone drugs can
be seen depending on types of interfered hormone (26, 27).
Targeted therapy is a type of cancer treatment using drugs
targeting particular molecules required for the pathogenesis of
individual cancer. Nevertheless, treated cancer cells can gradually
resist to targeted therapy, and conventional chemotherapy might
be needed to be co-administered in the regimen for a better
outcome (28). Immunotherapy is a novel treatment method by
enhancing immune system for eradicating cancer cells. Despite
solely activated self-immune cells, overactive immunity against
cancer also influences healthy cells and tissues resulting in
various adverse effects (29). Described anticancer drug classes
and representative drugs among each class are demonstrated in
Table 1. However, in-depth review regarding mechanism of drug
action, clinical effectiveness, and safety profile of these anticancer
drugs are beyond our scope. Furthermore, it should be noted that
although anticancer drugs appears to be diverse and abundant,
we still need distinct agents to deal with innumerable types
of advanced cancers in clinical practice, especially multi-drug
resistant cancers (30). Therefore, in this review, we focus on the
role of TGF-β and its signaling on the treatment of cancer.

Introduction of Cardiac Fibrosis
Cardiac fibrosis is a pathological remodeling process following
cardiac injury, MI, and other heart diseases. Cardiac fibrosis
disrupts the communication and function of myocytes and non-
myocyte cells in the heart, leading to contractile dysfunction and
arrhythmia. Fibrosis also accelerates the remodeling processes
that exhibit detrimental effects on the heart (23, 31).

The imbalance between production and degradation of
interstitial ECM proteins leads to progressively increased cardiac
stiffness and diastolic dysfunction (23). Lines of existed evidence
demonstrates that the pathogenesis of diastolic dysfunction
caused by cardiac fibrosis (32, 33). In the fibrotic heart,
collagens mainly from activated myofibroblasts undergoes cross-
linking process contributing to the progression of diastolic
dysfunction and the restricted cardiac chamber compliance
(34, 35). In addition, ECM overproduction and deposition
between the layers of cardiac myocytes results in the disruption
of myocardial electrophysiological functions, which leads to
contractile dysfunction and an increased risk of cardiac
arrhythmia (36, 37). In fact, TGF-β induced cardiac fibrosis
is seriously involved in the pathogenesis of arrhythmia by
disturbing electrical signal conduction, leading to the generation
of re-entry circuits (10).

TABLE 1 | Available anticancer drug classes and representative drugs among

each class.

Classes Example sub-classes Representative drugs

Chemotherapy (25) Alkylating agents Cyclophosphamide,

cisplatin

Topoisomerase inhibitors Irinotecan, etoposide,

doxorubicin

Mitotic inhibitors Vincristine, paclitaxel

Anti-metabolites Methotrexate, cytarabine,

hydroxyurea

Others Bleomycin, L-asparaginase

Hormonal therapy

(26, 27)

GnRH analogs Buserelin, degarelix

Anti-androgens Cyproterone, flutamide

Aromatase inhibitors Aminoglutethimide,

anastrozole

SERMs Tamoxifen

Targeted therapy (28) Receptor tyrosine kinase

inhibitors

Erlotinib, gefitinib, lapatinib

Intracellular tyrosine kinase

inhibitors

Imatinib, nilotinib,

everolimus

Phenotype-directed

inhibitors

Rituximab, alemtuzumab

Ligand-receptor binding

inhibitors

Bevacizumab, cetuximab,

trastuzumab

Proteasome inhibitors Bortezomib

Immunotherapy (29) PRR agonists Imiquimod, mifamurtide

Checkpoint inhibitors Ipilimumab, nivolumab

Cytokines IFN-α, IFN-β

Cell-based

immunotherapies

Sipuleucel-T

GnRH, gonadotropin releasing hormone; IFN, interferon; PRR, pattern recognition

receptor; SERMs, selective estrogen receptor modulators.

Myofibroblasts
In the heart, cardiac fibroblasts can be transdifferentiated
into myofibroblasts with contractile, migratory, and secretory
properties (Figure 2). Myofibroblast is a key regulator that
accelerates the fibrotic response in many conditions associated
with HF. Regardless of the etiology of cardiac fibrosis,
myofibroblast transdifferentiation is a hallmark of the fibrotic
response in the heart [Reviewed in (20, 23)].

Myofibroblasts are the activated form of fibroblasts. They
overexpress α-smooth muscle actin (α-SMA) and contain
contractile bundles of actin filaments resembling the myofibrils
of smooth muscle cells and associated proteins organized
into prominent stress fibers (38). The incorporation of
α-SMA into contractile bundles is a major characteristic
of differentiated myofibroblasts and significantly increases
contractile function. Thus, α-SMA has been suggested to be
the most significant marker of myofibroblasts (39). Although
α-SMA is found in human myocardial scars, the other
structural ECM proteins such as collagens, vimentin, and
desmin are also present in fibrotic scars (40). Fibroblast
differentiation into myofibroblast is controlled by a variety
of growth factors and cytokines. Among them, TGF-β is
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FIGURE 2 | Myofibroblast differentiation and functions of myofibroblasts after cardiac injury. Ang II, angiotensin II; ET-1, endothelin-1; TGF-β, transforming growth

factor-β.

a strong inducer that stimulates myofibroblast formation
(Figure 2).

Fibroblasts are abundant in normal hearts and can
differentiate into myofibroblasts via profibrotic mediators
such as TGF-β (41, 42). This process suggests that the
activation of resident fibroblasts represents a major
source of myofibroblasts in hearts with fibrosis. In
addition, proliferating myofibroblasts are commonly
found in high numbers in the infracted area of the heart
(41, 42).

Following cardiac fibroblast activation, inflammatory cells
(e.g., macrophages, monocytes, and mast cells) infiltrate
the site of remodeling myocardium and secrete various
types of profibrotic mediators, including growth factors
and cytokines [Reviewed in (43)]. These mediators have
been found to promote myofibroblast formation, but the
most significant and common inducer is TGF-β (44). TGF-
β accelerates the differentiation of resident fibroblasts,
epithelial cells, and endothelial cells into myofibroblasts
(44). Thus, agents that inhibit myofibroblast differentiation
might provide a tool to prevent the maladaptive myocardial
remodeling that occurs in response to profibrotic stimuli and for
fibrosis prevention.

Overproduction of ECM Proteins
Alterations in ECM homeostasis, especially in terms of
ECM overproduction, lead to cardiac dysfunction. Several
mediators, including angiotensin II (Ang II), and TGF-β,
regulate ECM production by cardiac fibroblasts (45). In
response to cardiac injury, myocardial fibrosis results from an
imbalance of both ECM synthesis and degradation, leading
to an accumulation of collagen type I and III in the heart
(20, 23). Deposition of ECM proteins is significantly increased
in the hearts of patients with cardiac diseases (46). In
addition, the levels of cardiac fibrosis are associated with
cardiac dysfunction (46). Moreover, ECM deposition and
fibroblast activation contribute to the impairment of ventricular
compliance and filling due to increased ventricular stiffness
(20, 23). Furthermore, overproduction of ECM interrupts
the electrophysiological functions in the heart, leading to
arrhythmias (10).

Therapeutic Targets for Treatment of Cardiac Fibrosis
According to cardiac fibrosis is associated with cardiac
remodeling and is involved in the pathogenesis of HF, the
prevention and reversal of cardiac fibrosis is an important
therapeutic target for the treatment of HF. Numerous signaling
pathways, through a variety of profibrotic mediators (e.g., Ang
II, endothelin-1 [ET-1], and TGF-β), have been implicated
in the activation of cardiac fibroblasts and the development
of cardiac fibrosis. Modulation of these signaling pathways
using inhibitors is of great interest for the treatment and
prevention of cardiac fibrosis. Below, we summarize the update
and important roles of several agents that act against cardiac
fibrosis (Table 2). Although, both angiotensin converting enzyme
inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs)
have already demonstrated significant efficacy in reducing
cardiac fibrosis in human and animal models of HF, neither
ACEIs nor ARBs have been approved for the treatment of cardiac
fibrosis. Further studies are required to establish the molecular
mechanisms of ACEIs and ARBs not only for treatment but also
for reversal of fibrotic remodeling in HF.

TGF-β SIGNAL TRANSDUCTION

TGF-β is a member of the TGF-β superfamily, which is
comprised of TGF-β, bone morphogenetic proteins (BMPs),
growth differentiation factors (GDFs), activin and inhibin (65).
Members of this diversify superfamily are the pleiotropic
multifunctional polypeptides that play a role in a wide range
of physiological cellular activities such as growth, proliferation,
differentiation, and apoptosis (65). Among these polypeptides,
TGF-β has been proven to be one of the major factors driving
the fibrotic response in most organs (2). In mammals, there
are 3 isoforms of TGF-β: TGF-β1, TGF-β2, and TGF-β3. These
highly homologous polypeptides, encoded by various genes,
are synthesized, processed and regulated in a similar fashion.
However, these 3 isoforms are secreted by various types of cells
and signals through the same receptors, but they exhibit distinct
patterns of distribution in different tissues (3, 66). Even though
any isoform can be found in fibrotic tissues, the progression of
organ fibrosis, in particular cardiac fibrosis, is predominantly
attributed to TGF-β1 (67). To date, information on isoform-
specific activities of various isoforms of TGF-β in a specific
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TABLE 2 | Therapeutic targets/strategies for treatment of cardiac fibrosis.

Targets/Strategies Results References

Inhibitors of TGF-β and its signaling

pathway

Anti-TGF-β neutralizing antibody prevents myocardial fibrosis in pressure-overloaded hearts (47)

Blockade of TGF-β-activated kinase 1 (TAK1) inhibits TGF-β-mediated extracellular matrix (ECM)

overproduction in cardiac fibroblasts

(48)

Inhibition of p38-MAPK suppresses TGF-β-induced myofibroblast activation and ECM production (49)

TβRI (ALK5) inhibitors ALK5 inhibition attenuates cardiac dysfunction and remodeling after myocardial infarction (MI) (50)

SM16 (ALK5 inhibitor) attenuates progression of cardiac fibrosis in left ventricular (LV) pressure overload (51)

TβRII inhibitors Dominant negative mutant of TβRII inhibits interstitial fibrosis in pressure-overload hearts (52)

Smad inhibitors Halofuginone (Smad3 inhibitor) attenuates radiation-induced fibrosis (53)

Angiotensin converting enzyme

inhibitors/angiotensin II receptor

blockers (ACEIs/ARBs)

Losartan inhibits the progression of cardiac hypertrophy and fibrosis (54)

Lisinopril improves cardiac function and attenuates fibrosis in patients with hypertension and hypertrophy (55)

Losartan reduces angiotensin II (Ang II)-induced collagen synthesis and fibroblast activation (56)

Endothelin receptor (ETR) antagonists Bosentan improves cardiac function and reduces infarct size in a rat model of ischemia/reperfusion injury (57)

ETAR antagonists prevented cardiac fibrosis in hypertensive-induced rats (58)

Adenosine receptor (AR) agonists Stimulation of A2BR attenuates fibrosis and remodeling in a rat model of MI (59)

Stimulation of A2BR inhibits ET-1-induced fibroblast proliferation and α-SMA synthesis (60)

Stimulation of A2BR inhibits Ang II-induced collagen synthesis and myofibroblast differentiation (61)

β-Adrenergic receptor (βAR) signaling Blockade of βAR attenuates cardiac fibrosis in an animal model of heart failure (HF) (62)

Gene deletion of GRK2 enhances survival, improves contractility, and inhibits cardiac remodeling in a

mouse model of post-MI

(63)

Treatment with β-blockers (e.g., atenolol, metoprolol, and propranolol) blocked the effects of

βAR-mediated fibroblast activation

(64)

pathology is lacking and needs further investigation. Next, the
signaling of TGF-β, excluding conclusions regarding specific
isoforms, is discussed in detail.

The synthesis, release, and activation of TGF-β is a complex
process (Figure 3). Following intracellular biosynthesis, a dimer
of TGF-β is secreted as an inactive protein complex (latent
TGF-β), which is retained in the ECM. Active TGF-β1 can
be liberated from ECM by multiple activators such as reactive
oxygen species (ROS), plasmin, thrombospondin-1, and αvβ6
integrin (68). Once active TGF-β is released from ECM, it binds
to transmembrane TGF-β receptor type II (TβRII) of a target cell.
This receptor-ligand interaction induces serine/threonine kinase
activity of TβRII for autophosphorylation (69). The canonical
pathway of TGF-β signaling is initiated after phosphorylated
TβRII forms a stable heteromeric complex with TGF-β receptor
type I (TβRI), also known as activin receptor-like kinase 5
(ALK5), for the transphosphorylation of residual phosphate
to TβRI (70). This receptor binding complex, which is a
heterotetrameric combination between two molecules of TβRII
and another two of TβRI, recruits and phosphorylates the
downstream signaling proteins Smad2 or Smad3, which are
called receptor-activated Smads. After phosphorylation, Smad2
or Smad3 is released and forms an intracellular complex
with Smad4, the mediator Smad. This intracellular complex
between Smad2/4 or Smad3/4 moves from the cytoplasm
into the nucleus, where it binds to promoter regions of the
genes involved in physiological process of induction of specific
gene expression (71). For an example of fibrogenesis, gene

encoding α-SMA, collagens, and fibronectin are significantly
upregulated via the Smad3-dependent pathway (72). The
expression of these fibrosis-related genes plays a pivotal role
in the cellular transdifferentiation that generates myofibroblasts
and the production/deposition of ECM by myofibroblasts in
fibrotic tissue (72). In addition to fibrogenesis, the Smad-
mediated signaling pathway is also a significant intracellular
process activated by TGF-β that increases genes associated
with carcinogenesis (73). Furthermore, the activation of TGF-β
signaling results in the expression of Smad7, an inhibitory SMAD,
which acts as a negative regulator by interacting with Smad2 or
Smad3, thereby mitigating signaling through receptor-activated
Smads and further decreasing TGF-β actions (74).

Beyond canonical pathways or Smad-mediated signaling,
TGF-β might mediate signaling directly by activating kinase
enzymes via non-Smad signaling pathways, which are also
known as non-canonical pathways (Figure 4). The non-Smad
signaling pathways are initially propagated by either or both
phosphorylated TβRI and TβRII for modulating downstream
cellular responses. It has been reported that crosstalk between
canonical and non-canonical pathways appeared to occur in
most TGF-β-mediated effects (75). Epithelial-to-mesenchymal
transition (EMT) plays a significant role in the pathogenesis
of cancer. In part, this process requires an activation of ERK
by TGF-β to upregulate the genes involving in remodeling
of cell-matrix adhesion, thereby promoting the motility of
the transformed cells (76). Also, EMT might be induced
by TGF-β via both TβRI and TβRII through the activation
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FIGURE 3 | Synthesis, release, and activation of TGF-β signaling via the canonical pathway. ALK5, activin receptor-like kinase 5; ECM, extracellular matrix; EMT,

epithelial-to-mesenchymal transition; EndMT, endothelial-to-mesenchymal transition; TβRI, TGF-β receptor type I; TβRII, TGF-β receptor type II.

of TNF receptor-associated factor 6 (TRAF6). TRAF6 is
capable of recruiting TGF-β-activated kinase 1 (TAK1) to
subsequently allow the activation of c-Jun amino terminal
kinase (JNK) and p38 mitogen-activated protein kinase (p38-
MAPK) (77). In addition, the TRAF6-TAK1-JNK/p38 pathway
is believed to be an essential pathway for TGF-β-induced
apoptosis (78). Similar to the ERK and JNK/p38-MAPK
pathway, the Ras homolog gene family member A (RhoA)
is also a signaling mediator of EMT. TGF-β-induce RhoA
degradation by phosphorylating partitioning-defective 6 (Par6),
which subsequently recruits Smad-specific E3 ubiquitin protein
ligase (Smurf1) to loosen tight junctions and rearrange
the actin cytoskeleton, a prerequisite step for EMT (79).
Another non-Smad signaling pathway contributing to TGF-β-
promoted EMT is the phosphoinositide 3-kinase (PI3K)/Akt
(protein kinase B) pathway, which subsequently activates the
mammalian target of rapamycin (mTOR) and phosphorylation
of S6 kinase (S6K) (80, 81). In addition, TGF-β1 signaling
can be regulated at the post-transcriptional level via the
expression of microRNAs (miRNAs), and the expression
of miRNAs might play a role in TGF-β1-mediated EMT
also (82).

TGF-β Signaling in the Development of
Cancers
For the ultimate outcome of TGF-β-mediated responses in
any pathological condition, it is apparent that a combination
of canonical and non-canonical pathways are coordinated (1).
Cancers and fibrotic diseases are the most common pathologies
associated with the activity of TGF-β. Currently, most putative

drugs affecting TGF-β for the treatment of cardiac fibrosis were
initially developed for the management of cancer; therefore, we
next discuss the signaling of TGF-β in carcinogenesis.

In the pathogenesis of cancer, TGF-β acts as a tumor
suppressor in early stages of the disease. However, in later stages,
TGF-β turns into a tumor promoter. This paradoxical role of
TGF-β is due to a bypass of the cytostatic effect of TGF-β
in tumor cells (4). The tumor suppressive effect of TGF-β is
derived from various cellular effects. TGF-β stabilizes the cell
cycle of epithelial cells by upregulatingmultiple cyclin-dependent
kinases: p15, p21, and p27, via the canonical pathway (83).
Also, via the Smad-dependent pathway, TGF-β downregulates
genes associated with cell proliferation, such as c-Myc (84).
In addition, the canonical pathway contributes to the tumor
suppressive effects of TGF-β by inducing gene encoding B-
cell lymphoma 2 (BCL2) and subsequently activating BIM for
apoptotic processes in human B cells (85). Conversely, non-
canonical pathways might mediate the apoptotic effect of TGF-β
by inducing caspase-8 expression and activating BID in human
gastric carcinoma cells (86). The difference in signaling of TGF-β-
mediated apoptosis indicates that the cellular context is essential
for controlling the main pathway in the tumor suppressive
effects of TGF-β. The tumor promoting effects of TGF-β such as
EMT, invasion, metastasis, and angiogenesis emerge when cancer
progresses to a later stage (5, 87). The upregulation of miR-106b-
25 cluster targets Smad7 to ameliorate the TGF-β signaling that
is not generally found in normal tissues is an excellent example
of this phenomenon. In human breast cancer, increased miR-
106b-25 leads to the inhibition of tumor suppressive protein
p21 and BIM, thereby allowing tumor cells to grow via the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 March 2020 | Volume 7 | Article 34

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Parichatikanond et al. Inhibitors of TGF-β for Anticancers and Antifibrotics

FIGURE 4 | Signaling via the non-canonical pathway of TGF-β. AKT, protein kinase B; ALK5, activin receptor-like kinase 5; EMT, epithelial to mesenchymal transition;

ERK, extracellular signal-regulated kinase; JNK, c-Jun amino terminal kinase; MEK, mitogen-activated protein kinase kinase; mTOR, mammalian target of rapamycin;

Par6, partitioning-defective 6; PI3K, phosphoinositide 3-kinase; p38, p38 mitogen-activated protein kinase; Raf, Raf proto-oncogene serine/threonine-protein kinase;

Ras, Ras GTPase; RhoA, Ras homolog gene family member A; Smurf1, SMAD specific E3 ubiquitin protein ligase; S6K, phosphorylation of S6 kinase; TAK1,

TGF-β-activated kinase 1; TRAF6, tumor necrosis factor receptor-associated factor 6; TβRI, TGF-β receptor type I; TβRII, TGF-β receptor type II.

activation of TGF-β (88). Interestingly, TGF-β also regulates the
functions of various immune cells, including the modulation
of cytokines released from these cells. Impairment of TGF-β
signaling pathways leads to immune dysregulation, fibrosis, and
cancer [Reviewed in (7)]. TGF-β is produced as a complex with
latency associated peptide (LAP). This complex associates with
ECM by binding to latent TGF-β binding protein (LTBP) or
glycoprotein A repetitions predominant (GARP) expressed on
T cells, especially on Tregs, or platelets. Integrins bind to the
complex and stimulate the release of TGF-β from the complex.
The release of active TGF-β promotes oncogenesis and immune
tolerance in breast cancer (89). Inhibition of αvβ8 integrins
potentiates cytotoxic T cell responses and recruitment of immune
cells to tumor centers. Cancer cells can evade host immunity
by mobilizing active TGF-β1 through αvβ8 integrins (90). Thus,
TGF-β acts as a significant suppressor of immune responses
during tumor progression.

In general, tissue fibrosis is considered a main step
in triggering cancer development. An apparent example is
hepatocellular carcinoma, themost common form of liver cancer.
Cirrhosis, which is known as the end-stage of liver fibrosis,
occurs in most patients who ultimately develop hepatocellular
carcinoma (91). Interestingly, the progression of fibrosis to
cancer in the heart is rare. The low incidence of cardiac
cancer might be due to the fact that cardiac cells, in particular
cardiomyocytes, are fully differentiated cells. Moreover, the
regenerative capacity of cardiomyocytes is considered to be
negligibly low. Thus, cardiomyocytes appear to resist further
transformation and proliferation processes such as EMT in the
development of cancer (92). Accordingly, signaling of TGF-
β in fibrogenesis of the heart might not be identical to that
occurring in other organs where progressive fibrosis ultimately
develops cancers.

TGF-β Signaling in the Development of
Cardiac Fibrosis
During tissue injury, TGF-β expression is increased to play a
role in the tissue repair process and scar formation. In the
heart tissue following MI, TGF-β signaling plays an important
role in reparative, angiogenetic, and fibrotic responses by
modulating inflammation (93). Studies on mice and dogs have
revealed that TGF-β1 and TGF-β2 were upregulated in the
early phase after MI, and then TGF-β3 was increased in a
later stage post-infarction myocardium (94). Among various
cells that release TGF-β, a significant amount of TGF-β might
be released from infiltrated macrophages that migrate to the
injured area to engulf the damaged cardiomyocytes, as shown
in a mouse model (95). On the other hand, a study using a
porcine model of chronic coronary constriction revealed that
cardiomyocytes were a significant source of TGF-β (96). Another
study suggested that TGF-β was found in the extracellular
fluid of ischemic canine myocardium tissue (97). Multiple
pathways involving integrins and thrombospondin-1 were found
to be associated with the release of TGF-β from the cardiac
ECM-bound TGF-β (98, 99). Following the release of active
TGF-β, TGF-β binds to the receptors, as described earlier,
to activate intracellular responses in the infarcted tissue. The
TGF-β-mediated effects can be classified into 4 actions in the
following order: cardiomyocyte survival, immune cell-related
action, formation of myofibroblasts, and production/deposition
of ECM, all of which modulate the effects on myocardial
endothelial cells.

TGF-β-mediated effects on cardiomyocyte survival in MI
appear to be dependent on the time period after MI. In
the early phase, exogenous TGF-β administered before or
immediately after ischemic injury to an isolated perfused
heart showed cardioprotective effects by reducing the amount
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of superoxide anions, maintaining coronary relaxation, and
reducing injurious responses of exogenous TNF-α (100).
Similarly, a study has shown that the infarct size of intact rat
hearts receiving TGF-β during early reperfusion was reduced,
and this reduction was due to activation of MAPK (101).
However, the mechanism underlying cardioprotection remains
poorly understood. Conversely, a proapoptotic effect of TGF-
β via interplay with Ang II was demonstrated in a study
using rat cardiomyocytes (102). The findings showed that the
actions of exogenous TGF-β are likely dependent on the timing
of administration.

Immune cells play a pivotal role in fibrogenesis, and TGF-
β regulates both the phenotype and function of the immune
cells. It is worth noting that TGF-β can be either a pro- or
anti-inflammatory mediator of the immune response in in vitro
studies [Reviewed in (93)]. Factors that determine the effects of
TGF-β include the types of cytokines and the origin of the tissue
(103). In an in vivo study, TGF-β suppressed T cell-mediated
inflammation in genetically modified mice with T cell-specific
loss of TβRII. Thus, the results from this in vivo study implicate
an immunosuppressive effect of TGF-β (104). Nevertheless, the
specific TGF-β-mediated effects on the phenotype of immune
cells, together with its signaling and significance in the regulation
of fibrosis, in the infarcted tissue remain unknown in the
infarcted tissue.

TGF-β-mediated effects on the formation of myofibroblasts
and on the induction of transformed myofibroblasts to further
produce/deposit ECM are currently recognized central to the
role of TGF-β in the pathogenesis of fibrosis. In cardiac
fibrosis, Smad3-deficient mice that underwent reperfused MI
showed significantly less fibroblast proliferation and ECM when
compared to those of wild-type mice (105, 106). Even though
the origin of the cells that underwent transformation has
been debated (107), a recent study using fibroblast-specific,
TGF-β signaling pathway knockout mice demonstrated that
myofibroblasts in cardiac fibrosis are derived from resident
fibroblasts, which activated via the TGF-β-Smad2/3 signaling
pathway (72). These results suggest that the canonical pathway
of TGF-β is principally involved in the pathogenesis of cardiac
fibrosis. Interestingly, it was found that the Smad3-dependent
pathway is essential for the upregulation of connective tissue
growth factor (CTGF), which in turn acts as a mediator
to stimulate fibroblast differentiation and collagen synthesis
(108). Beyond the formation of myofibroblasts, genes encoding
collagen type I and III were upregulated in cardiac fibroblasts
isolated from rabbit hearts following treatment with TGF-β
(109). The TAK1/p38-MAPK pathway in the cardiomyocytes
of non-infarcted myocardium was found to be activated in
rats after acute MI, suggesting a role for this non-canonical
pathway in ventricular hypertrophy and remodeling (110).
Nevertheless, the significance of Smad-independent pathways in
the transformation of cardiac fibroblasts appears to be less proven
than that of renal and pulmonary fibrosis (111, 112). Finally, a
study on TGF-β-overexpressed mice showed increase expression
of tissue inhibitors of matrix metalloproteinases (TIMPs), which
regulate the remodeling of ECM in the cardiac tissue. However,
the signaling of TGF-β was not evaluated in this study (113).

In addition to cardiomyocytes, immune cells, and transformed
myofibroblasts, vascular endothelial cells might also play an
important role in cardiac fibrosis. It has been found that
endothelial cells served as a source of chemokines and played
a role in recruiting neutrophils and monocytes to the heart
after MI (114). Interestingly, although TGF-β plays a role in
angiogenesis in cancers (8), information on the effects of TGF-
β on angiogenesis in infarcted myocardium is limited at present.
Moreover, although most cardiac myofibroblasts originate from
resident fibroblasts, a study has shown that endothelial cells
might be activated by the TGF-β via Smad3-dependent pathway
and transform into myofibroblasts, thereby inducing cardiac
fibrosis (115).

TGF-β INHIBITORS FOR THE TREATMENT
OF CANCERS AND CARDIAC FIBROSIS

Inhibitors of TGF-β Signaling for the
Treatment of Cancers
TGF-β suppresses cell proliferation leading to apoptosis in
the early phase of tumor development, whereas it aggravates
tumor invasion and metastasis via boosting immune escape,
angiogenesis, and EMT of tumors at an advanced stage (116).
The paradoxical impact of TGF-β signaling in various tumors
raises concerns that anti-TGF-β signaling might lead to a poor
prognosis due to its tumor suppressor role. This concern has
delayed progression in the development of TGF-β inhibitors
as therapeutic agents. In addition, some experimental models
have revealed that TβRI inhibitors aggravated the potential for
cardiotoxicity (117).

However, several potential approaches to interfering with
TGF-β signaling to prevent TGF-β production and block its
signaling pathway have emerged. Next, we summarize the results
of TGF-β inhibitors that have been studied in preclinical or
clinical trials on carcinogenesis. The studies can be mainly
categorized into 3 levels: (1) The ligand level: Direct blockage of
TGF-β ligand synthesis by antisense molecules; (2) The ligand-
receptor level: Inhibition of TGF-β ligand-receptor interaction
using monoclonal antibodies or soluble TGF-β decoy receptors
(traps); and (3) The intracellular level: Suppression of the TGF-β
signaling pathway by tyrosine kinase inhibitors that disturb the
downstream signaling of TGF-β related proteins (9, 118). The
examples of current therapeutic agents in preclinical and clinical
development in oncology are summarized in Tables 3, 4.

Trabedersen (AP12009)

Preclinical data

Trabedersen (AP12009, Antisense Pharma) is a synthetic, 18-
oligomer phosphorothioate antisense oligonucleotide (ASO). It
was developed as an ASO specifically targeting human TGF-
β2 mRNA, which leads to a reduction in TGF-β2 expression,
cellular proliferation, and cellular migration in various types of
tumors in vitro and in vivo, including gliomas (119), melanoma
(120), pancreatic carcinomas (121, 122), and colorectal cancer
(123). Trabedersen has been shown to reduce cell proliferation,
tumor growth, cell migration or metastasis, and vascularization
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TABLE 3 | Preclinical studies of TGF-β inhibitors for cancer treatment.

Agents Target Experiments/Models References

1. THE LIGAND LEVEL

Trabedersen (AP12009) TGF-β2 mRNA In vivo: patient-derived gliomas (119)

In vivo: induced melanoma tumor in mice (120)

In vitro: pancreatic carcinomas (121)

In vivo: human metastatic pancreatic cancer (122)

In vivo: human colon carcinomas (123)

2. THE LIGAND-RECEPTOR LEVEL

Soluble TβRII TβRII In vitro: human metastatic pancreatic cancer cells (124)

In vivo: patient-derived endometrial cancer (125)

Soluble TβRIII

(βglycan)

TβRIII In vivo: patient-derived tissue from renal cancer (126)

In vivo: patient-derived tissue non-small-cell lung carcinoma (127)

In vivo: human xenograft model of breast cancer (128)

3. THE INTRACELLULAR LEVEL

Galunisertib (LY2157299) TβRI In vivo: patient-derived pancreatic, lung, colorectal cancer (129)

In vivo: human ovarian cancer in nude mice (130)

In vitro: hepatocellular carcinoma cells (131–133)

Vactosertib

(EW-7197)

TβRI In vivo: lung metastases from breast cancer mice or transgenic MMTV/cNeu

mice

(134)

EW-7195 TβRI In vivo: lung metastases from breast cancer mice (135)

LY2109761 TβRI/II In vivo: metastatic colorectal cancer (136)

In vivo: metastatic hepatocellular carcinoma (137)

SD208 TβRI In vivo: metastatic breast cancer (138)

In vivo: metastatic pancreatic cancer (139)

in human pancreatic cancer cells and in mouse model of human
metastatic pancreatic cancer (122).

Clinical data

After several preclinical studies provided evidence of potential
clinical efficacy, trabedersen was moved to phase I/II trials in
patients with recurrent high-grade gliomas (119, 140, 149).
Trabedersen was initially assessed for its safety and efficacy
in phase I/II dose escalation studies in patients with high-
grade gliomas and found a significant increase of median
survival time after recurrence, exceeding that of standard
chemotherapy (149). Similarly, prolonged survival and high
response rates after treatment with trabedersen were observed
in phase I/II studies in patients with recurrent or refractory
malignant glioma, WHO grade III or IV (119). However,
trabedersen was further compared with standard chemotherapy
(temozolomide or procarbazine/lomustine/vincristine) in
patients with recurrent or refractory malignant glioma
(WHO grade III or IV) in a phase IIb trial. The results
revealed that trabedersen did not control tumor growth, but
delayed responses were observed after discontinuation of
treatment (140).

Belagenpumatucel-L Vaccine
The principle of anti-TGF-β cancer vaccines is to deliver
antisense molecules of TGF-β into cancer cells and overturn
the effects of immunosuppression in host cells, as well as
to enhance antitumor immunity (9). Belagenpneumatucel–L

(Lucanix, NovaRx) is a TGF-β2, antisense, gene-modified
non-viral based allogenic tumor cell vaccine. It was
developed from non-small cell lung cancer (NSCLC) and
modified to express ASO, which leads to suppression of the
immunosuppressive activity implicit in TGF-β2 overexpressing
cancer cells (141).

Clinical data

Currently, an anti-TGF-β cancer vaccine, belagenpumatucel-L,
has entered a phase III study to determine whether it improves
overall survival (OS) andmight be useful for stimulating immune
reactions. A dose-related survival difference was achieved in
patients who received belagenpumatucel-L at least 2.5 × 107

cells/injection in a phase II trial involving patients with stages II,
III, and IV NSCLC. Moreover, immune function measurements
revealed an increase in cytokine production, including IFN-γ,
IL-6, and IL-4, among clinical responders, who also displayed
an elevated antibody-mediated response to the vaccine human
leukocyte antigens (HLAs) (141). Likewise, a further study to
evaluate its safety and response at the previously defined optimal
dose found the median survival of patients with fewer than
2 circulating tumor cells (CTCs) at baseline was longer than
patients with 2 or more CTCs. Thus, plasma levels of CTCs
are associated with the OS of patients with stage IV NSCLC
(142). Nevertheless, in a phase III trial with 532 patients with
stage III/IV NSCLC who did not progress after platinum-
based induction chemotherapy with or without irradiation,
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TABLE 4 | Clinical studies of TGF-β inhibitors for cancer treatment.

Agents Target Phase Study design Main findings References

1. THE LIGAND LEVEL

Trabedersen (AP12009) TGF-β2 mRNA IIb A randomized controlled trial compared to standard

chemotherapy in refractory malignant (high-grade)

glioma (N = 145)

Unchanged tumor growth

Delayed responses after

treatment discontinuation

(140)

2. THE LIGAND-RECEPTOR LEVEL

Belagenpumatucel-L TGF-β2 II A randomized, dose-variable trial in stages II, IIIA, IIIB,

and IV non-small-cell lung carcinoma (NSCLC) (N = 75)

Improved overall survival (OS)

Increased IFN-γ, IL-4, and

IL-6 production

(141)

Belagenpumatucel-L TGF-β2 II A randomized trial in advanced NSCLC (N = 21) Increased OS (142)

Belagenpumatucel-L TGF-β2 III A randomized trial in stage III/IV NSCLC after

platinum-based therapy (N = 532)

Unchanged OS (143)

Fresolimumab

(GC-1008)

Pan TGF-β II An open-label trial in malignant pleural mesothelioma

(N = 13)

Increased OS in patients who

produced antitumor antibodies

(144)

Fresolimumab

(GC-1008)

Pan TGF-β II An open label randomized trial in metastatic breast

cancer with radiotherapy (N = 23)

Increased OS

Well-tolerated

Higher dose improved CD8

(145)

3. THE INTRACELLULAR LEVEL

Galunisertib

(LY2157299)

TβRI II A randomized study in metastatic pancreatic

adenocarcinoma used gemcitabine for first-line therapy

(N = 156)

Improved OS (146)

Galunisertib

(LY2157299)

TβRI II A randomized trial in hepatocellular carcinoma treated

with galunisertib as monotherapy after sorafenib failure

(N = 109)

Median OS of 8.3 months (147)

Tasisulam (LY573636) TGF-β II A randomized study as second-line or third-line

treatment for metastatic soft tissue sarcoma (N = 101)

Modest activity as second-/third-line

treatment (Median OS = 8.71

months)

(148)

belagenpumatucel-L did not increase survival compared with
placebo (143).

Fresolimumab (GC1008)

Clinical Data

Fresolimumab (GC1008, Genzyme/Sanofi) is a fully human
monoclonal antibody blocking pan-TGF-β (TGF-β1, TGF-β2,
and TGF-β3) [Reviewed in (150)]. Fresolimumab demonstrated
acceptable safety and preliminary evidence of antitumor activity
in a phase I trial on patients with previously treated malignant
melanoma or renal cell carcinoma (151). In a phase II
trial on 13 patients with malignant pleural mesothelioma, 3
patients showed stable disease for at least 3 months, and
those who produced antitumor antibodies had an increased
median OS. However, treatment with fresolimumab had no
effect on the expression of NK, CD4+, or CD8+ T cell
activating and inhibitory markers, other than a decrease in
the expression of CD244 (also known as 2B4) and CD266
(best known as DNAM1) on NK cells (144). A phase II
trial on 23 patients with metastatic breast cancer undergoing
radiotherapy has reported that fresolimumab in combination
with focal radiotherapy significantly increased OS and was
well-tolerated in a dose-dependent manner. Higher doses of
fresolimumab correlated with an improved CD8+ pool, leading
to a favorable systemic immune response and longer median
OS (145).

Galunisertib (LY2157299)

Preclinical Data

Galunisertib monohydrate (LY2157299, Eli Lilly) is a small-
molecule inhibitor of TβRI that robustly downregulate the
phosphorylation of Smad2 in pancreatic, lung, colorectal
(129), and ovarian cancer (130). Galunisertib effectively
demonstrated potent inhibition of both canonical and non-
canonical pathways in a variety of in vitro hepatocellular
carcinoma cells regardless of TGF-β pathway protein
expression (131, 132). Nevertheless, the antiproliferative
activity of TGF-β pathway inhibitors is quite limited. It has
been reported that TGF-β inhibited cell proliferation while
inducing apoptosis in cell lines with low endogenous levels
of TGF-β and Smad7 and strong transcriptional Smad3
activity (PLC/PRF/5, HepG2, Hep3B, HuH7). However, cancer
cells were sensitive to TGF-β-dependent growth inhibition
and displayed limited sensitivity to galunisertib in another
group of cell lines expressing high quantities of TGF-β and
Smad7 and showing significantly reduced Smad3 signaling
(SK-HEP1, SK-Suni, SK-Sora, JHH6, HLE, HLF, and FLC-
4) (132, 133). Despite limited antiproliferative activity in
vitro, galunisertib exhibited antiproliferative effects in ex
vivo models, indicating that inhibition of TGF-β can exert
anticancer properties (131, 133). Nevertheless, from the
reports on several preclinical studies, treatment with TGF-β
inhibitors as monotherapy might display limited efficacy.
However, the immunological effects of galunisertib are strongly
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augmented in combination with other checkpoint inhibitors
(152, 153).

Clinical data

Among small molecule inhibitors, galunisertib is one of the
most advanced. It has shown promising results in clinical trials
due to its safety profile, with no cardiac potential toxicity in
humans, which was a primary concern with first-generation
TGF-β inhibitors (154). A phase I study on 28 patients with
Grade IV glioma showed galunisertib was well-tolerated. The
dose limiting toxicities included pulmonary embolism and
thrombocytopenia, but no cardiotoxicities were observed (155).
In addition, the safety of galunisertib was confirmed by a
first-in-human dose study with 79 cancer patients with glioma
and solid tumors treated with galunisertib as monotherapy
or in combination with lomustine. No medically relevant
cardiac toxicity or signs of cardiovascular injury were found,
including increased blood pressure, troponin I, BNP, or hs-
CRP or reductions in cystatin C levels (156). Likewise, no
safety concerns or dose limiting toxicities was observed after
treatment with galunisertib in patients with glioblastoma based
on a pharmacokinetic/pharmacodynamic (PK/PD) model (157).
Galunisertib as monotherapy and as second-line therapy after
sorafenib failure in a subset of 109 patients with hepatocellular
carcinoma yielded a median OS of 8.3 months in a phase II trial
(147). Interestingly, patients who had decreased expression levels
of specified blood biomarkers [e.g., alpha-fetoprotein (AFP),
TGF-β1, and CDH1] had improved clinical outcomes, indicating
that the effects of galunisertib might be more pronounced in
patients with a poor prognosis due to elevated AFP at baseline
(147). Similarly, galunisertib in combination with gemcitabine
improved OS with minimal added toxicity in a phase II study
on patients with locally advanced or metastatic pancreatic
adenocarcinoma who were considered candidates for first-line
chemotherapy with gemcitabine (146).

Vactosertib (EW-7197) and EW-7195

Preclinical Data

Vactosertib (EW-7197 or TEW-7197), a novel small molecule
inhibitor of ALK5, has been recently developed as a more
potent and specific antitumoral compound than galunisertib.
Vactosertib and EW-7195 expressed potent antimetastatic
activity in vivo via an inhibition of TGF-β1-induced Smad/TGFβ
signaling, cell migration, invasion, EMT, and breast tumor
metastasis to the lung in xenografted nude mice and transgenic
MMTV/cNeu mice (134, 135). In addition, vactosertib expressed
the potential to boost cytotoxic T lymphocyte function in 4T1
orthotopic-grafted mice and prolonged the lifespan of 4T1 breast
tumor-bearing mice (134).

Clinical data

Vactosertib is currently being tested in phase I/II clinical trials
for several cancer types in combination with chemotherapy
or antibodies against immune checkpoints. A phase I study
is evaluating the safety and tolerability of the drug in
combination with paclitaxel in 12 metastatic gastric cancer
patients (NCT03698825). The phase Ib/IIa trials include a study

of vactosertib in combination with durvalumab in patients
with advanced NSCLC who progressed following platinum-
based chemotherapy (N = 63) (NCT03732274). A combination
with pembrolizumab is being employed for metastatic or
locally advanced colorectal or gastric/gastroesophageal junction
adenocarcinoma (N = 67) (NCT03724851), and a combination
with imatinib is being employed for patients with advanced
desmoid tumors (N = 24) (NCT03802084). The latest phase II
trial aims to determine whether administration of vactosertib
with durvalumab will provide meaningful increases in the overall
response rate in patients with urothelial cancers that fail to
achieve a CR with anti-PD-1/PD-L1 based regimens (N =

48) (NCT04064190).
Remarkably, given TGF-β signaling plays a crucial role in

fibrotic states, vactosertib has recently been investigated as an
antifibrotic agent to delay the development of fibrosis in primary
organs including the liver, kidney, and lung. Vactosertib was
found to suppress fibrosis-induced accumulation of ROS and
ECM proteins (collagen, α-SMA, fibronectin, and integrins) in
the liver, lungs, and kidneys of mice due to its antifibrotic
mechanism via inhibition of both TGF-β1/Smad2/3 and ROS
signaling (158). A study on a rat model of Peyronie’s disease
showed that vactosertib suppressed phospho-Smad2 expression
and recruitment of inflammatory cells, leading to a decline in
fibrotic plaques (159). Thus, vactosertib and EW-7195 could
be a promising antifibrotic compound for the treatment of
fibrotic diseases.

Tasisulam (LY573636)

Clinical Data

Tasisulam has completed many trials in various oncologic
diseases, including phase I studies on patients with essential
thrombocythemia and acute myeloid leukemia (NCT00718159)
and solid tumors (NCT01214668) and phase II trials on
patients with ovarian cancer (NCT00428610), metastatic breast
cancer (NCT00992225), NSCL cancer (NCT00363766), and
malignant melanoma (NCT00383292). A phase II study on
tasisulam as second- or third-line treatment for 101 patients
with unresectable or metastatic soft tissue sarcoma reported that
tasisulam demonstrated modest activity with a median OS of
8.71 months (148). Consequently, the synergistic and additive
effects of tasisulam combined with other anticancer agents are
currently of interest. Currently there is an ongoing phase I
trial of tasisulam in combination with sunitinib, a multiple
tyrosine kinase, in renal cancer patients (NCT01258348), and
with pemetrexed, an inhibitor of purine synthesis, in patients
with solid tumors (NCT01215916).

M7824 (MSB0011359C)

Interestingly, recent preclinical study has been reported that
M7824 (MSB0011359C) which is a dual inhibitor of programmed
death ligand 1 (PD-L1) and TGF-β inhibited tumor growth and
metastasis more effectively than treatment with TGF-β inhibitor
alone. Thus, M7824 (an inhibitor of PD-L1 and TGF-β) exhibits
potent and superior antitumor effects compared to that of TGF-
β inhibitor monotherapy and is likely to help minimize potential
side effects (160).
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Inhibitors of TGF-β Signaling for the
Treatment of Cardiac Fibrosis
The renin-angiotensin system (RAS) inhibitors are currently
used as standard therapy for HF and have been shown to inhibit
activation of fibroblast and differentiation into myofibroblast.
However, cardiac fibrosis persists in patients with HF even when
treated with these conventional RAS inhibitors, indicating a
need to develop novel and effective antifibrotic therapies for
heart disease (161). Currently, due to its established role in
cardiac fibrosis, there is great interest in inhibiting the TGF-β
signaling pathway (6, 161). TGF-β is considered a mediator of
cancer and fibrosis. Thus, blockades of TGF-β signaling activity
using receptor antagonists, inhibition via antibody or antisense
oligonucleotide, or even using gene deletion of TGF-β signaling
molecules are potential therapeutic strategies.

Anti-TGF-β1 neutralizing antibodies have also been under
investigation as potential antifibrotic agents by interfering with
TGF-β signaling. Administration with anti-TGF-β1 antibody
attenuated cardiac fibrosis and diastolic abnormalities in a
rat model of pressure overload (47) (Table 2). Although these
antibodies attenuated fibroblast activation and collagen synthesis,
no improvements in overall cardiac functions were found
in pressure-overloaded rats (47). Furthermore, anti-TGF-β
neutralizing antibody inhibited ECM proteins synthesis and
reduced cardiac fibrosis in a rat model induced by a chronic
blockade of nitric oxide synthesis (162). However, in a mouse
model of MI, a neutralizing anti-TGF antibody administered
before or after coronary artery ligation resulted in increased
mortality rates and left ventricular (LV) dilation after MI (163).

Alternative approaches have included inhibition of the
expression of TGF-β using antisense oligonucleotides (164), and
the use of a soluble TβRII, which either acts by adsorbing TGF-
β or acting as a dominant negative receptor (165). Inhibitors of
ALK5 (TβRI) are under investigation for antifibrotic effects in
the heart. Inhibitor of ALK5 which decrease TGF-β activity can
rescue cardiac dysfunction and ameliorate cardiac remodeling in
post-MI hearts (50).Moreover, ALK5 inhibitors can also suppress
the collagen synthesis and attenuate the progression of fibrosis in
animal model of pressure overload induced by transverse aortic
constriction, and inhibit TGF-β-mediated collagen synthesis in
cardiac fibroblasts (51) (Table 2).

In addition to the canonical Smad-mediated signaling
pathway, TGF-β also stimulates the non-canonical MAPK
signaling pathways such as JNK-dependent and p38-MAPK-
dependent pathways (166–168). These MAPK signaling
pathways are involved in TGF-β-mediated activation of
TAK1 which is thought to play a role in cardiac fibrosis and
remodeling. Cardiac specific overexpression of the active form
of TAK1 induced myocardial hypertrophy and HF (166–168),
suggesting that TAK1 is a major effector of TGF-β signaling.
Blockade of TAK1 activity attenuated TGF-β-mediated ECM
protein overproduction in cardiac fibroblasts (48) (Table 2). In
addition to inhibition of TAK1, inhibition of p38-MAPK is being
investigated for its efficacy in the treatment of cardiac fibrosis.
Inhibitors of p38-MAPK suppress myofibroblast activation and
expression of ECM proteins and α-SMA induced by TGF-β,

while overexpression of p38-MAPK induces myofibroblast
differentiation in cardiac fibroblasts (49).

Two promising antifibrotic agents include tranilast and
pirfenidone, which inhibit the actions of TGF-β as well as
other pathogenic growth factors by unclear mechanisms (169).
Current agents and therapeutic targets in preclinical and clinical
development for the treatment of cardiac fibrosis and heart-
related diseases are summarized in Tables 5, 6.

GW788388

Preclinical data

GW788388 is a potent inhibitor of both ALK5 and TGβRII
with an improved pharmacokinetic profile (184) and minimal
toxic effects (185). Several studies have been demonstrated that
GW788388 pre-clinically reduces cardiac fibrosis in various
models. GW788388 inhibited the development of cardiac fibrosis
by suppression of collagen I and fibronectin synthesis, increased
survival, and improved cardiac function in an experimental
murine model of Chagas heart disease (170). Deletion of SCN5A,
a gene encoding the main cardiac sodium channel NaV1.5, has
been associated with inherited progressive cardiac conduction
disease. GW788388 chronically inhibited TGF-β receptors and
prevented fibrosis in a Scn5a heterozygous knockout (Scn5a+/−)
mouse model of progressive cardiac conduction disease (171).
Furthermore, treatment with GW788388 attenuated systolic
dysfunction and delayed LV remodeling by reducing the
phosphorylated Smad2, α-SMA, and collagen I in a rat model
of HF following MI (50). Taken together, GW788388 appears
to be a promising antifibrotic agent, although further studies
are warranted.

Pirfenidone

Preclinical data

Pirfenidone is an oral antifibrotic drug initially approved for the
treatment of idiopathic pulmonary fibrosis (186). Pirfenidone
inhibited TGF-β expression and also inhibited the profibrotic
effects of TGF-β signaling (187). Thus, pirfenidone might be a
promising agent for the treatment of cardiac fibrosis. A reduction
in ventricular hypertrophy without lowering systolic blood
pressure has been detected in the deoxycorticosterone acetate
(DOCA)-salt hypertensive rats after pirfenidone treatment (172).
Moreover, pirfenidone decreased total and non-scar myocardial
fibrosis, which has been associated with decreased infarct
scarring, improved LV function, and decreased ventricular
tachycardia in ratMImodel (173). Administration of pirfenidone
reversed cardiac fibrosis, including renal fibrosis, and attenuated
myocardial stiffness in streptozotocin (STZ)-diabetic rats (176).

Given pirfenidone has significant antifibrotic and anti-
inflammatory properties, the anti-inflammatory effects of
pirfenidone have been investigated. Pirfenidone inhibited NLRP3
expression and formation, contributing to a reduction in IL-1β
synthesis, and attenuation of IL-1β-induced inflammatory and
profibrotic responses in a mouse model with transverse aortic
constriction (TAC)-induced LV remodeling (174). Similar effects
were observed in murine pressure-overload injury; pirfenidone
increased survival and attenuated fibrosis through suppression
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TABLE 5 | Preclinical studies of TGF-β inhibitors for treatment of cardiac fibrosis.

Agents Targets Experiments/Models References

GW788388 ALK5 and TβRII In vivo: murine Chagas disease (170)

In vivo: Scn5a+/− mouse model of cardiac conduction disease (171)

In vivo: rat model of heart failure (HF) following myocardial infarction (MI) (50)

Pirfenidone TGF-β In vivo: Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (172)

In vivo: rat MI model (173)

In vivo: Transverse aortic constriction (TAC)-induced left ventricular (LV) remodeling mouse model (174)

In vivo: TAC-induced pressure-overloaded HF model (175)

In vivo: Streptozotocin (STZ)-induced diabetic rats (176)

Tranilast TGF-β In vivo: STZ-induced diabetic (mRen2)27 rats (177, 178)

In vivo: DOCA/salt and renovascular hypertensive rats (179, 180)

In vivo: LV remodeling post-MI rats (181)

In vivo: hypertensive (mRen2)27 rats (182)

TABLE 6 | Clinical studies of TGF-β inhibitors for treatment of cardiac fibrosis.

Agents Phase Study design Main findings References

Pirfenidone II A double-blind placebo-controlled phase II study in

hypertrophic cardiomyopathy associated with left

ventricular diastolic function patients (N = 50)

Not available NCT00011076

Pirfenidone II A double-blind, randomized, placebo-controlled

phase II trial in patients with chronic heart failure

with preserved ejection fraction (HFpEF) and

myocardial fibrosis (N = 129)

Not available NCT02932566

Tranilast III A double-blind, randomized, placebo-controlled

phase III trial in 11,484 patients after percutaneous

coronary intervention (PCI) (PRESTO)

Tranilast did not improve the

quantitative measures of

restenosis

(183)

of myocardial fibrosis and vascular permeability in pressure-
overloaded hearts (175). Therefore, pirfenidone might be a
potential treatment for cardiac fibrosis.

Clinical data

Although pirfenidone has shown efficacy in the treatment
of idiopathic pulmonary fibrosis in humans (186), clinical
trials for the treatment of cardiac fibrosis are ongoing and
the results have not yet been published. A phase II study
of pirfenidone in patients with hypertrophic cardiomyopathy
associated with LV diastolic function aims to examine the
effectiveness of pirfenidone in improving heart function and
reducing of myocardial fibrosis. The study was completed
with unpublished data (NCT00011076). Another phase II
trial is ongoing and will finish in Jan 2020. This trial is
exploring the antifibrotic effects of pirfenidone on patients with
chronic heart failure with preserved ejection fraction (HFpEF)
and cardiac fibrosis by determining changes in myocardial
ECM volume and investigating the relationship between
myocardial fibrosis and myocardial energetics (PIROUETTE
study, NCT02932566) (188).

Tranilast

Preclinical data

Tranilast has been used to treat allergic disorders (e.g., allergic
rhinitis, asthma, and atopic dermatitis); however, tranilast

might also be useful for other medical conditions due to
its ability to suppress TGF-β expression and activity. The
molecular mechanisms underlying its antifibrotic actions are
not completely understood, but tranilast might inhibit several
profibrotic growth factors such as TGF-β and platelet-derived
growth factor (PDGF) (22). The effects of tranilast on inhibition
of cardiac fibrosis have also been supported by multiple
animal models of cardiomyopathy. In STZ-induced (mRen-
2)27 diabetic rats, tranilast treatment attenuated cardiac matrix
deposition in association with reductions in phospho-Smad2 of
the heart (177). In a similar model, administration of tranilast
attenuated cardiac dysfunction and structural abnormalities in
diabetic cardiomyopathy with improved LV systolic and diastolic
function, while tranilast did not affect Smad phosphorylation
but it significantly attenuated TGF-β-induced p44/42 MAPK
phosphorylation (178).

The underlying mechanisms of the antifibrotic effects of
tranilast have been attributed to its regulation of TGF-β signaling
and to suppression of the infiltration of inflammatory cells,
including monocytes and macrophages. The mRNA levels of
TGF-β1, plasminogen activator inhibitor 1 (PAI-1), monocyte
chemotactic protein-1 (MCP-1), IL-6, procollagens were
attenuated, and myocardial fibrosis and collagen accumulation
were suppressed in DOCA/salt hypertensive rats receiving
tranilast (179). Similar findings were observed in other animal
models of renovascular hypertensive rats (180) and hypertensive
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(mRen-2)27 rats (182). Interestingly, tranilast-mediated
inhibition of cardiac fibrosis is independent of changes in
blood pressure in these studies, suggesting that tranilast directly
targeted cardiac fibrosis andmight be beneficial for HF treatment
in addition to current therapeutic strategies (181).

Clinical data

Restenosis after percutaneous coronary intervention (PCI)
is a major adverse outcome following stent placement. In
limited trials, administration of tranilast reduced the frequency
of angiographic restenosis after PCI (189). Accordingly, the
Prevention of Restenosis With Tranilast and Its Outcomes
(PRESTO) trial was designed as a phase III trial with a large group
of patients after PCI to investigate major adverse cardiovascular
events of tranilast. It was found that tranilast did not improve
restenosis or its clinical sequelae in patients receiving successful
PCI (183). However, the number of events of MI was significantly
reduced with tranilast treatment. The most commonly reported
adverse events were laboratory test abnormalities consisting of
hyperbilirubinemia, elevations in hepatic enzymes, and increased
serum creatinine (183).

CONCLUSION

TGF-β is a multifunctional cytokine regulator acting through
transmembrane serine/threonine kinase receptors and
intracellular Smad transcriptional regulators. Once TGF-β
is activated, it regulates ECM remodeling and promotes a
fibroblast to myofibroblast transition, which is essential for
fibrotic processes. Given TGF-β plays a major role in various
stages of cancer progression and in the development of cardiac
fibrosis, TGF-β and its signaling pathway offer opportunities
for novel treatment strategies in patients with cancer and

cardiac fibrosis. Research on the underlying mechanisms and
the therapeutic targets of TGF-β inhibitors for cancer and
cardiac fibrosis has advanced significantly in recent decades.
The inhibitors of TGF-β signaling for cancer and fibrosis have
been extensively studied in animal models and clinical studies;
however, translation of these findings into human pathologic
conditions has been limited due to the broad range of responses
to TGF-β and its role in tissue homeostasis. Currently, various
types of TGF-β inhibitors are challenged and tested their
efficacies in patients with cancers. A few of TGF-β inhibitors
are subjected into the clinical studies for treatment of cardiac
fibrosis. The development of more specific agents targeting
TGF-β signaling pathways such as M7824, a bifunctional
fusion protein composed of TGF-β trap, and a monoclonal
antibody against programmed death ligand 1 (PD-L1) are likely
to help minimize potential side effects and enhances efficacy
for treatment of cancers. Furthermore, the combination of
anti-TGF-β therapies with various mechanisms of action might
have greater efficacy against cancer and cardiac fibrosis.
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