
REVIEW
published: 15 April 2020

doi: 10.3389/fcvm.2020.00047

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 April 2020 | Volume 7 | Article 47

Edited by:

Susumu Minamisawa,

Jikei University School of

Medicine, Japan

Reviewed by:

Andrea Caporali,

University of Edinburgh,

United Kingdom

Tetsuo Sasano,

Tokyo Medical and Dental

University, Japan

*Correspondence:

Alexander E. Berezin

aeberezin@gmail.com

†ORCID:

Alexander E. Berezin

orcid.org/0000-0002-0446-3999

Specialty section:

This article was submitted to

Heart Failure and Transplantation,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 11 December 2019

Accepted: 10 March 2020

Published: 15 April 2020

Citation:

Berezin AE and Berezin AA (2020)

Extracellular Endothelial Cell-Derived

Vesicles: Emerging Role in Cardiac

and Vascular Remodeling in Heart

Failure. Front. Cardiovasc. Med. 7:47.

doi: 10.3389/fcvm.2020.00047

Extracellular Endothelial Cell-Derived
Vesicles: Emerging Role in Cardiac
and Vascular Remodeling in Heart
Failure
Alexander E. Berezin 1*† and Alexander A. Berezin 2

1 Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine, 2 Internal

Medicine Department, Medical Academy of Post-graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine

Extracellular vesicles play a pivotal role in numerous physiological (immune response,

cell-to-cell cooperation, angiogenesis) and pathological (reparation, inflammation,

thrombosis/coagulation, atherosclerosis, endothelial dysfunction) processes. The

development of heart failure is strongly associated with endothelial dysfunction,

microvascular inflammation, alteration in tissue repair, and cardiac and vascular

remodeling. It has been postulated that activated endothelial cell-derived vesicles

are not just transfer forms of several active molecules (such as regulatory

peptides, coagulation factors, growth factors, active molecules, hormones that are

embedded onto angiogenesis, tissue reparation, proliferation, and even prevention from

ischemia/hypoxia), but are instead involved in direct myocardial and vascular damage

due to regulation of epigenetic responses of the tissue. These responses are controlled

by several factors, such as micro-RNAs, that are transferred inside extracellular vesicles

from mother cells to acceptor cells and are transductors of epigenetic signals. Finally,

it is not a uniform opinion whether different phenotypes of heart failure are the result of

altered cardiac and vascular reparation due to certain epigenetic responses, which are

yielded by co-morbidities, such as diabetes mellitus and obesity. The aim of the review is

to summarize knowledge regarding the role of various types of extracellular endothelial

cell-derived vesicles in the regulation of cardiac and vascular remodeling in heart failure.

Keywords: extracellular vesicles, cardiac and vascular remodeling, heart failure, epigenetics, co-morbidities

INTRODUCTION

Heart failure (HF) is a complex condition which is often accompanied by co-morbidities and a
high prevalence in the general population, and is a final stage of various cardiovascular (CV)
diseases (1). Despite sufficient improvements in diagnosis, prevention, and treatment of HF,
new incidences of HF with reduced ejection fraction (HFrEF) and mid-range ejection fraction
(HFmrEF) continue to occur due to a poor prognosis and need for mechanical support devices and
heart transplantation (2, 3). The nature of the evolution of HF is tightly associated with substantial
structural cardiac and vascular remodeling that is controlled by both genetic and epigenetic factors
(4). Previous preclinical and clinical studies have revealed that epigenetic mechanisms, including
chromatin modifications and non-coding RNAs, have emerged as molecular transducers of age,
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etiology triggers and co-existing metabolic factors,
environmental stimuli, and inflammatory and neurohumoral
regulatory molecules to control gene expression (5, 6). In fact,
pre- and post-ischemic conditioning, post-ischemic injury,
oxidative stress and hypertrophic remodeling, endothelial
dysfunction, accelerating atherosclerosis, plaque rapture,
microvascular inflammation and occlusion, thrombosis
and sub-intimal lipids’ modification, extracellular matrix
accumulation and cardiac/vessel fibrosis are the processes
which may be potentially regulated by underlying altered
chromatin modifications and non-coding RNAs dyshomeostasis
in HF (7–9).

Extracellular vesicles (EVs) are a wide range of particles
that are released from the most viable cells and transfer
active molecules, such as hormones, regulatory peptides, growth
factors, and chromatin, and play a pivotal role in cell-
to-cell cooperation, immunity, inflammation, apoptosis, and
repairs (10). Developing HF adds to EVs’ formation from the
numerous types of cells including cardiac myocytes, fibroblasts,
mononuclear cells, platelets, endothelial cell, progenitor cells, and
even stem cells (11). Endothelial cell-derived EVs are a secretome
of the progenitor andmature endothelial cells and are involved in
functional and structural repairs of myocardium, endothelium,
and vascular vasculature (12). Therefore, chromatin materials
are able to be transferred as a cargo with EVs from cell to cell
due to cell activation or apoptosis and thereby influence target
cells acting as epigenetic factors (13). Finally, the epigenetic
changes may influence many intercellular communication
signaling systems, including the nitric oxide, angiotensin, and
endothelin-1 signaling systems, which are embedded onto
pathogenesis of cardiac and vascular remodeling (14, 15). The
aim of the review is to summarize knowledge regarding the
role of various types of extracellular endothelial cell-derived
vesicles in the regulation of cardiac and vascular remodeling
in HF.

EXTRACELLULAR VESICLES: DEFINITION
AND NOMENCLATURE

Previously secreted membrane-enclosed particles, which
are collectively called extracellular vesicles (EVs), include
exosomes, ectosomes, microvesicles, small size microvesicles,
microparticles, nano particles, apoptotic bodies, and other

Abbreviations: ABs, apoptotic bodies; CCL2, chemokine ligand−2; CV,

cardiovascular; ECM, extracellular matrix; ERK1/2, extracellular signal-related

kinase 1 and 2; EVs, extracellular vesicles; FAP-α, Fibroblast activation protein α;

HF, heart failure; HFpEF, HF with preserved ejection fraction; HFrEF, HF with

reduced ejection fraction; HIF-1-α, hypoxia-inducible factor-1 α; HSP, heat shock

proteins; GDF-11, growth differentiation factor 11; IGF-1, insulin-like growth

factor-1; IL, interleukin; LV, left ventricular,; MAPK, mitogen-activated protein

kinase; Mhrt, myosin heavy chain-associated RNA transcript; miRNA, micro

ribonucleic acid; MMP, matrix metalloproteinase; MVBs, multi vesicular bodies;

mTOR, a serine/threonine protein kinase; NADF, nicotinamide dinucleotide

phosphate; NF-kB, nuclear factor-κB; PS, phosphatidylserine; Rac1, Ras-related

C3 botulinum toxin substrate 1; ROCK-2, Rho-associated coiled-coil containing

kinase-2; ROS, reactive oxide species; SOD, super oxide dismutase; Spry1, sprout

regulated kinase 1; TGF-β, transforming growth factor β; TNF, tumor necrosis

factor; VEGF, vascular endothelial growth factor.

EVs. Some of them (ectosomes and microparticles) were not
determined as distinct from each other, and several classification
approaches (sedimentation speed-derived criteria, immune
phenotype, origin, mechanism of release, and size) were applied
to EVs’ subsets to qualify them in some classes. According
to the Executive Committee of the International Society for
Extracellular Vesicles, EVs are defined as mixture particles
ranging from 30 to 2,000 nm in diameter, which are released
by various types of viable cells in several different mechanisms
(blebbing and budding of endosomal or plasma membranes) and
they include exosomes, microvesicles, and apoptotic bodies (16).
Table 1 reports nomenclature and basic characteristics of several
subtypes of EVs.

Exosomes
Exosomes are derivates of the endocytic membrane that have
an average diameter of 40–100 nm and are released from
several types of cells after exocytosis and the shaping of
multivesicular bodies (MVBs) (17, 18). MVBs move along
intracellular tubules, fuse with plasmatic membranes, and release
exosomes onto extracellular space. Exosomes have various
cellular components including cytoplasmic and membrane
molecules, proteins, hormones (aldosterone), growth factors
(vascular endothelial growth factor, transforming growth factor),
cytokines (interleukin [IL]-1β, IL-6, IL-8), and lipids, and may
also contain fragments of chromatin, such as non-coding RNAs
and several inactive forms of micro-RNAs (17, 18). There are
a common set of membranes and cytosolic proteins, which
are embedded onto exosomes originated from distinct types of
cells (19). The specific surface markers that ensure recognition
of the exosomes are tetraspanins (CD9, CD63, CD 81),
ESCRT (endosomal sorting complexes required for transport),
machinery proteins (Alix, tumor susceptibility gene 10), and
flotillin-1 (20).

Microvesicles
Microvesicles (equally known as microparticles or ectosomes)
typically have a range from 100 to 1,000 nm in diameter
and are shaped as a result of budding of the cell membrane
(21). Microvesicles are heavily enriched in phospholipids,
such as phosphatidylserine and phosphatidylcholine, and
numerous membrane-depended structures (receptors, CD
markers) originated from the parent cells (22). Proteomics
and lipidomics arrangement of microvesicles is extremely
variable and includes membrane regulatory (Rab, Sterol Carrier
Protein 2) and structure (β-actin, α-actin-4) proteins, heat
shock protein HSP90AB1, adhesive molecules (ICAMs,
PECAM-1, MCAM), lipids (SpL, PL, LPS, LPS) and
receptors (tetraspanin’s receptors, LAIR-1, EGFR), enzymes
(superoxide dismutase, Rab GTPase, cytochrome complex,
Akt/ ERK, triosephosphate isomerase−1, 3-Hydroxy-3-
Methylglutaryl-CoA Lyase), immune system proteins (CD14,
CD276, MiC-11), and apo-lipoproteins (apo-A-II) (23–25).
Therefore, microvesicles may yield several non-coding RNAs and
chromatin fragments coupled with the complexity of the other
components (26).
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TABLE 1 | Nomenclature and basic characteristics of several subtypes of EVs.

Characteristics of EVs Subpopulations of EVs

Exosomes Micro vesicles (ectosomes) Apoptotic bodies

Diameter, nm 40–100 100–1,000 50–2,000

Origin Endocytic membrane Cell membrane Apoptotic cells

Mechanism of delivery Ceramide-dependent,

tetraspanin-dependent, and

ESCRT-dependent exocytosis of multi

vesicular bodies

Ca2+ depending phospholipid

redistribution and Rho-kinase-mediated

myosin light chain phosphorylation,

facilitating budding, and blebbing

Thin membrane protrusion and

blebbing of the apoptotic cells’

surface

Phosphatidylserine composition Low High High

Complexity/granularity High High Low

Components Cytoplasmic and membrane molecules,

proteins and lipids, tetraspanin’s receptors

Adhesive molecules (ICAMs, PECAM-1,

MCAM), membrane regulatory proteins

(Rab), lipids (SpL, PL, LPS, LPS), and

receptors (tetraspanin’s receptors, LAIR-1,

EGFR), enzymes (Rab GTPase, ERK,

MLCK, TPI-1, HMGCL), immune system

proteins (CD14, CD276, MiC-11), apoAII,

SOD, β-actin, α-actin-4, HSP90AB1,

cytochrome complex, SCP-2

Mitochondria, MHC II molecules,

ICAM-3, phosphatidylserine,

sialylated and glycosylated ligands

Nuclear fractions mRNA and microRNA (miRNA), other

non-coding RNAs

Non-coding RNAs Non-coding RNAs

Specific surface markers Tetraspanins (CD9, CD63, CD 81), ESCRT

machinery proteins (Alix, tumor

susceptibility gene 10), flotillin-1

CD40, Phosphatidylserine, integrins,

selectins, ESCRT machinery proteins (Alix,

Vps4)

Annexin V+, phosphatidylserine,

caspase 3, histones

Key functional role Cell-to-cell communication, cargo Cell-to-cell communication, cargo Cell-to-cell communication, cell

clearance

SOD, superoxide dismutase; HSP, heat shock protein; SCP-2, Sterol Carrier Protein 2; TPI-1, Triosephosphate Isomerase 1; HMGCL, 3-Hydroxy-3-Methylglutaryl-CoA Lyase; ESCRT,

endosomal sorting complexes required for transport; ERK, a prototypic mitogen-activated protein kinase.

Apoptotic Cell-Derived Extracellular
Vesicles
Apoptotic cell-derived EVs include two types of apoptotic bodies:
large membrane-bound vesicles (large apoptotic bodies [ABs]
with diameter ≥1,000 nm) and small apoptotic microvesicles
(small ABs with diameter < 1000 nm) (27). Apoptotic bodies
(ABs) are particles generally larger in size in comparison to
both exosomes and microvesicles, while ABs have a variable
diameter that fluctuates around 1,000 nm (from 1,000 to
2000 nm) (28). Both subpopulations of ABs result in blebbing
of the surface of the apoptotic cells and contain regulatory
specific proteins, numerous cell organelles, and chromatin
fractions, like non-coding nucleus or nucleolus RNAs (29). The
process of ABs’ generation is precisely controlled by several
distinct morphological steps (i.e., membrane permeability and
blebs, membrane protrusion, and cell fragmentation), which are
consequently regulated by several molecular factors including
the Rho-associated protein kinase and the plasma membrane
channel pannexin-1 (Figure 1).

ABs contain mitochondria, MHC II molecules, ICAM-
3, phosphatidylserine, sialylated and glycosylated ligands,
fragments of chromatin granules, DNAs, and non-coding
RNAs. It has to be noted that the packaging of chromatin
content (DNAs and non-coding RNAs) into the structure
of the ABs is regulated during apoptosis and there are ABs
that have no fragments of chromatin or remarkably low
amounts of DNAs (30). ABs are classified depending on their

origin from the mother cells including antigen-presenting
cells, mononuclears, endothelial cells, fibroblasts, cardiac
myocytes, and epithelial cells (31). The clearance of ABs has
been ensured by phagocytes (32). To accurately differentiate
ABs from other particles, such as cells and debris, there
are several specific surface markers, such as Annexin V+/
phosphatidylserine (33).

BIOLOGICAL FUNCTION AND
PATHOLOGICAL ROLE OF
EXTRACELLULAR VESICLES

The key biological functions of EVs typically originate from
various viable cells that use cell-to-cell communication and
transfer materials called secretome. Acting as cargo for numerous
molecules (Heat shock proteins [HSP-90, HSP-70], ILs, tumor
necrosis factor-alpha, active molecules, enzymes, peptides,
growth factors), EVs are recognized by target cells through
specific antigens’ presentation, bind to target cells, fuse with
them, and abundantly supply the packaged materials to the
cells. Therefore, exosomes and microvesicles naturally have a
wide range of pleiotropic biological functions including immune
response, antigen presentation, and the transfer of RNA and
DNAs (28, 34). The full spectrum of pleiotropic effects of
circulating EVs is reported Figure 2.
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FIGURE 1 | Apoptotic bodies generation and regulation.

Recent studies have revealed that EVs may contain
inactive forms of non-coding RNAs, which can be properly
transferred to another cell and be functional in that new
microenvironment (35, 36). Although 585 microRNAs
were found to be up-regulated in HF patients, and 4,623
microRNAs were found to be down-regulated, most of them
are circulating extracellular microRNAs, but a much smaller
portion is transported using EVs (10, 26, 35). Indeed, under
ischemia/hypoxic conditions, STEMI, HF, the up-regulated
myocardial expression of pro-fibrotic (transforming growth
factor [TGF]-β, growth differentiation factor 11 [GDF-11]
and Rho-associated coiled-coil containing kinase-2 [ROCK-
2]), and pro-inflammatory (inducible NO synthase, nuclear
factor-kB, IL-2, IL-8, CCL5, STAT1, VEGF, TNF-alpha)
genes and down-regulated gene expression of the matrix
metalloproteinases (MMP-1, MMP-3, MMP-9) and their
tissue inhibitors were found (35–37). In fact, EVs-related
transfer microRNAs that have demonstrated abilities to up-
(microRNA-210. microRNA-132) and down- (microRNA-
17-3p, microRNA-222) regulate these genes through several
intracellular signaling mechanisms (extracellular signal–
regulated kinases 1/2 [ERK1/2], heat shock protein 27
(HSP27) signaling).

There is strong evidence that hypoxia and ischemia are
triggers for mononuclear-depending production of pro-
inflammatory cytokines including IL-2 and TNF-alpha, while
supply of these cytokines to the target cells mediates through
the package into EVs (37). On the contrary, HSPs, growth
factors, non-coding RNAs, and active molecules, which are

transferred by EVs, are involved in the regulation of reparative
response, immunity reaction, and mediating cytoprotection
(38, 39). However, a wide spectrum of biological active
molecules that are transported by EVs from mother cells to
the target cells yielded the ability to regulate endogenous
repair system activity including proliferation, differentiation
and mobbing of progenitor cells, and angiogenesis (40, 41).
Through appropriate receptor-ligand (integrin αvβ3, CD40
ligand, neuregulin 1, VE-cadherin and beta-catenin) interactions
and content cargo, EVs are able to regulate intracellular signaling
pathways ensuring the activation of endothelial cells and the
attraction and internalization of various circulating blood
cells (platelets, mononuclears, macrophages, lymphocytes) to
the endothelial cell surface (41). Moreover, vascular growth,
restoring vascular integrity and function, and the recruitment
of inflammatory cells may be directly related to up-regulated
expression of the neuregulin 1 in the endothelial cells in results
of EV-depended stimulation, because circulating EVs can be a
source of variety of pro-angiogenic mRNAs including mRNA
neuregulin 1 (42). Additionally, EVs may naturally induce
a cytoskeleton-junction response of endothelial cells that is
properly characterized by myosin light chain phosphorylation,
contractile fiber reorganization, VE-cadherin phosphorylation,
and adherent junction dissociation. This process is a key
mechanism in the permeability of the vascular wall, release
of neutrophil extracellular traps containing citrullinated
histones and myeloperoxidase, and development of senescence
and accelerating atherosclerosis (43–45). Proteome of EVs
contains pro-coagulant components, such as tissue factor and
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FIGURE 2 | Pleotropic effects of circulating extracellular vesicles.

phospholipids, which play a pivotal role in coagulation and the
triggering of vasoocclusions in several diseases (46, 47).

EXTRACELLULAR VESICLES AND
NATURE EVOLUTION OF HEART FAILURE

There is evidence that various cells in the failing heart and
vasculature including cardiomyocyte progenitor cells, cardiac
fibroblasts, circulating blood cells, and mature and progenitor
endothelial cells, are largely mediated by the paracrine release of
EVs conveying the reparative potency. Although transcriptomics
and proteinomics of these cells have been widely investigated, the
role of paracrine factors, such as EVs, in the regulation of cardiac
and vascular remodeling in HF has not been fully understood.

Cardiomyocyte Progenitor Cell-Derived
EVs
Previously, cardiomyocyte progenitor cell (CPC)-derived
EVs have shown beneficial effects on cardiac function and
remodeling throughout the enhancement of the differentiation
of cardiac progenitor cells into cardiac cells (48). CPC-derived
EVs strongly inhibit lymphocyte and monocyte proliferation,
suppressed inflammation, and prevented extracellular matrix
accumulation (49). Indeed, CPC-derived EVs have significantly

lowered the levels of pro-inflammatory cytokines, such
as IgG1, IgG4, IgM, IL-1α, IL-2, IL-6, and TNF-alpha,
among end-stage HF patients (48, 50). Therefore, CPC-
derived EVs have reduced the number of pro-inflammatory
Ly6Chigh monocytes, M1 macrophages, and suppressed
NK cell degranulation in myocardium, while increasing the
number of anti-inflammatory M2 macrophages (50). In fact,
corresponding changes in the transcriptomic signature of the
cardiac myocytes, CPC-derived EVs have demonstrated an
ability to decrease tissue stiffness and BNP release and exhibited
beneficial effects with regard to post-STEMI remodeling (49).
Additionally, CPC-derived EVs contain a distinct repertoire
of biologically active miRNAs, such as microRNA-373 and
microRNA-21, that have strongly yielded anti-fibrotic effects
and ameliorated fibrosis in the infarcted area targeting key
pro-fibrogenic genes, i.e., TGF-β, GDF-11, and ROCK-2
(51, 52). Interestingly, EVs significantly inhibited microRNA-21
degradation and thereby mediate the anti-apoptotic effect
in cardiac myocytes and endothelial cells (53). It has been
demonstrated that the paracrine inhibitory impact of CPC
on both cardiac fibroblast activation and collagen synthesis
continues through cross-talk between cardiac fibroblasts and
CPC-derived EVs (54). Thus, CPC-derived EVs ensure cardiac
protection through paracrine output regarding cardiac myocytes
that is attributable to decreased production of pro-healing
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cytokines and increased anti-inflammatory and anti-fibrotic
microRNAs (55).

Circulating Blood Cells-Derived EVs
Previous clinical studies have shown that there were no
significant differences in the circulating number of EVs derived
from platelets (CD41a+), neutrophils (CD66b+), erythrocytes
(CD235a+), monocytes (CD14+), T lymphocytes (CD3+),
and B lymphocytes (CD19+) between healthy volunteers
and HF patients (56). In contrast, a decreased number of
circulating endothelial cells (CD31+CD41a-) EVs was found
in HF patients (57). However, the total number of EVs
enriched phosphatidylserines was significantly increased in HF
patients compared with healthy volunteers (56). In fact, an
increased number of phosphatidylserines EVs derived from
various cells, including platelets and erythrocytes, was associated
with hypercoagulability of HF and mostly related to atrial
fibrillation and reduced LVEF (58, 59). However, EVs derived
from circulating blood cells other than endothelial cells are
unlikely to play a significant role in the pathogenesis of HF,
but several co-morbidities (diabetes, atrial fibrillation, chronic
kidney disease, chronic obstructive pulmonary disease) may have

a direct effect on EV releasing from blood cells and, thereby,
exacerbate clinical evolution of the HF via pro-inflammatory and
pro-coagulative potencies.

Extracellular Endothelial Cell-Derived
Vesicles
Extracellular endothelial cell-derived vesicles are released in
both progenitor and mature endothelial cells after activation or
apoptosis. The main triggers for EVs’ synthesis and secretion
vary depending on the presentation of various co-morbidities,
the stage of HF evolution, medication use, as well as the
implementation of mechanical support devices.

Innate molecular mechanisms of cardiac and vascular
remodeling in HF has been investigated from several directions,
such as myocardial hypertrophy and fibrosis, myocardial and
microvascular inflammation, and myocardial mitochondrial
dysfunction, as well as autophagy, apoptosis, and reparation.
In fact, EVs play a pivotal role in various stages of the
nature evolution of HF and mediate the pathological processes
mentioned above (Table 2).

In fact, at early stages of nature evolution of HF, the
circulating levels of EVs derived from activated endothelial

TABLE 2 | EV-related pathways to regulate cardiac and vascular remodeling.

Components of remodeling Molecules transferred by EVs Molecular mechanism/pathway References

Myocardial hypertrophy G protein-coupled apelin receptor Internalization through clathrin-mediated endocytic

pathway

(60)

long noncoding RNA Mhrt Acetylation of myocardin with re-programming cardiac

myocytes

(61)

Micro-RNA-1,−155 Interaction with IGF-1, IGF-1 receptor and twinfilin-1 (62, 63)

Myocardial fibrosis MMP-2, MMP-6, MMP-9 Direct degradation of collagen matrix and attenuation of

LV dilation

(64, 65)

Thymosin β4, FAP-α Disproportionally distribution and arrangement of type I

collagen fibers

(65)

Micro-RNA-18,−19,−21,−22,−29,−30, - 133 Interaction with IGF-1, IGF-1 receptor, and

PI3K/Akt/MAPK- NF-κB signaling pathways

(66)

Micro-RNA-21 Inhibition of the extracellular inhibitor of the Spry1 (67)

Micro-RNA-29 Interaction with the genes encoding the ECM, such as

collagen, fibrillin, and elastin

(68)

Myocardial and microvascular

inflammation

TNF-α, IL-6, IL-10, IL-18, CRP, HIF-1-α, NF-κB,

micro-RNA-125a,−125,−138,−146,−155a

Erk1/2 STAT, Akt/MAPK- NF-κB signaling pathway

NLRP3 inflammasome-activated IL-1β and IL-18

pathway

VEGF/Akt and Eph/Ephrin signaling

(69)

Mitochondrial dysfunction ROS, SOD, angiotensin II ↓ mitochondrial ATP synthesis, ↑ ROS production, ↑

fatty acid oxidation

(70, 71)

Autophagy ROS, chemokines, chaperones, HSP-90,

micro-RNA-145

mTOR-dependent pathway, Beclinl-dependent pathway, (72, 73)

Apoptosis ROS, HIF-1-α Capsase-3-depended pathway (74)

Angiogenesis VEGF, IGF-1, VEGF-microRNA, VE-catherine,

micro-RNA-

VEGF/Erk1/2 STAT—and PI3K/Akt/MAPK- NF-κB

signaling pathways

(75)

Reparation Thymosin β4, FAP-α, VEGF, IGF-1,

VEGF-microRNA, TGF-β

Wnt1/β-catenin-depending signaling, VEGF/Erk1/2 STAT

pathway

(76–78)

microRNA-124,−126-3p,−508-5p PI3K/Akt/MAPK- NF-κB signaling pathways (79)

Immune activation Micro-RNA-146 a/b,−223 Interaction with antigen-presenting cells, mononuclears (65, 80)

Mhrt, myosin heavy chain-associated RNA transcript; IL, interleukin; LV, left ventricular, NF-kB, nuclear factor-κB; TNF, tumor necrosis factor; ROS, reactive oxide species; SOD, super

oxide dismutase; mTOR, a serine/threonine protein kinase; HSP, heat shock proteins; VEGF, vascular endothelial growth factor; IGF-1, insulin-like growth factor-1; TGF-β, transforming

growth factor β; HIF-1-α, hypoxia-inducible factor-1 α; FAP-α, Fibroblast activation protein α; Spry1, sprout regulated kinase 1; ECM, extracellular matrix.
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cells were higher when compared with healthy volunteers,
while the levels of apoptotic endothelial cell-derived EVs were
similar in stage A HF patients and healthy volunteers (81, 82).
Therefore, numerous metabolic risk factors, such as resistance to
insulin, hyperglycemia, abdominal obesity, and hyperuricemia,
are considered to be early triggers for the mobilization of
endothelial progenitor cells from bone marrow and peripheral
tissue. These factors can also influence the transformation of
several cells, such as fibroblasts and smooth muscle cells of
vasculature into cells with endothelial cells’ phenotype (83–86).
This process is under strong epigenetic control and circulating
EVs originated from activated and apoptotic endothelial cells and
their precursors are able to regulate the repair of tissues such as
endothelium and vasculature myocardium through attraction of
cells with high innate ability to post-natal transformation (87,
88). Finally, increased levels of extracellular activated endothelial
cell-derived vesicles characterize a tendency in endogenous repair
systems to restore the integrity and function of target organs
including the endothelium, myocardium, kidney, and brain (89).

Previous clinical studies have shown that the number of
circulating EVs produced by progenitor precursors of endothelial
cells or mature endothelial cells declines depending on the
severity of HF, and patients with HFrEF had significantly lowered
levels of EVs when compared with patients with HFpEF (90–
92). In contrast, the advance of HF was associated with a steady
increase in the circulating levels of apoptotic endothelial cell-
derived EVs and gradual development of deficiencies in the
pool of activated endothelial cell-derived EVs (93). However,
lowered number of circulating EVs originated from activated
endothelial cells was determined to be a marker of endothelial
dysfunction with possible discriminative value to all-cause
mortality, cardiovascular mortality, a risk of acute HF and acute
decompensated HF onset, and an admission due to HF (94).
Some evidence suggests that the ratio between the number of EVs
derived from activated and apoptotic endothelial cells may yield
a pronouncedly higher predictive potency for clinical outcomes
intimately related to HF than a simple amount of EVs originated
from several cell subpopulations (95).

Thus, clinical data received from numerous investigators have
indicated that the deficiency of the circulating activated
endothelial cell-derived EVs and/or increased number
of apoptotic endothelial cell-derived EVs might have a
discriminative capability in HF with different phenotypes.
This fact can be met with several difficulties, while the
principal scheme regarding the role of activated and apoptotic
endothelial cell-derived EVs in HF is reported in Figure 3. It
has been suggested that organ protective effect is ensured by
activated endothelial cell-derived EVs rather than apoptotic
endothelial cell-derived EVs. Perhaps, proteinomics (β1 integrin,
vascular endothelial growth factor, fibroblast growth factor-2,
platelet-derived growth factor, enzymatic activity of matrix
metalloproteinase [MMP]-2, MMP-6 and MMP-9), lipidomics
(sphingosine-1-phosphate), oxidative stress components and
enzymes (oxidized lipids, superoxide dismutase), non-coding
RNA (micro-RNA [miRNA] 126-3p, mi-RNA-214, mi-RNA-
125a, mi-RNA-150) profiles, and chromatin fragments are
sufficiently distinguished in both subsets of EVs. There are
several molecular mechanisms, which mediate the protective and

deteriorating impact of endothelial cell-derived EVs on target
tissues (Figure 4). In fact, endothelial cell-derived EVs are able to
promote the protective effect that is associated with angiogenesis,
tissue reparation, and pre- and post-conditioning due to
VEGF/Erk 1/2 pSTAT- depending signaling pathway, whereas
stimulation of Fyn kinases results in the internationalization
of EV tissue factors with β-integrin, degradation of MMPs
including neprilysin and C-reactive protein-embarked EVs
provoke oxidative stress, cell injury, coagulation, and increase in
vascular permeability, respectively (96, 97). Yet, EVs enriched
Nox2-NADPH oxidase micro-RNA and insulin growth factor-1
(IGF-1) are involved into the regulation of oxidative stress and
cell injury (97). Therefore, MMPs (MMP-2, MMP-6) transferred
by endothelial cell-derived EVs translates the angiogenic impact
of endothelial cells and promotes vascular integrity through
VEGF/Erk 1/2 signaling pathway (98). It has been suggested
that endothelial cell-derived EVs that are released in response
to IL-3 stimulation contain angiopoetic factors, such as micro-
RNA-124,−126-3p. Additionally, there are indirect angiopoetic
effects that relate to post-ischemic formation of capillary-like
structures and collateral vessel formation as a result in delta-like
4/Notch signaling, as well as from the cooperation of EVs
with β1 integrin leading to Ras-related C3 botulinum toxin
substrate 1-extracellular signal-related kinase 1 and 2-avian
erythroblastosis virus E26 homolog-1 signaling and secretion
of the CCL2 (99). Moreover, the activation of plasminogen
into plasmin at the surface of endothelial cell-derived EVs
mediates angiogenic properties of endothelial progenitor cells
(100). Finally, support of endothelial structure integrity by EV
cargo materials leads to improved endothelial function and a
reduction of fibrosis in vasculature and myocardium (101).
Previous studies have demonstrated that endothelial cell-derived
EVs may promote vascular mineralization after the release
of various specific mineralization-promoting cargos (tissue
non-specific alkaline phosphatase, annexin-II and annexin-VI)
(102, 103). Interestingly, it has identified a specific trafficking
protein called sortilin, which was an initial trigger to shape EVs
from progenitor endothelial cells, vascular smooth muscle cells,
and mononuclears (103). In fact, the secretion of calcifying
EVs is under the control of pro-inflammatory cytokines and is
probably regulated epigenetically (104). However, the hypothesis
regarding that the endothelial cell-derived EVs are embedded
onto epigenetic regulation of endogenous repair system
mediating tissue protective effects requires further investigation
to be clearly understood.

EV-DERIVED NON-CODING RNAS IN
CARDIAC AND VASCULAR REMODELING
IN HEART FAILURE

There are four epigenetic mechanisms: histone acetylation,
histone methylation, DNA hyper- and hypo-methylation, and
non-coding RNA regulation. Multiple pre-clinical and clinical
studies have shown that non-coding RNAs transferred by EVs are
the most important epigenetic regulators of cell differentiation,
proliferation, survival, development, regeneration, and
neovascularization (52, 105, 106). Interestingly, some subsets
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FIGURE 3 | Apoptotic endothelial cell-derived and activated endothelial cell-derived extracellular vesicles: the role in HF pathogenesis.

of free cell non-coding RNAs, such as mi-RNAs, are normally
derived to the target cells by high-density lipoproteins (107),
however, the majority of long non-coding RNAs and short chains
of mi-RNAs are enriched and stable in EVs and can be delivered
by EVs acting as gene regulators (108). Several characteristics
of various progenitors cells, which are embedded onto cardiac
and vascular remodeling and are expected to carry benefits to
the failing heart and vasculature, such as trans-differentiation,
paracrine output, migration, survival, are able to be potentially
regulated by non-coding RNAs disembarked from endothelial
cell-derived EVs (90, 109). For instance, endothelial cell-derived
EVs through a transfer of long noncoding RNA Mhrt have
exhibited the ability to cause acetylation of myocardin, which
plays a pivotal role in re-programming cardiac myocytes
(50, 51). There is strong evidence that micro-RNA-1 and
mi-RNA−155 via interaction with free fatty acids cardiac
binding protein FABP3, insulin-like growth factor-1 (IGF-1),
IGF-1 receptor, and twinfilin-1 regulate cardiac myocyte free
fatty acids uptake, provide proliferative response, and mediate
myocardial hypertrophy (62, 63). Moreover, the spectrum of
mi-RNAs that cooperate with impaired insulin sensitivity,
insulin signaling, ATP production, ketone bodies, free fatty
acids, and amino acids utilization, and thereby impact on
cardiac relaxation, contractile function and remodeling, is wide.

For instance, mi-RNA-26a,−103, -and 107 have been shown
to predominantly be regulators for insulin receptor function
and free fatty acid metabolism (53, 110–116). Additionally,
recent pre-clinical studies have revealed that mi-RNA-378 and
mi-RNA- 451 may play a crucial role in energy metabolism
control through interacting with carnitine O-acetyltransferase,
the peroxisome proliferator-activated receptor γ coactivator
1β, and LKB1/AMPK-signaling (117–119). However, there is
no strong evidence showing that the endothelial cell-derived
EVs were cargo for these molecules and this area remains
largely unexplored.

Ischemia/hypoxia are triggers for endothelial cells to derive
EVs in which were found 66 up-regulated microRNAs for
VEGF/Akt and Eph/Ephrin signaling, as well as NO-depending
pathway and 119 down-regulated microRNAs for TGF-beta
receptor complex and endogenous sterols’ synthesis (90, 110).
It has been noted that TGF-beta receptor complex pathway,
SMAD, and endogenous sterols’ synthesis play crucial roles in
initiating reperfusion-induced pathological events and fibrotic
response (111). Additionally, EVs accumulate in the ischemic
myocardium and regulate local inflammatory responses and
vascular function through Erk1/2 STAT, Akt/MAPK- NF-κB
signaling pathway (69, 112). Therefore, NLRP3 inflammasomes
and endothelial cell-derived EVs act as cargo for a wide spectrum
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FIGURE 4 | Molecular mechanisms ensuring the protective and deteriorating impact of endothelial cell-derived EVs on the target tissues (endothelium, vasculature,

and myocardium). ROS, reactive oxide species; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; MMP, matrix metalloproteinase; miRNA,

micro ribonucleic acid; MAPK, mitogen-activated protein kinase; PS, phosphatidylserine; NADF, nicotinamide dinucleotide phosphate; CCL2, chemokine ligand−2;

Rac1, Ras-related C3 botulinum toxin substrate 1; ERK1/2, extracellular signal-related kinase 1 and 2.

of active molecules, including inflammatory cytokines (TNF-α,
IL-6, IL-10, IL-18, CRP, HIF-1-α), regulatory peptides (NF-κB),
mi-RNAs (-125a,−125,−138,−146,−155a) act IL-1β and IL-18
pathway (69).

There is evidence showing that mi-RNA-21, after a delivery
into cardiac myocytes and endothelial cells, have reduced
apoptosis through decreases in Programmed Cell Death gene-
4 expression, inhibition of the extracellular inhibitor of the
sprout regulated kinase 1 (Spry1), and stimulation of the
expression of VEGF (53, 67, 113). In animal models, the
protective effect of microRNA-21 against ischemia-induced
myocardial damage was confirmed by diminished cell apoptosis
around the infarcted areas after treatment with antibody vs.
miRNA-21 (114). Therefore, mi-RNA-29 has interacted with
the genes encoding the extracellular matrix components, such
as collagen, fibrillin, and elastin, and thereby reduces the
risk of early rupture of the cardiac wall after myocardial
infarction (68). In fact, several mi-RNAs were found to be
involved in the provision of the myocardial fibrosis and
vascular elastosis through interplay with IGF-1/IGF-1 receptor

and PI3K/Akt/MAPK- NF-κB signaling pathways that lead to
disproportionate distribution and exaggerated arrangement of
type I collagen fibers in the extracellular matrix (66). Mi-RNA-
378 also had a critical role in the regulation of cardiac fibrosis and
the effects of biomechanical stress on cardiac remodeling (120–
123). It has been reported that mi-RNA-378 inhibited cardiac
fibrosis in EVs-dependent secretory manner, partially via its role
as regulator of p38 MAP kinase phosphorylation by targeting
MKK6 in cardiac fibroblasts (120).

Interestingly, there are some mi-RNAs (-146a,−155) that
were associated with various metabolic comorbidities (type
2 diabetes mellitus, abdominal obesity, resistance to insulin)
among patients with HF and adverse cardiac remodeling
(70, 108), but the role of endothelial cell-derived EVs in
transportation of these molecules still needs to be confirmed
further. In contrast, micro-RNA-126 being a component of
endothelial cell-derived EVs mediates protein kinase G activity,
VCAM-1 expression on the surface of endothelial cells, and
increases monocyte recruitment and differentiation (53, 90, 109–
119). Several specific mi-RNAs (-92a,−126, and−133) were
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determined as regulators of microvascular coronary endothelial
function and blood coagulation (120, 121), and mi-RNA-
138 and−155 were negatively associated with NO production
and cell-cell communication, respectively (122, 123). Animal
study has revealed that mi-RNA-17-3p-dependent inhibition
of TIMP3 can increase cardiac proliferation and endothelial
cell survival (124–131). Additionally, mi-RNA-124 and mi-
RNA−126-3p were determined to be key epigenetic regulators
of PI3K/Akt/MAPK- NF-κB signaling pathways in progenitor
endothelial cells, which are a core element of endogenous repair
systems (79). The number, activity, and survival of progenitor
endothelial cells were found to be significantly reduced in HF and
corresponded to poor clinical outcomes (132); consequently, the
role of several epigenetic regulators could be investigated in the
direction of creating new biomarker predictive models.

There are data that confirm the idea regarding the ability of
endothelial cell-derived EVs to be a driver for hypercoagulable
phenotypes at the acute phase of decompensated HF in contrast
with the well-known platelet-dependent pro-thrombotic state
that occurs in HF (133). Probably, endothelial cell-derived
EVs may ensure a control for neutrophil extracellular trap
formation and pro-thrombotic profile (protein C, thrombin
generation, tissue factor supply). However, the impact of
these findings on the clinical outcomes among patients with
different HF phenotypes and with/without sinus rhythm is not
fully understood.

EVs-DERIVED MICRO-RNAs AS
PREDICTIVE BIOMARKERS IN HF

It has been suggested that exosomal micro-RNAs can be used
as predictive biomarkers among HF patients (134). There is
evidence that circulating levels of exosomal mi-RNAs (92b-
5p,−192-5p, and−320a) in acute decompensated HF patients
were significantly higher than in healthy volunteers and that
the levels of exosomal mi-RNAs correlated positively with age
and cardiac cavities enlargement, and inversely with LVEF
and LV fraction shortening. Interestingly, the signature of
circulating cell-free mi-RNAs (-423-5p,−320,−22, and−92b)
was previously determined as a predictor of HF in patients
after dilated cardiomyopathy and myocardial infarction (135–
137). Additionally, mi-RNA-126 and mi-RNA-199a, which
were contained in EVs, were related to cardiovascular clinical
outcomes, whereas the levels of circulating free-RNAs were
not associated with HF-related events (138). However, there
are several controversies between the data received from
different investigators in this issue. For instance, there was
no significant difference between HFrEF patients and healthy
volunteers in the expression of circulating mi-RNAs between
EVs and unfractionated serum (139). In contrast, mi-RNA-
192-5p expression was significantly elevated in patients who
developed HFpEF within 1 year after acute myocardial
infarction compared with healthy volunteers (140). Thus,
the discriminative ability of exosomal micro-RNAs remains
uncertain and requires further evaluation. Finally, it is not

clear whether different phenotypes of HF (HFrEF and HFpEF)
are the result of altered cardiac and vascular repair due
to certain epigenetic responses, which are yielded by co-
morbidities, such as type 2 diabetes mellitus and abdominal
obesity (141). In this context, the role of endothelial cell-
derived EVs that transfer several biological active molecules,
including non-coding RNAs, is not fully understood and should
be studied further.

FUTURE DIRECTIONS AND CHALLENGES
IN EV RESEARCH

The transcriptomics of EVs, including signature of EV-derived
microRNAs and RNA-derived fragments, is disputed as a
promising source of biomarkers in liquid biopsies (142).
Future studies that could clearly explain the potency of EVs
as biomarkers for personalized care of HF are required.
Probably brand new technological solutions, such as an
integrated microfluidic exosome analysis platform, will become
powerful non-invasive diagnostic tools for easy screening and
monitoring of the EV-based Liquid biopsy (143). There are
expectations that EVs will be a promising tool for transfer
of the drugs and vector signals to the target cells to regulate
many processes involved in myocardium and vasculature
reparation, endothelial homoeostasis, and adaptations to
myocardial injury (144). These advances have made EV-based
point-of-care applications possible and promising, while new
devices for use in liquid biopsy need to be developed in
the future.

CONCLUSION

Endothelial cell-derived EVs have been identified as enveloped
particles that are very heterogeneous in size, composition,
and biogenesis that play a pivotal role in the evolution
of HF, including cardiac and vascular remodeling. Several
co-morbidities, such as type 2 diabetes mellitus, insulin
resistance, and abdominal obesity, have been found to
be closely related to the deterioration of repairs, and
an increase in ischemia, inflammation, fibrosis, cardiac
hypertrophy, accelerate atherosclerosis, and thereby to
mediate shaping of HFpEF or HFrEF. EVs produced by
progenitor and mature endothelial cells are co-regulators
of these responses influencing HF nature evolution and
probably having predictive potency to clinical outcomes.
Large pre-clinical and clinical studies are needed to further
understand the role of endothelial cell-derived EVs in
the pathogenesis of HFrEF/HFpEF and prediction of
HF-related events.
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