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In cardiovascular surgery, reconstruction and replacement of cardiac and vascular

structures are routinely performed. Prosthetic or biological materials traditionally used

for this purpose cannot be considered ideal substitutes as they have limited durability

and no growth or regeneration potential. Tissue engineering aims to create materials

having normal tissue function including capacity for growth and self-repair. These

advanced materials can potentially overcome the shortcomings of conventionally used

materials, and, if successfully passing all phases of product development, they might

provide a better option for both the pediatric and adult patient population requiring

cardiovascular interventions. This short review article overviews the most important

cardiovascular pathologies where tissue engineered materials could be used, briefly

summarizes the main directions of development of these materials, and discusses the

hurdles in their clinical translation. At its beginnings in the 1980s, tissue engineering (TE)

was defined as “an interdisciplinary field that applies the principles of engineering and

the life sciences toward the development of biological substitutes that restore, maintain,

or improve tissue function” (1). Currently, the utility of TE products and materials are

being investigated in several fields of human medicine, ranging from orthopedics to

cardiovascular surgery (2–5). In cardiovascular surgery, reconstruction and replacement

of cardiac and vascular structures are routinely performed. Considering the shortcomings

of traditionally usedmaterials, the need for advancedmaterials that can “restore, maintain

or improve tissue function” are evident. Tissue engineered substitutes, having growth

and regenerative capacity, could fundamentally change the specialty (6). This article

overviews the most important cardiovascular pathologies where TE materials could be

used, briefly summarizes the main directions of development of TE materials along with

their advantages and shortcomings, and discusses the hurdles in their clinical translation.
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CLINICAL NEED FOR ADVANCED
MATERIALS IN CARDIOVASCULAR
SURGERY

Congenital Heart Disease
Congenital heart defects affect ∼9 of 1,000 newborns (7)
and often require corrective surgery at an early age. Invasive
treatment of congenital cardiac defects results in an increased life
expectancy and can significantly improve quality-of-life (8).

Repair with a prosthetic patch is the cornerstone of
reconstruction of diseased or defective cardiac and vascular
structures in pediatric cardiac surgery. Patches are used
for the closure of atrial or ventricular septal defects, for
complex reconstructions in atrioventricular canal defects; in
right ventricular outflow tract reconstruction in Tetralogy of
Fallot; for aortic reconstruction in interrupted aortic arch
or hypoplastic left heart syndrome; or when establishing
cavo-pulmonary connection is required (9–13). As most of
these operations are performed at very young or even
neonatal age, repair must stay effective and durable in a
rapidly changing physiological environment. Traditionally used
materials—autologous or xenogeneic pericardium, or prosthetic
materials like Dacron (DuPont, Wilmington, DE) or PTFE
(polytetrafluoroethylene)—are suboptimal in this respect as they
tend to calcify over time and cannot grow with the child (14–16).

As children will inevitably outgrow a prosthetic heart valve
(PHV) implanted at young age, reconstruction of native valves is
always preferred over replacement whenever feasible. However,
if reconstruction fails or appears not possible, replacement
of the dysfunctional valve with a PHV becomes necessary.
In childhood, most commonly the pulmonary valve requires
replacement, often using a right ventricle-to-pulmonary artery
conduit (17). Unfortunately, none of the currently available
allogenic or xenogeneic conduits can be considered ideal, as
they cannot grow and degenerate on the long term (18–21).
Besides pathologies of the pulmonary valve and right ventricular
outflow tract, congenital aortic stenosis (AS) often necessitates
valve replacement in the pediatric population. Although balloon
palliation can buy some time until valve repair or replacement
(22), patients with congenital AS often require a sequence of re-
operations until they reach adulthood (23, 24), largely due to the
absence of an optimal valve substitute.

Acquired Valvular Heart Disease
Parallel to aging of the adult population, degenerative valvular
heart diseases are becoming increasingly prevalent in the
western world (25). Additionally, in developing countries,
rheumatic valvular heart disease causes a substantial and often
underestimated burden (26). Although valve replacement with
a PHV improves symptom status and long-term survival,
currently available heart valve prostheses are also associated with
certain complications (27, 28). Mechanical PHVs necessitate
lifelong anticoagulation, which increases the risk of bleeding
and thromboembolic events and is suboptimal for women in
childbearing age (29, 30), while the limited long-term durability
and inherent structural degeneration of bioprosthetic valves
remain a major issue for the younger patient population (31, 32).

Vascular Grafts
In coronary artery bypass grafting, peripheral vascular
reconstructions or when creating arteriovenous shunts for
renal dialysis, small caliber vascular grafts are required. Although
autologous vessels harvested from other parts of body are
potentially ideal for this purpose, they are not always available
or eligible for use. Traditionally used prosthetic grafts have
numerous limitations due to their limited patency (33–35) and
increased susceptibility for infections (36). This, together with
the magnitude of the affected population necessitates intensive
research for alternative solutions (37).

OVERVIEW OF TISSUE ENGINEERED
SOLUTIONS

Tissue engineering, by providing advanced materials with
physiological function and ability for growth and regeneration,
could potentially fulfill these clinical needs. To create a TE
product, the following are required: (i) a (biodegradable) scaffold
to guide tissue formation; (ii) cells able to populate the scaffold;
and (iii) (in the classical way of TE) a bioreactor, which simulates
a physiological environment to augment tissue formation.
Scaffolds used in cardiovascular TE can be from various origin.
The most commonly used scaffold materials are summarized in
(Table 1). Similarly, multiple cell-types might be used: among
others, mesenchymal stem cells, endothelial progenitor cells or
induced pluripotent stem cells can be utilized during the TE
process (56). Bioreactors are specifically designed containers
intended to provide an optimized, controlled environment where
cell-scaffold interaction can take place (57). During “classical”
TE, scaffolds are seeded with progenitor cells and incubated
in vitro in a bioreactor. Following a period of maturation
under controlled conditions, the TE product is implanted to
the patient. Besides this “conventional” approach, various other,
“incomplete” methods exist, where one or more steps of the
“conventional” TE process are bypassed (58).

Some “TE” products are already cleared for clinical use:
decellularized valves, porcine small intestinal submucosa and
decellularized bovine pericardium (SynerGraft R©, CryoLife
Inc, Kennesaw, GA, United States; CorMatrix R©, CorMatrix
Cardiovascular, Roswell, GA, United States; CardioCel R©

Bioscaffold, LeMaitre Vascular, Burlington, MA, United States)
are already parts of cardiovascular surgeon’s armamentarium.
Apart from decellularized allografts and porcine small intestinal
submucosa, all other products are treated with glutaraldehyde
(59) which can have a negative impact on cellular ingrowth
following implantation (60). Furthermore, it is unclear if the
above mentioned decellularized scaffolds degrade at all and
whether they can truly be considered as TE products. Besides,
all these products have inherent shortcomings. Allogenic
tissues are generally cumbersome to procure and might still
fail in the long term (61). Xenogeneic tissues can provoke
inflammatory response leading to early degeneration and
calcification. The first commercially available decellularized
porcine valve dramatically failed due to a strong inflammatory
response resulting in rapid degeneration and early structural
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TABLE 1 | Most commonly used scaffold types in cardiovascular tissue engineering with examples.

Scaffold type Examples

Implant type Implant position Species Reference

Biological origin

Decellularized vessels or valves

Allogenic Aortic root Aortic Human (38)

Xenogeneic Aortic root Pulmonary Ovine (39)

Acellular or decellularized

other xenogeneic tissues

Pericardium Patch Various Human (40)

Small intestinal submucosa Patch Intracardiac Human (41)

Valve Tricuspid Ovine (42)

Patch Aortic arch Human (43)

Patch Right ventricular wall Ovine (44)

Allogenic or autologous

engineered tissue

Valved conduit Pulmonary Canine (45)

Patch Pulmonary Human (46)

Vascular graft A-V shunt Human (47–49)

Valve Aortic Ovine (50)

Synthetic origin

Valved conduit Pulmonary Ovine (51, 52)

Valve Aortic Ovine (53)

Vascular graft Cavo-pulmonary

connection

Human (54)

Valve Pulmonary Ovine (55)

failure in pediatric patients (62). Although a promising concept,
acellular porcine small intestinal submucosa patches can also
provoke an inflammatory response and can demonstrate early
degeneration or calcifications leading to valve insufficiency when
used for aortic valve repair (63, 64), or aneurysm formation
when used for aortic reconstruction in pediatric patients (65).
Decellularized bovine pericardium, though treated with low
concentrations of glutaraldehyde (66), was found to be safe
and effective in the mid-term when used for patch repair
of complex congenital cardiac anomalies (40) and exhibited
greater strain resistance compared to porcine small intestinal
submucosa (67). Nevertheless, the possibility of calcification
of the decellularized bovine pericardium has also been raised
recently (68) and the quest for the “ideal” tissue engineered
material continues.

IN SITU TISSUE ENGINEERING WITH
POLYMER SCAFFOLDS

During in situ TE, an unseeded biodegradable scaffold is
implanted to the recipient. After implantation, the scaffold will
be populated in vivo by cells scrambled from the circulation,
with the recipient’s own body acting as a bioreactor. This
simplified approach saves substantial costs and prevents potential
complications associated with incubating the scaffold in a
bioreactor. Neo-tissue formation begins only after scaffold

implantation and can occur under completely physiological shear
and pressure conditions (69).

Compared to biological materials, polymers materials are
relatively easy to produce, handle, sterilize or store, and they can
be manufactured in virtually any size or form. This creates the
possibility of manufacturing directly off-the-shelf available TE
cardiovascular implants and increases the interest in in situ TE
using polymer scaffolds.

However, this technique also has certain shortcomings which
have to be considered. During in situ TE, neo-tissue formation
occurs in a less-controlled environment and cells repopulating
the scaffold must be gathered from high blood flows which
might not be ideal (70). Furthermore, a delicate balance between
the pace of scaffold degeneration and neo-tissue formation is
required to achieve an optimal result. Fortunately, in contrast to
TE products from biological origin, the design of the prosthesis
and the characteristics of the polymer material such as scaffold
composition, scaffold or fiber thickness or fiber orientation can
be relatively easily modified, if necessary (71–75).

Heart valve constructs from polymer scaffolds are currently
under investigation in preclinical experiments. In sheep, these
scaffolds have demonstrated satisfactory durability and function
on mid- term when implanted in the pulmonary position as a
surgical prosthesis (55) or as a valved conduit (76), or when used
as a transcatheter aortic valve (53). Based on these encouraging
results, the first-in-man investigations of the polymer scaffolds
has recently been started (54).
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CHALLENGES IN CLINICAL TRANSLATION

As any new technology awaiting clinical introduction (77), TE
products in cardiovascular surgery must find a therapeutic gap,
a “niche,” where no ideal treatment option exists, and where the
advantages of the new technology can be proven. Although the
shortcomings of currently used materials are evident and some
“TE” products are already approved and used in the clinical
setting, there are many hurdles to overcome before TE materials
can be routinely used in cardiovascular surgery (78).

Cardiovascular implants have to fulfill strict safety and
performance criteria during their regulatory assessment before
clinical introduction (79–81). During regulatory assessment,
standards of the International Organization for Standardization
(ISO) are widely used. The ISO 5840 standard on heart
valve prostheses provides guidance on in vitro and in vivo
hemodynamic and durability testing, as well as Objective
Performance Criteria (OPC) for the assessment of complications
after implantation (82). However, regulatory assessment of
TE implants is complicated. During manufacturing, achieving
consistence in the biological properties of cell-based products
between batches is difficult, rendering TE products less
reproducible than conventional cardiovascular implants.
Furthermore, difficulties in sterilization, packaging and storage
of cell-based TE products further limit their regulatory approval
and widespread clinical use. On the other hand, in situ TE
cardiovascular implants cannot be considered as “final products,”
as their properties are expected to change after implantation
while they transform into normally functioning living tissue.
Of note, this transformation might not be the same in all
subjects receiving the same implant and tissue formation
might occur differently in animals used for pre-clinical in
vivo testing than in human recipients (83). These issues make
the interpretation of the results derived from in vitro and in
vivo testing cumbersome, and together with the plethora of
approaches and techniques used for manufacturing, makes the
regulatory assessment of TE cardiovascular implants difficult.
To date, no specific ISO standard on TE heart valves exist
and it is not clear how these products should be classified
or assessed.

Besides, considering these unique properties of TE
cardiovascular implants, important ethical issues might arise
when it comes to in human testing or clinical introduction of
these products (84). Irrespective of the local circumstances or the

clinical need, the risk of implanting a prosthesis that might fail
must always be carefully weighed against the perceived benefits
(26, 85, 86).

Another important aspect of successful clinical introduction
is the cost-effectiveness of the novel device or technique,
compared to standard treatment (87). Although development
of TE materials are expensive, in-situ TE valves constructed
from biodegradable polymer scaffolds could be potentially
cost effective, according to a recent early health technology
assessment study (88).

PERSPECTIVES

Materials used in cardiovascular surgery must fulfill a few
essential requirements: they must be hemostatic, hold sutures,
be resistant to pressure and stress while being tissue-friendly
and resistant to thrombosis. Additionally, an ideal material has
normal tissue function and capability for growth and self-repair.

TE materials can potentially fulfill all of these essential
requirements and in situ TE using polymer materials can offer
a simplified and potentially cost-effective method to produce off-
the-shelf available, TE cardiovascular implants. Although initial
results are promising (55), future research is necessitated and
there are still many obstacles to overcome before the use of
these materials can become a part of the everyday practice of
cardiovascular surgery (89). The use of novel cell free techniques
to enhance the process of regeneration in TE include adding
exosomes (90), hydrogels (91), direct (92, 93), or indirect induced
pluripotent stem cell reprogramming using gene editing (94, 95)
as well as stimulating myocardial cell division (96). Adding such
strategies holds great promise in the future.
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