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Chronic diseases, including heart failure (HF), are often accompanied with skeletal

muscle abnormalities in both quality and quantity, which are the major cause of

impairment of the activities of daily living and quality of life. We have shown that skeletal

muscle abnormalities are a hallmark of HF, in which metabolic pathways involving

phosphocreatine and fatty acids are largely affected. Not only in HF, but the dysfunction of

fatty acid metabolism may also occur in many chronic diseases, such as arteriosclerosis,

as well as through insufficient physical exercise. Decreased fatty acid catabolism affects

adenosine triphosphate (ATP) production in mitochondria, via decreased activity of

the tricarboxylic acid cycle; and may cause abnormal accumulation of adipose tissue

accompanied with hyperoxidation and ectopic lipid deposition. Such impairments of lipid

metabolism are in turn detrimental to skeletal muscle, which is hence a chicken-and-egg

problem between skeletal muscle and HF. In this review, we first discuss skeletal

muscle abnormalities in HF, including sarcopenia; particularly their association with lipid

metabolism and adipose tissue. On the other hand, the precise mechanisms involved

in metabolic reprogramming and dysfunction are beginning to be understood, and an

imbalance of daily nutritional intake of individuals has been found to be a causative factor

for the development and worsening of HF. Physical exercise has long been known to be

beneficial for the prevention and even treatment of HF. Again, the molecular mechanisms

by which exercise promotes skeletal muscle as well as cardiacmuscle functions are being

clarified by recent studies. We propose that it is now the time to develop more “natural”

methods to prevent and treat HF, rather than merely relying on drugs and medical

interventions. Further analysis of the basic design of and molecular mechanisms involved

in the human body, particularly the inextricable association between physical exercise and

the integrity and functional plasticity of skeletal and cardiac muscles is required.
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INTRODUCTION

Chronic diseases, particularly heart failure (HF), cause qualitative
and quantitative abnormalities, not only in the target organ but
also in distant organs, such as the skeletal muscle (1, 2). Skeletal
muscle abnormalities impair the activities of daily living and
the quality of life, which are major causes of the impairment
of exercise tolerance and the poor prognosis of patients with
HF (1). However, circulatory failure is often followed by
hypoperfusion, hypoxia, inflammation, and oxidative stress,
and even by an imbalance of metabolic catabolism/anabolism,
aggravatedmuscle wasting, including cachexia, and the activation
of some neurohumoral factors (1–5). Sarcopenia is also a skeletal
muscle disease (6). Patients with HF often have sarcopenia, in
which HF and sarcopenia cooperatively worsen skeletal muscle
conditions (7) (Figure 1).

The skeletal muscle utilizes glycolysis (anaerobic) and
mitochondria (aerobic) to generate adenosine triphosphate
(ATP). Our research group previously demonstrated that
skeletal muscle mitochondria are the major target of HF, and
mitochondrial dysfunction may lead to an accumulation of
lipids in the skeletal muscle (8–10). Abnormal accumulation of
adipocytes then affect whole body condition (11). In this review,
we first summarize our current knowledge on the abnormalities
of skeletal muscle and adipose tissue in HF and sarcopenia;
and then discuss possible methods to prevent and/or treat such
abnormalities, as well as the exercise intolerance observed in HF.

ABNORMALITIES OF SKELETAL MUSCLE
IN HF

ATP is the energy source for the contraction of skeletal
muscle. However, only small amounts of ATP are present
in the cytoplasm of skeletal muscle cells in the steady state
(∼8 mmol/kg wet weight of muscle). Needless to mention,
the Embden-Myerhof glycolysis pathway generates ATP from
ADP anaerobically. Skeletal muscle is rich in mitochondria,
which produce ATP from ADP aerobically via oxidative
phosphorylation (OXPHOS) (12, 13). On the other hand,
phosphocreatine (PCr) serves as a rapidly mobilizable reserve in
the skeletal muscle, as well as in the brain, to regenerate ATP
from ADP anaerobically. PCr is generated from creatine by its
phosphorylation, which requires ATP.

Using a cycle ergometer based on magnetic resonance
spectroscopy (MRS), our research group previously measured
energy metabolism of the quadriceps muscles of patients with
chronic HF (unless patients did not have severe circulatory
dysfunction) and healthy individuals (14, 15). We found that
PCr, but not ATP, in the skeletal muscle becomes almost depleted
during maximal systemic exercise both in patients and normal
subjects. However, rates of the PCr decrease were significantly
more rapid in patients with HF than in normal individuals, in
which rates of PCr exhaustion correlated with the impairment of
exercise tolerance (peak oxygen uptake and anaerobic threshold)
of patients. Our results indicated that patients with HF may have
impaired metabolism in their skeletal muscles, which primarily

affects PCr exhaustion. The molecular bases of this rapid PCr
exhaustion remains to be clarified; i.e., whether it is caused
by dysfunction of PCr/creatine metabolism on its own or by
insufficient production of ATP either anaerobically (glycolysis) or
aerobically (mitochondrial OXPHOS). The identification of such
information will then provide novel therapeutic targets of HF.

Skeletal muscle atrophy and weakness also occur in patients
with HF, and correlates with their poor prognosis (16, 17).
Chronic HF is generally associated with enhanced metabolic
catabolism and reduced anabolism (18–26). For example,
an increase in blood levels of catabolic hormones (cortisol,
catecholamines, and angiotensin II) and a decrease in anabolic
hormones (dehydroepiandrosterone sulfate, testosterone, and
insulin-like growth factor I) have been shown to be closely
associated with muscle atrophy, disease severity, and the poor
prognosis of patients (18–20, 22). In particular, testosterone
is tightly linked to exercise tolerance (22), and the efficacy of
testosterone replacement therapy has been proven in various
clinical trials. However, as testosterone often shows side effects,
nonsteroidal androgen receptor agonists are being studied (27,
28). On the other hand, in a mouse HF model, molecules of
the ubiquitin-proteasome system (atrogin 1 and muscle RING-
finger protein-1) were shown to be upregulated and to cause
further muscle atrophy (29). Moreover, skeletal muscle cell death
is enhanced in patients with HF (29). Together with the above
issues, therefore, both the qualitative (metabolic impairment)
and quantitative (muscular atrophy) abnormalities of the skeletal
muscle are hallmarks of patients with HF (Figure 1).

SARCOPENIA AND CACHEXIA IN HF

Sarcopenia was previously defined as a “syndrome” in 2010 (30),
but is now recognized as a “skeletal muscle disease” (6). On
the other hand, the diagnostic criteria of the Asian Sarcopenia
Working Group includes lean limbmass and lean skeletal muscle
mass (31). Furthermore, in the European Society of Cardiology
guidelines for the diagnosis and treatment of acute and chronic
HF, sarcopenia is defined as follows (32).

“Skeletal muscle wasting, when associated with impaired
mobility and symptoms (termed sarcopenia ormyopenia), occurs
in 30–50% of patients with the HF reduced ejection fraction
(HFrEF) (33). In its most severe form, it is associated with frailty
and poor morbidity and mortality (34). Potential treatments
may include appetite stimulants, exercise training (35), and
anabolic agents, including testosterone, in combination with
the application of nutritional supplements, and anti-catabolic
interventions, although none is of proven benefit and their safety
is unknown” (36).

Sarcopenia worsens HF (7). Pathologically, there is a crucial
difference between HF and sarcopenia, i.e., HF results in
a decrease in slow muscle fibers (oxidative fibers), whereas
sarcopenia results in a decrease in fast muscle fibers (fast
glycolytic fibers). Moreover, sarcopenia lacks any early diagnostic
markers (37). In a study of 200 patients with HF in which
39 patients (19.5%) had sarcopenia, oxygen uptake (exercise
capacity), 6-min walking distance, left ventricular ejection
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FIGURE 1 | Summary of the association between skeletal muscle abnormalities and heart failure. Skeletal muscle abnormalities (mitochondrial dysfunction and

muscular atrophy/muscular weakness) in heart failure and sarcopenia are associated with fat accumulation and abnormalities of adipokines caused by an unhealthy

lifestyle, leading to reduced exercise tolerance, and a poor prognosis. QOL, quality of life; ADL, activities of daily living.

fraction, grip strength, and quadriceps strength were all
significantly lower in the patients with sarcopenia than in those
without sarcopenia (33). Another study also suggested a higher
risk of mortality in patients with HF with sarcopenia, by further
reducing the peak oxygen uptake (38). On the other hand,
cachexia is accompanied by a loss of body weight (fat, skeletal
muscle, and bone tissue), loss of appetite, and loss of body
composition and function (39). Cachexia thus shares significant
similarities with sarcopenia, and can be considered as a secondary
sarcopenia. It was reported that there is a loss of skeletal muscle
mass without a loss of body weight (sarcopenia) in early HF,
which is often followed by a loss of body weight (cachexia) (40).
Therefore, the occurrence of cachexia in patients with HF is a
biomarker predictive for an increase in severity of chronic HF
(16). However, the molecular links among sarcopenia, cachexia,
and HF, with regard to the precise molecular/biochemical
mechanisms, still remain largely elusive (Figure 1).

ADIPOSE TISSUES AND FATTY ACIDS
IN HF

White Adipose Tissue (WAT) and Brown
Adipose Tissue (BAT)
Adipose tissues are crucial in regulating cardiovascular functions,
primarily through the secretion of adipocytokines controlling the
cardiovascular endocrine and paracrine systems (11).

WAT is an endocrine organ that secretes adipokines, besides
its role as an energy store (41, 42). When obesity occurs, it

often triggers the secretion of adipokines, as well as induces
inflammatory responses, leading to insulin resistance of the
skeletal muscle and liver (11). Our previous studies have shown
that patients with obesity or metabolic syndrome demonstrate
an accumulation of visceral fats and white adipocytes, as well as
systemic insulin resistance and the dysfunction of skeletal muscle
mitochondria (10, 43–49). Intriguingly, patients with chronic
HF and mouse HF models also demonstrate systemic insulin
resistance (50–52). However, the molecular details as to how
systemic insulin resistance often occurs in patients with HF still
await to be clarified.

Shimizu et al. (53–55) have recently demonstrated that
chronic inflammation in visceral fat causes systemic insulin
resistance and exacerbates HF. They showed that visceral fat
inflammation in patients with HF is caused by enhanced
sympathetic nerve signaling, excessive fat melting, the
production of reactive oxygen species (ROS), and the DNA
damage-induced activation of the p53-nuclear factor-kappa
B pathway. Blockade of this pathway suppressed visceral fat
inflammation and improved systemic insulin resistance and
cardiac function. Moreover, systemic insulin resistance may also
be associated with mitochondrial dysfunction in the skeletal
muscle (43–46, 48, 49, 56).

BAT is important for body heat production (57). However,
recent studies demonstrated the more profound roles of BAT as
a center controlling glucose and lipid metabolism of the whole
body (58–63). On the other hand, impairment of BAT in obesity
increases the number of lipid droplets and reduces the amount
of mitochondria in BAT cells (i.e., “whitening” of BAT) (64). In
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contrast, when vascular endothelial growth factor α is expressed
in the whitening BAT, its “rebrowning” occurs, which helps to
improve insulin resistance of the whole body (64). These changes
are reversible (64). Furthermore, low body temperature is an
independent marker of the poor outcome of patients with HF
and a reduced EF (65). Moreover, a decrease in body temperature
predicts the time of rehospitalization and poor survival rate (66).
Therefore, BAT impairment is also crucial to the worsening of HF,
for which the precise molecular mechanisms await to be clarified.

Ectopic Fat Deposition in the Skeletal
Muscle of Patients With HF
Mechanisms by which cardiovascular diseases progress include
the loss of metabolic balance between glycolipid synthesis
and energy consumption in insulin-sensitive organs (67). On
the other hand, the ectopic deposition of fats, which is
causative of cardiovascular diseases, may also occur regardless of
glucose/insulin tolerance (68). Moreover, ectopic fat deposition
in tissues other than the heart (e.g., pericardial fats), including
skeletal muscle, is also thought to be involved in HF pathology
(11, 69) (Figure 1).

Reduced fatty acid oxidation in skeletal muscle mitochondria
was observed in HF animal models (70–72). Using proton MRS,
we measured intramyocellular lipid (IMCL) levels; and found
that it is significantly increased in the skeletal muscle of patients
with HF compared with healthy subjects, and is hence closely
associated with lowered skeletal muscle energy metabolism and
reduced whole-body exercise tolerance (8). Consistently, levels
of three-hydroxyacyl-CoA dehydrogenase, a key enzyme of β-
oxidation, were significantly reduced in the skeletal muscle of
patients with HF and of an animal model (70, 71, 73, 74).
Such skeletal muscle abnormalities of HF mice were shown
to associate with systemic insulin resistance (50–52). Likewise,
the amounts of IMCL in skeletal muscles were associated with
insulin resistance in type 2 diabetic patients (75). In this disease,
exercise therapy and diet therapy reduced lipid droplet levels and
improved insulin resistance (43). Therefore, adequate exercise
and a proper diet appear to be an efficient method to treat HF
and associated insulin resistance (Figure 1).

TARGETING SKELETAL MUSCLE
ABNORMALITIES IN HF THERAPY

The following are possible interventions for patients with HF via
lifestyle improvement (exercise/diet), drugs (exercise mimetics),
and proteins/peptides, to improve the integrity of their skeletal
muscle and adipose tissue.

Lifestyle Interventions
Exercise Training
Continuous exercise training, including cardiac rehabilitation,
has many beneficial effects to treat heart diseases (76). Endurance
or resistance training of patients with HF is recommended by the
AmericanHeart Association and the Japanese Circulation Society
(77, 78). Recently, moderate to high intensity interval training
has been studied as an exercise prescription of HF (79, 80),

as alternatives to anaerobic (about 90% of the maximum heart
rate) and/or aerobic exercises (81). Elucidation of these effects
and mechanisms will help further develop more precise exercise
prescriptions for HF.

Lipids, Particularly Linoleic Acid
Higher levels of plasma eicosapentaenoic acid, an essential
omega-3 fatty acid, is closely associated with a reduced risk of
HF, with both reduced and preserved EF (82). On the other
hand, the combined supplementation of l-alanyl-l-glutamine and
polyunsaturated fatty acids has been shown not to improve
exercise performance or muscle function (83). Linoleic acid is an
essential omega-6 fatty acid and is the major fatty acid moiety
of cardiolipin, which is central to the assembly of mitochondrial
OXPHOS components. We found that cardiolipin content in
cardiac mitochondria becomes significantly lower in HF model
mice, to be consistent with lowered OXPHOS activities (84). We
thus fed HF model mice with a relatively high amount of linoleic
acid (∼6 mg/kg body weight/day) in their daily food for 4 weeks;
and found that such an amount of daily intake of linoleic acid
improves both mitochondrial and cardiac functions of HF mice,
in which the assembly of the complex II subunits and the complex
III2/complex IV supercomplex of mitochondrial OXPHOS were
improved. Consistent with our results, a recent prospective study
also demonstrated that a high linoleic acid concentration in blood
is associated with a lower risk of HF incidence in aged men
(85). On the other hand, it should be noted that an excess intake
of linoleic acid is well-known to be harmful to health, such as
by causing arteriosclerosis (86). However, ironically, we found
that among the different fatty acids, only the dietary intake of
linoleic acid is significantly lower in New York Heart Association
(NYHA) class III patients compared with class II patients (84).

Interventions Using a Device or Surgery
Cardiac resynchronization therapy, a left ventricular assist
device, and percutaneous transluminal mitral commissurotomy,
ameliorate hemodynamics immediately after surgery for HF, but
do not immediately improve exercise intolerance and take longer
than exercise training (87–89). This suggests that skeletal muscle
abnormalities mediate hemodynamics and exercise tolerance,
and further studies should be performed to clarify this point in
the future.

Drug Treatment Using Exercise Mimetics
Available Pharmacological Treatments

Renin-angiotensin system (RAS) inhibitors
Angiotensin-converting enzyme inhibitors, angiotensin receptor
blockers (ARBs), antihypertensive drugs can help improve
skeletal muscle abnormalities and the exercise intolerance of
patients with HF (90). We have shown previously that excessive
ROS production induced by activating RAS in skeletal muscle
is a possible mechanism causing skeletal muscle abnormalities
in HF mice (50–52); and demonstrated that (pro)renin receptor
inhibitors, a decoy peptide of the handle region of mouse
(pro)renin, and ARBs can improve insulin resistance, including
in the skeletal muscle of HF mice (50–52). We also showed that
the administration of angiotensin II, the main effector molecule

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 May 2020 | Volume 7 | Article 79

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Takada et al. Multi-Organs Abnormalities in Cardiovascular Medicine

of the RAS, induces similar skeletal muscle abnormalities to HF,
which can be improved by inhibiting NAD(P)H-derived ROS
production (91, 92).

Dipeptidyl peptidase 4 (DPP-4) inhibitor and glucagon-like

peptide-1 (GLP-1)
Treatment with the incretin hormone GLP-1 (93) was reported
to improve exercise intolerance of patients with HF (94). We
analyzed whether the DPP-4 inhibitor, which increases GLP-1
levels (95), as well as an agonist against the GLP-1 receptor,
improves skeletal muscle abnormalities and exercise intolerance
in HF model mice. Our results indicated that these drugs are
effective in improving mitochondrial biogenesis in the skeletal
muscle of HF mice, in which lowered exercise capacity and
mitochondrial function/volume, and altered fiber types of skeletal
muscles (a shift toward the fast-twitch fiber type) are restored to
a certain extent, without notably affecting infarct size and cardiac
function (74).

Sodium-glucose cotransporter 2 (SGLT2) inhibitors
SGLT2 is a transporter that is expressed in the proximal tubules
of the kidneys and reabsorbs ∼90% of glomerular filtered
glucose. SGLT2 inhibitors promote urinary glucose excretion,
resulting in hypoglycemic and weight-loss effects independent
of insulin action. The SGLT2 inhibitor ipragliflozin improved
fatty liver syndrome of ob/ob obese mice fed a high-fat diet
(96). This suggests that the increased energy storage capacity of
adipocytes may be associated with the suppression of ectopic fat
accumulation in the liver. On the other hand, treatment with
an SGLT2 inhibitor was shown to alleviate disease progression,
including the death of patients with HF with a reduced EF
regardless of the presence or absence of diabetes (97). Our recent
study showed that the SGLT2 inhibitor empagliflozin improves
fatty acid oxidation in skeletal muscle mitochondria of HF mice
(71). However, molecular links between SGLT2 and HF still
remain largely elusive.

Endocrine Factors
Myokines
Epidemiological studies have shown that continuous physical
exercise exerts a variety of medical benefits throughout the
body and contributes to prolonging the lifespan of an individual
(98). More than 10 years ago, it was reported that various
hormone-like bioactive substances are secreted from the skeletal
muscle. Pedersen et al. (99) suggested that cytokines and other
peptides that are produced, expressed, and released by muscle
fibers and exert either paracrine or endocrine effects should
be classified as “myokines.” Very interestingly, brain-derived
neurotrophic factor (BDNF) is secreted from the skeletal muscle
upon physical exercise and is thus categorized as a myokine
(100). We found that serum levels of BDNF were significantly
lower in patients with HF than healthy subjects (101). Univariate
analysis demonstrated a significant positive correlation between
serum BDNF levels and peak VO2 (oxygen uptake) among all
study subjects, including patients with HF (101). By multivariate
analysis, peak VO2 was identified as an independent determinant
of serum BDNF level (99). We have moreover shown that

low levels of serum BDNF statistically correlate with the
poor outcomes of patients with HF (102). Decreased skeletal
muscle BDNF correlated with decreased exercise capacity in
HF model mice (70). We designed a treatment to improve the
impaired exercise capacity as well as the dysfunction of skeletal
muscle mitochondria of myocardial infarction (MI) mice. At
2 weeks after inducing MI, we divided mice into two groups:
one was treated with recombinant human BDNF (rhBDNF)
by daily subcutaneous injections for an additional 2 weeks,
and the other was injected with empty vehicle. At 4 weeks,
(i.e., after 2 weeks of treatment), we found that the rhBDNF-
treated MI mice demonstrated improved cardiac mitochondrial
respiration and exercise intolerance compared with control
MI mice (70). Molecularly, rhBDNF increased mitochondrial
biogenesis and fatty acid oxidation via the upregulation of AMP-
activated protein kinase (AMPK) α-peroxisome proliferator-
activated receptor γ coactivator 1α (PGC-1α) signaling in skeletal
muscle (70). Our studies were the first to show that BDNF
expression is decreased in the skeletal muscle of HF mice after
the induction ofMI, and that rhBDNF improves exercise capacity
and skeletal muscle mitochondrial dysfunction of the HF mice.

Apelin is another myokine produced by skeletal muscle upon
physical exercise that is beneficial against exercise tolerance
(103). Serum levels of apelin are also reduced in an age-
dependent manner in humans and rodents. Mice deficient in
either apelin or its receptor demonstrated substantial alterations
in muscle function during aging. Molecularly, apelin promotes
mitochondrial biogenesis, autophagy, and anti-inflammatory
responses of myofibers, and also enhances the regeneration
potential of muscle stem cells. Therefore, similar to BDNF,
apelin can be used to diagnose early sarcopenia, and provides
an excellent therapeutic target to prevent age-associated muscle
weakness (103).

Myonectin is a myokine that is upregulated in skeletal muscle
and blood by exercise (104). Myonectin is an endurance exercise-
induced myokine that ameliorates acute myocardial ischemic
injury by suppressing apoptosis and inflammation in the heart
(105). Likewise, BDNF protects against cardiac dysfunction after
MI (106). Thus, these data suggest that myonectin and BDNF
are myokines that mediate the beneficial actions of exercise on
cardiovascular health.

Adipokines
Adiponectin is an antidiabetic adipokine. Its receptors possess a
seven-transmembrane topology with the amino terminus located
intracellularly, which is opposite to that of G-protein-coupled
receptors. Iwabu et al. provided lines of evidence that adiponectin
induces extracellular Ca2+ influx via adiponectin receptor 1
(AdipoR1), which is necessary for the subsequent activation of
Ca2+/calmodulin-dependent protein kinase kinase b (CaMKKb),
AMPK, and sirtuin1 (SIRT1), the increase in expression and
decrease in acetylation of PGC-1α, and increase in myocyte
mitochondrial number. Moreover, muscle-specific disruption
of AdipoR1 suppressed the adiponectin-mediated increase in
intracellular Ca2+ concentration, and decreased the activation of
CaMKK, AMPK, and SIRT1 by adiponectin. The suppression of
AdipoR1 also resulted in a decrease in PGC-1α expression and
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deacetylation, decrease in mitochondrial content, and decrease
in oxidative type I fibers, and a decrease in oxidative stress-
detoxifying enzymes in skeletal muscle, which were associated
with insulin resistance and decreased exercise endurance.
Decreased levels of adiponectin and AdipoR1 in obesity may
have causative roles in the mitochondrial dysfunction and insulin
resistance observed in diabetes (107).

Paralogs of adiponectin, such as C1q/tumor necrosis
factor-related protein 9 in adipokines protect against acute
cardiac damage in response to pathological stimuli (e.g.,
lipopolysaccharides) and myocardial ischemia-reperfusion,
by suppressing inflammation through the AdipoR1/AMPK-
dependent pathway (108, 109). Therefore, adiponectin in
particular has protective effects, in not only skeletal muscle but
also in the heart.

Hepatokines
It is well-known that the responsiveness to physical exercise
differs markedly among different people. “Exercise resistance”
is considered to be congenital, with no evidence of acquired
causative factors. The antioxidative hepatokine selenoprotein
P (SeP) was shown to cause exercise resistance through its
muscle receptor, low-density lipoprotein receptor-related protein
1 (LRP1) (110). SeP-deficient mice showed a “super-endurance”
phenotype after exercise training, which was accompanied
by enhanced ROS production, AMPK phosphorylation, and
PGC-1α expression in skeletal muscle. Supplementation with
the antioxidant N-acetylcysteine reduced ROS production
and endurance capacity in SeP-deficient mice. SeP treatment
impaired hydrogen peroxide-induced adaptations through LRP1
in cultured myotubes and suppressed exercise-induced AMPK
phosphorylation and Ppargc1a gene expression in mouse skeletal
muscle, and these effects were inhibited in mice with muscle-
specific LRP1 deficiency. Furthermore, increased amounts of
circulating SeP predicted the ineffectiveness of training on
endurance capacity in humans. Thus, it was proposed that
inhibitors of the SeP-LRP1 axis may function as exercise-
enhancing drugs for the treatment of diseases associated with a
sedentary lifestyle (110).

Osteokines
Aerobic exercise was recently shown to increase blood levels
of osteocalcin, which is produced by osteoblasts, in mice and
humans, whereas blood osteocalcin decreases during aging in
mice, monkeys, and humans (111). On the other hand, patients
with cachexia owing to chronic HF have decreased bone mineral
content (112). Whether exercise training (cardiac rehabilitation)
of patients with HF can improve osteokine levels awaits to
be determined.

Senolytics
Cellular senescence induces the senescence-associated secretory
phenotype, which causes chronic inflammation and contributes
to the acceleration of aging of an individual. Recently, senolytic
drugs have been developed to remove senescent cells; a
senolytic cocktail (dasatinib and quercetin) decreases naturally
occurring senescent cells and their secretion of frailty-associated

proinflammatory cytokines in human adipose tissues (113). It
was also shown that such senolytics can enhance healthspan, as
well as lifespan, of aged mice (113).

A Blood Cell Biomarker to Assess
Skeletal/Cardiac Muscle Abnormalities
The mitochondrial function of monocytes, a peripheral blood
mononuclear cell (PBMC), provides a possible method to assess
skeletal and cardiac mitochondrial function (114). We also
reported that the mitochondrial function of PBMCs is decreased
in patients with HF, and is associated with disease severity and
increased mitochondrial ROS (115). Intriguingly, we moreover
demonstrated that mitochondrial ROS levels of PBMCs are
closely associated with systemic exercise tolerance (115).

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we discussed the pathology of skeletal muscle
abnormalities in HF, including fat accumulation and dysfunction
of adipose tissues. Recent advancements in this research field
have demonstrated an inseparable association between skeletal
muscle abnormalities and adipose tissues of animals with HF,
in which these abnormalities can be both the causes and results
of HF. Thus, these abnormalities can be therapeutic targets
to treat HF, because skeletal muscle and adipose tissue are
readily used for clinical testing and diagnoses, as well as for
therapeutic interventions; whereas cardiac muscle are difficult to
be engineered (Figure 1).

On the other hand, our understanding of the precise
molecular and biochemical association between these
abnormalities and HF remains incomplete. In particular,
given that skeletal muscle abnormalities are frequent in the
chronic phase of HF and that such abnormalities are crucial to
the worsening of HF, it is very important to identify biomarkers
that predict the onset of muscle abnormalities in HF, as well as
the molecular mechanisms involved therein. Moreover, as we
have discussed above, sarcopenia is also closely associated with
HF, with regard to abnormalities of the skeletal muscle and the
adipose tissue. Again, there remain a lot to be clarified regarding
the molecular and biochemical bases of the association between
skeletal/cardiac muscle abnormalities and HF (Figure 1).

Lastly, adequate levels of daily physical exercise are very
effective for preventing HF, and are also effective for the
treatment of HF. Not only does physical exercise enhance
systemic blood circulation and lymphatic flow, which are both
crucial for individual immunity, but physical exercise produces
myokines in the peripheral blood stream that improve the
condition of skeletal muscle mitochondria and maybe also
the nervous system, as stated earlier. Analysis of skeletal
muscle biopsies has shown that exercise therapy is effective
in curing HF with preserved EF patients by repairing skeletal
muscle abnormalities and improving exercise tolerance (116–
122). A deeper and more precise molecular understanding
of our body and its basic design, which has been formed
during our evolution on this planet, namely, “HUMAN
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BIOLOGY,” will help toward developing “natural” methods
with minimal medical interventions, rather than developing
conservative drugs as HF therapeutics, as well as for the
prevention of HF.
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