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In many cardiovascular pathologies, the shape and motion of the heart provide important

clues to understanding the mechanisms of the disease and how it progresses over

time. With the advent of large-scale cardiac data, statistical modeling of cardiac

anatomy has become a powerful tool to provide automated, precise quantification of

the status of patient-specific heart geometry with respect to reference populations.

Powered by supervised or unsupervised machine learning algorithms, statistical cardiac

shape analysis can be used to automatically identify and quantify the severity of

heart diseases, to provide morphometric indices that are optimally associated with

clinical factors, and to evaluate the likelihood of adverse outcomes. Recently, statistical

cardiac atlases have been integrated with deep neural networks to enable anatomical

consistency of cardiac segmentation, registration, and automated quality control. These

combinations have already shown significant improvements in performance and avoid

gross anatomical errors that could make the results unusable. This current trend is

expected to grow in the near future. Here, we aim to provide a mini review highlighting

recent advances in statistical atlasing of cardiac function in the context of artificial

intelligence in cardiac imaging.
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INTRODUCTION

The main function of the heart is to pump blood to the lungs and body. In order to maintain the
equilibrium state of normal blood circulation, the heart continuously adapts its structure, shape,
and function in response to physiological challenges and long-term environmental factors. From
the onset of injury or disease, the heart starts a cascade of structural andmorphological adaptations,
known as cardiac remodeling. Common cardiac remodeling includes left ventricular dilatation,
increasing ventricular mass, hypertrophy, aortic dilation, and systolic/diastolic functional
alterations. When this condition is prolonged, cardiac function may deteriorate until symptoms
become clinically evident and may eventually lead to heart failure (1). Here, we define cardiac
remodeling to encompass a wide spectrum of physiological processes from adaptive remodeling
in athlete’s hearts (2) and normal aging process (3) to adverse remodeling in hypertensive heart
disorder (4) and ischemia (5). It is therefore critical in the management of patients with heart
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disease to identify and quantify the different types of cardiac
remodeling and associations with environmental and clinical
factors and to predict the likelihood of adverse outcomes in
the future.

The associations between traditional risk factors of
cardiovascular disease (including smoking, raised blood
pressure, raised serum cholesterol, and diabetes mellitus)
and developing cardiac disease were discovered from large
epidemiological studies such as the Framingham Heart Study
(6). To better understand the mechanism of subclinical disease,
before symptoms are clinically evident, modern imaging
examinations were later included, such as in the Multi-Ethnic
Study of Atherosclerosis (MESA) (7) and the UK Biobank
study (8). These large-scale studies have enabled a massive
increase of imaging data available for the investigation of
variations in cardiac geometry and function by using statistical
shape analysis, as well as providing training data for machine
learning algorithms.

Modern cardiac imaging modalities include
echocardiography, computed tomography (CT), and magnetic
resonance imaging (MRI). Each modality has its own advantages
and disadvantages, but MRI has unique attributes over the other
modalities that have enabled large-scale imaging studies in the
general population, including the study of 6,000 preclinical
subjects in the MESA and 100,000 asymptomatic subjects in
the UK Biobank. MR images are acquired without ionizing
radiation, and tomographic analysis can be performed without
any geometrical assumption. In a single examination session,
cardiac MRI can provide anatomical and functional images of
the heart and great vessels in multiple views with high contrast-
to-noise ratio, as well as high spatiotemporal resolution blood
flow, microstructural tissue characterization, myocardial strain,
blood perfusion, and scar images.

In this mini review, we focus on the rapid developments
of machine learning combined with cardiac atlases. Although
examples were taken mainly from cardiac MRI studies, these
methods are generally extensible to other modalities. We
first show how statistical shape analysis has enabled better
understanding of cardiac shape remodeling within and between
pathological groups. We then discuss current developments in
machine learning to utilize the robustness of cardiac anatomy
derived from statistical atlases to improve image analysis,
including motion atlases to highlight the utility of dynamic
data analysis vs. static analysis. Table 1 compares representative
papers in each category. We conclude with a discussion of
future perspectives of cardiac atlases in the context of artificial
intelligence (AI) in cardiac imaging.

STATISTICAL CARDIAC ATLASES

Statistical atlases consist of maps of cardiac shape and function,
which can be used to quantify the variation in the population and
quantify the differences between cohorts. They can also be used
to quantify shape scores in individual patients relative to standard
population groups. For example, the Cardiac Atlas Project1 (24)

1http://www.cardiacatlas.org

provides repositories of thousands of cardiac MRI studies (25)
and benchmark data for the development of automated analysis
algorithms, including segmentation of images (26) and shape
analysis (27).

Two common atlas construction pipelines are shown in
Figure 1, where both approaches lead to a comparable statistical
analysis (28). In the first approach (9), images are analyzed to
obtain the locations of cardiac landmarks (valve positions and the
margins of the interventricular septum) and ventricular contours.
The points are then mapped into 3D, and slice shifts due to
breath-hold mis-registration are corrected. A 3D shape model
template is then customized to the location of the landmarks and
contours by minimizing the point-to-surface distances between
the landmarks/contours and the model surfaces. Homologous
points are then sampled from the surfaces and used to construct a
point distribution model. This surface template fitting approach
has also been translated to echocardiographic images where
temporal resolution is much higher, as demonstrated in (20).

The second approach uses 3D images to establish a mean
image template before generating cardiac mesh data. In (11), a
high-resolution 3D MR template image and myocardial mesh
are used. Each short axis image stack is then corrected for
breath-holdmis-registration and registered to the template image
using non-rigid image registration methods. For each case, a
registration map is stored to give a mapping from subject
space to template space at each voxel. The template mesh is
then propagated to each subject using the inverse registration
map. A point distribution model can then be calculated from
the resulting homologous points. A similar approach was
demonstrated in (12) by using CT images, with the advantage of
high resolution and no breath-hold mis-registration in CT data.

Both these approaches benefit from recent advances in
machine learning methods. Firstly, deep learning segmentation
networks for cardiac images have been developed to enable fast
generation of contours and landmarks (17, 29); and secondly,
deep learning has enabled fast computation of registration maps,
which can be trained without extensive manual image annotation
using image similarity as the loss function (23, 30, 31).

ATLAS MEASURES OF CARDIAC
REMODELING

Let s ∈ R3P be a shape vector with P homologous points in 3D.
To extract shape parameters from a cohort or pathology group, a
linear generative model is commonly applied, that is,

s ≈ s+ 8
Tb (1)

where s ∈ R3P is the mean shape estimated from the cohort,
8 ∈ RM×3P is the linear decomposition matrix (defining modes
of shape variation), and b ∈ RM is the shape parameter vector. If
N is the number of patient shapes in the cohort andM < N, then
Equation (1) is called a dimension reduction technique. Because
each 3D point in this point distribution model encapsulates
approximately the same anatomical location in the heart, the
relative locations of neighboring positions are highly correlated,
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TABLE 1 | Summary of cardiac atlas construction and deep learning methods with cardiac shape priors.

Methods Model Strength Weakness Training cohorts Availability

ATLAS CONSTRUCTIONS

Medrano-Gracia et al. (9) LV Mathematically defined cardiac

shape model

Requires contours 1,991 MESA CAPa

Mauger et al. (10) LV, RV Diffeomorphic Requires segmentation 4,329 UK Biobank CAPa

Bai et al. (11) LV, RV Volumetric model Long breath-hold 1,093 healthy ICLb

Hoogendoorn et al. (12) LV, RV, LA,

RA

High spatial resolution from CT Small cohort; no healthy

reference for CT

138 CAD CISTIBc

DEEP LEARNING IMAGE ANALYSIS WITH SHAPE PRIORS

Oktay et al. (13) LV Latent space regularization Layers reduced for 3D 1,200 healthy

Zotti et al. (14) LV, RV Simple adjustment of the U-Net Single prior map 150 ACDC VitaLabAId

Chen et al. (15) LV Latent spaces for standard

orientations

Each prior requires separate

encoder; memory intensive

734 healthy

Duan et al. (16) LV, RV 2.5D Computationally expensive; two

stages of network (not

end-to-end learning)

1,831 healthy; 649

pulmonary

hypertension

Githube

DEEP LEARNING SHAPE ANALYSIS

Attar et al. (17) LV, RV Direct prediction of the shape

scores

Linear PCA shape model from

non-linear deep learning network

3,500 healthy

Clough et al. (18) LV, RV Interpretable Latent reconstruction blurred 10,038 healthy; 778

CAD

Painchaud et al. (19) LV, RV Augmented latent space Requires three networks to train 150 ACDC

DYNAMIC ANALYSIS

Puyol-Antón et al. (20) LV Multimodalities Separate pipelines; small cohort 50 healthy

Bello et al. (21) LV, RV Survival loss on latent space Displacement only 302 pulmonary

hypertension

Githubf

Peressutti et al. (22) LV Motion and clinical features Small cohort 34 dyssynchrony

Qin et al. (23) LV Joint motion and segmentation 2D + time 220 healthy Githubg

LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right atrium; CAD, coronary artery disease; MESA, multi-ethnic study of atherosclerosis; ACDC, automated cardiac

diagnosis challenge.
aCAP, http://cardiacatlas.org.
b ICL,http://wp.doc.ic.ac.uk/wbai/data/.
cCISTIB, http://www.cistib.org/full-heart-pca-model-all-phases/en/full-heart-pca-model-all-phases.
dVitaLabAI, https://bitbucket.org/vitalab/vitalabai_public/src/master/VITALabAI/model/.
eGithub, https://github.com/j-duan/4Dsegment.
fGithub, https://github.com/UK-Digital-Heart-Project/4Dsurvival.
gGithub, https://github.com/cq615/Joint-Learning-of-Motion-Estimation-and-Segmentation-for-Cardiac-MR-Image-Sequences.

enabling the dimension reduction method to distill a small
number of shape parameters.

The most common dimension reduction method is principal
component analysis (PCA), whereby shape modes are ordered by
the amount of variance explained. Most of the shape variations
can then be explained in terms of the first few principal
modes of variation. In the MESA baseline imaging study, the
PCA mode explaining the most shape variation was associated
with the size of the heart, even after correction for patient
height (9). This is a common finding because the first mode
often relates to the amplitude of the studied descriptors. The
second mode was associated with sphericity. Clinically, these
first two PCA modes are known to be associated with adverse
outcomes in both symptomatic disease and asymptomatic
cohorts (32–35).

PCA regression enables evaluation of the relationships
between the PCA scores and clinical factors such as diabetes
(9, 28). However, PCA is an unsupervised dimension reduction

method, and component modes do not in general map
to recognizable shape characteristics (9, 28). Supervised
dimension reduction methods such as information maximizing
component analysis have shown promise for quantifying the
differences between a patient group and a control group, or
two patient groups (36). Another approach is to combine
dimensionality reduction with direct correlation with clinically
defined remodeling indices such as ventricular volumes, wall
thickness, and sphericity, by using the partial least squares
method. Zhang et al. (37) applied this method in conjunction
with a sequential orthogonalization algorithm to construct
orthogonal shape scores, which are optimally matched with
known clinical indices of remodeling. More general ways of
characterizing the shape probability distribution have been
investigated (38).

Gilbert et al. (28) found that both volume and surface
cardiac atlases showed similar morphometric characteristics and
similar relationships between risk factors and left ventricular
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FIGURE 1 | An overview of integrating statistical atlases of cardiac anatomy with deep neural network. Autoencoder is shown as the most common choice of deep

learning architecture for latent space analysis. Although examples are shown with MR images, the methods are generally modality independent.

shape. Thus, shape scores derived from atlases are robust
to differences in construction methodology and quantify
real anatomical relationships with cardiovascular risk factors.
Morphometric scores were found to be more sensitive to
cardiovascular risk factors than traditional measures of mass
and volume. Mauger et al. (10) used a biventricular shape
model to study right and left ventricular interactions in the
UK Biobank study. A subdivision surface biventricular shape
model was automatically customized to manually draw contours
using a diffeomorphic least squares optimization algorithm. A
control group sub-cohort consisting of 630 participants with
no cardiovascular risk factors and normal cardiac parameters
was used as a reference group to quantify shape differences
due to traditional risk factors. Morphometric scores were
computed using linear regression to quantify shape variations
associated with prediction variables including sex, age, height,
high cholesterol, high blood pressure, obesity, and smoking as
well as diabetes, previous myocardial infarction, and angina.
This regression approach enabled quantification of the effects
of each prediction variable while controlling for the effects of
the others.

In congenital heart disease, atlas-based analysis of shape
variations can provide quantitative measures of deterioration

before detection of symptoms. Sheehan et al. (39) developed a
method for patient customization using a linear combination
of database templates. This knowledge-based reconstruction
method has shown accurate and rapid analysis of right
ventricular shapes and volumes in patients with tetralogy of
Fallot (39), dextro-transposition of the great arteries (40),
and other types of congenital heart disease (41). A more
dilated and spherical right ventricle was found in patients
with transposition of the great arteries after atrial switch, with
regional reduction in function at the base (42, 43). These
methods assume that the patient heart geometry is accurately
represented by a linear combination of cases in the database.
An alternative approach is to jointly estimate the shape and
the underlying statistical shape model so that the statistical
model can be automatically updated while analyzing new cases
(44). Shape model templates have been constructed to describe
common congenital pathologies, such as congenitally corrected
transposition of the great arteries, enabling a wide range
of pathologies to be accurately characterized (45). In single-
ventricle pathologies, with tricuspid atresia and Fontan repair,
shape mode scores were able to quantify differences in shape
and function, with more spherical ED shapes being associated
with reduced longitudinal shortening (46). Atlas analysis in
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association with biomechanical analysis may be able to identify
mechanisms underlying changes in function with developing
disease (47).

DEEP LEARNING NETWORKS WITH
CARDIAC SHAPE PRIORS

Deep learning is currently the state-of-the-art method for
medical image feature extraction and supervised analysis.
Its superior performance has surpassed any other traditional
machine learning algorithms in many applications, including
cardiac imaging (48, 49). This success is mainly attributed
to the automatic generation of optimal features, rather than
relying on handcrafted features. This means that without
significantly modifying the architecture, deep learning allows
transfer of techniques, thereby shifting the data domain from
one application, for example, natural image analysis, to another,
for example, cardiac imaging. In addition, transfer learning
directly reuses a pretrained network and fine-tunes to a new
application domain. Examples include transfer learning of retinal
image segmentation into cardiac vessels (50) or predicting
cardiovascular risk from retinal fundus images (51). This
flexibility and reusability of deep neural network architectures
have led to rapid development. However, there are some
limitations. Deep learning is prone to overfitting and usually
cannot infer the anatomical correctness of the prediction results.
The network’s parameters are also sensitive to the data or cohort
used during training (implicit bias). Statistical atlases or shape
priors can therefore be integrated with deep learning to overcome
these limitations. Thus, anatomical correctness can be imposed
by enabling the network to learn the biological constraints as well
as the measurement correlations.

Machine learning methods can add new quantitative analysis
techniques to examine the relationships between shape features
and clinical status, in addition to the traditional methods of linear
or logistic regression. These are now being applied to statistical
shape atlases to characterize differences in patient groups and
predict outcomes. In the STACOM 2015 shape analysis challenge
(27), various machine learning algorithms were compared on
a benchmark dataset, and 11 groups participated to determine
cardiac shapes of patients with myocardial infarction from
healthy subjects. Five groups used the z-scores (standardized b
vector in Equation 1) in different ways to classify myocardial
infarction shapes. The training accuracies ranged between 0.93
and 0.98, whereas the test accuracies were 0.83–0.98. Shape
atlases have been useful in identifying genetic mutations affecting
left ventricular (LV) mass (52). Shape features associated with
disease can be interpreted through visualizations using deep
generative networks (53).

Incorporating cardiac anatomy in deep learning was
demonstrated by Oktay et al. (13) with an anatomically
constrained neural network. Two separate autoencoder networks
were appended after the final predicted segmentation mask
and the ground truth mask layers, which extracted features
from mask images separately. A global shape similarity loss
function calculated from the output of autoencoder networks

was introduced as a way to constrain the optimization to follow
the same shapes as the ground truth. Their results showed
improved super resolution and segmentation accuracies in the
long-axis view2 by correcting mis-registration between image
slices. Another shape-based loss function was also proposed by
Yang et al. (54) to segment the right ventricle.

Alternatively, shape priors can be introduced directly inside
a network (14–16). Zotti et al. (14) inserted a cardiac shape
probability map before the final layer of a U-Net architecture to
ensure that the output segmentationmasks were valid. Chen et al.
(15) alsomodified a U-Net architecture with cardiac shape priors,
but they modified the bottom layer (feature extraction layer)
by inserting short-axis and long-axis feature vectors trained
independently from short-axis and long-axis cardiac MRI,
respectively. Duan et al. (16) embedded a more specialized shape
refinement subnetwork into the main segmentation and super
resolution network. The subnetwork consisted of shape affine
alignment, atlas selection, and non-rigid free form deformation
registration operations. The network was able to generate smooth
high-resolution 3D cardiac mesh data from low-resolution
cardiac MRI.

DEEP LEARNING FOR STATISTICAL
CARDIAC ATLASES

The ability of deep learning to learn non-linear relationships
between different data domains and the high focus on
segmentation have enabled several studies to directly link cardiac
imaging and statistical shape analysis. In Equation (1), patient-
specific shape parameters with population reference of 8 are
represented by b ∈ RM vectors. A statistically plausible new shape
of s can be generated by setting values of b within ±2

√
σ , where

σ is the eigenvalues from the PCA. Shape generation can also be
performed by sampling from a probability distribution function
learned from an atlas (38).

Attar et al. (17) proposed a neural network model that
learns how to directly predict shape parameters b given a
combination of cardiac MRI and patient characteristics metadata
[age, weight, height, body mass index (BMI), body surface area
(BSA), heart rate, systolic blood pressure (SBP), diastolic blood
pressure (DBP), sex, smoking status, and alcohol consumption].
Hence, the network was trained to predict statistically plausible
b vector from images and metadata parameters to generate a
3D cardiac shape by using (Equation 1). Also, Clough et al.
(18) used a variational autoencoder to generate interpretable
representations of patients with low ejection fraction. This aids
the interpretability of machine learning algorithm, which is vital
to their acceptance in the clinical community.

A different approach to embed statistical shape
parameterization into deep neural network was proposed
by Painchaud et al. (19). A separate adversarial variational
autoencoder was trained to generate a latent space of cardiac

2In standard cardiac imaging acquisition, short-axis views show an image of the

left and right ventricular chambers, and long-axis views typically show either two

chambers (left ventricle and left atrium) or all four chambers in a single image.

Short-axis views are generally perpendicular to the long-axis views.
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anatomy from mask images and was then connected to another
anatomical variational autoencoder to correct errors after
segmentation. Hence, this network (19) indirectly learned
patient-specific parameters in the latent space without actually
modeling how the latent space should be parameterized as
in (17). The disentanglement of latent spaces is an active
area of research and shows promise in factorizing anatomical
representations from modality characteristics (55).

DYNAMIC ATLASES

Many of the features associated with cardiac pathology are
manifest as changes in motion rather than changes in static
shape. As the heart is responsible to deliver sufficient blood into
the circulation system, the onset of cardiac diseases forces the
heart to adapt its motion. Changes in cardiac shape deformation,
myocardial strain, and strain rate are examples of important
dynamic remodeling indices when building a cardiac motion or
dynamic atlas. However, building a dynamic atlas is sometimes
limited by the temporal resolution of the acquired imaging
data, although combining two modalities, such as MRI and
echocardiography (20), can increase the temporal resolution of
the atlas considerably.

There are a significant number of cardiac applications that
can get the benefit of machine learning from cardiac motion.
In pulmonary hypertension, a motion atlas is combined with
the latent space of autoencoder network to predict the survival
rate (21). A machine learning system that combines motion
atlas with non-motion data (ECG and clinical reports) has been
demonstrated in the selection of patients with dyssynchrony for
cardiac resynchronization therapy (22). The study of dynamic
atlases will be a fruitful area of future research. Deep learning
methods for combined shape and motion analysis are now being
developed (23), which can be used to extend previous methods
for motion atlasing (11).

DISCUSSION

A statistical atlas of cardiac anatomy is a powerful tool to analyze
a patient-specific remodeling compared with the reference
population. An abnormal cardiac shape can be quantified against

a population reference, regional wall motion differences can
be compared across pathological groups, and a hypothetical
cardiac shape can further be predicted from a longitudinal study.
Apart from that, a statistical atlas can be used as a reference by
machine learning algorithms to constrain their analysis within
valid anatomic boundaries.

In summary, we have reviewed three ways to integrate a
statistical atlas into a machine learning framework. The first
approach is to directly use individual shape atlas parameters, for
example, the z-scores, as the training data. This approach needs
homologous points generated from a shape modeling technique
derived from images and a registration method to align points
to remove variations in the global position and orientation. The
effectiveness of this approach was demonstrated in the STACOM
2015 challenge. The second approach is to use statistical atlases
as shape priors either as a way to measure shape similarity in
a loss function or to add shape features to be learned inside
the network. The third approach is to predict statistical shape
parameters or a location in a shape-based feature space directly
from images. This is a promising field for deep learning, because
it can generate relationships between two completely different
data domains.

In the future, statistical atlases show promise for augmenting
deep learning methods, and vice versa. An atlas can add
robustness to the prediction results because additional
information on a reference population is included during
the learning process. Atlases will also increase the interpretability
of the AI process, which is critical for the acceptance of AI in
health care.
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