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Background: Convolutional neural network (CNN) based segmentation methods

provide an efficient and automated way for clinicians to assess the structure and function

of the heart in cardiac MR images. While CNNs can generally perform the segmentation

tasks with high accuracy when training and test images come from the same domain

(e.g., same scanner or site), their performance often degrades dramatically on images

from different scanners or clinical sites.

Methods: We propose a simple yet effective way for improving the network

generalization ability by carefully designing data normalization and augmentation

strategies to accommodate common scenarios in multi-site, multi-scanner clinical

imaging data sets. We demonstrate that a neural network trained on a single-site

single-scanner dataset from the UK Biobank can be successfully applied to segmenting

cardiac MR images across different sites and different scanners without substantial loss

of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from

the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank

for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset

(100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites,

9 scanners).

Results: The proposed method produces promising segmentation results on the UK

Biobank test set which are comparable to previously reported values in the literature,

while also performing well on cross-domain test sets, achieving a mean Dice metric

of 0.90 for the left ventricle, 0.81 for the myocardium, and 0.82 for the right ventricle

on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the

BSCMR-AS dataset.
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Conclusions: The proposed method offers a potential solution to improve CNN-based

model generalizability for the cross-scanner and cross-site cardiac MR image

segmentation task.

Keywords: artificial intelligence, deep learning, neural network, cardiac MR image segmentation, model

generalization, cardiac image analysis

1. INTRODUCTION

Automatic cardiac segmentation algorithms provide an efficient
way for clinicians to assess the structure and function of the
heart from cardiac magnetic resonance (CMR) images for the
diagnosis and management of a wide range of abnormal heart
conditions (1). Recently, convolutional neural network (CNN)-
based methods have become state-of-the-art techniques for
automated cardiac image segmentation (1, 2). However, related
work (3) has shown that the segmentation accuracy of a CNN
may degrade if the network is directly applied to images collected
from different scanners or sites. For instance, CMR images
from different scanners using different acquisition protocols can
exhibit differences in terms of noise levels, image contrast, and
resolution (4–6). Moreover, images coming from different sites
may comprise different population demographics in terms of
cardiovascular diseases, resulting in the clinically appreciable
difference not only in cardiac morphology but also in image
quality (e.g., irregular heartbeat can affect image quality) (7–
9). Thus, a CNN learned from a limited dataset may not be
able to generalize over subjects with heart conditions outside
of the training set. All these differences pose challenges for
deploying CNN-based image segmentation algorithms in real-
world practice.

In general, a straightforward way to address this problem is to
fine-tune a CNN learned from one dataset (source domain) with
additional labeled data from another dataset (target domain).
Nevertheless, collecting sufficient pixel-wise labeled medical data
for every scenario can be difficult, since it requires domain-
specific knowledge and intensive labor to perform manual
annotation. To alleviate the labeling cost, unsupervised deep
domain adaptation (UDDA) approaches have been proposed
(10). Compared to fine-tuning, UDDA does not require labeled
data from the target domain. Instead, it only uses either
feature-level information (11–13) or image-level information
(13) to optimize the network performance on the target domain.

Abbreviations: ACDC, automatic cardiac diagnosis challenge; ARV, abnormal

right ventricle; AS, aortic stenosis; bSSFP, balanced steady-state free precession;

BSCMR, the British society of cardiovascular magnetic resonance; CMR,

cardiac magnetic resonance; CNN, convolutional neural network; DCM, dilated

cardiomyopathy; ED, end-diastole; EDV, end-diastolic volume; ES, end-systole;

ESV, end-systolic volume; FCN, fully convolutional network; GPU, graphics

processing unit; HCM, hypertrophic cardiomyopathy; MD, mean difference;

MICCAI, international conference on medical image computing and computer-

assisted intervention; MINF, myocardial infarction with altered left ventricular

ejection fraction; MR, magnetic resonance; MYO, myocardium; NOR, without

cardiac disease; LOA, limits of agreement; LV, left ventricle; LVM, left ventricular

mass; RV, right ventricle; SD, standard deviation of mean difference; SGD,

stochastic gradient descent; SNR, signal-to-noise; UDDA, unsupervised deep

domain adaptation; UKBB, UK Biobank.

However, these methods usually require hand-crafted hyper-
parameter tuning for each scenario, which may be difficult to
scale to highly heterogeneous datasets. Therefore, it is of great
interest to explore how to learn a network that can be successfully
applied to other datasets without the requirement of additional
model tuning.

In this paper, we investigate the possibility of building
a generalizable model for cardiac MR image segmentation,
given a training set from only one scanner in a single site.
Instead of fine-tuning or adapting to get a new model for
each particular scenario, our goal is to find a generalizable
solution that can analyse “real-world” test images collected from
multiple sites and scanners. These images consist of various
pathology and cardiac morphology that may not be present
in the training set, reflecting the complexity of a real-world
clinical setting. To achieve this goal, we choose the U-Net (14)
as the fundamental CNN architecture, which is the most popular
network for medical image segmentation. We apply this network
to segment the cardiac anatomy from CMR images (short-axis
view), including the left ventricle (LV), the myocardium (MYO),
and the right ventricle (RV). An image pre-processing pipeline
is proposed to normalize images across sites before feeding
them to the network in both training and testing stages. Data
augmentation is employed in the pipeline during the training
to improve the generalization ability of the network. Although
there has been a number of works (15, 16) which have already
applied data normalization and data augmentation in their
pipelines, these methods are particularly designed for one specific
dataset and the importance of applying data augmentation for
model generalization ability across datasets is less explored.
Here we demonstrate that the proposed data normalization
and augmentation strategies can greatly improve the model
performance in the cross-dataset setting (section 4.2). The main
contributions of the work are as follows:

• To the best of our knowledge, this is the first work to explore
the generalizability of CNN-based methods for cardiac MR
imagemulti-structure segmentation, where the training data is
collected from a single scanner, but the test data comes from
multiple scanners andmultiple sites.

• The proposed pipeline which employs data normalization and
data augmentation (section 3.4) is simple yet efficient and
can be applied to training and testing of many state-of-the-
art CNN architectures to improve the model segmentation
accuracy across domains without necessarily sacrificing
the accuracy in the original domain. Experiment results
show that the proposed segmentation method is capable
of segmenting multi-scanner, multi-vendor, and multi-site
datasets (sections 4.3, 4.4).
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TABLE 1 | Related work that applies CNN-based CMR image segmentation models across multiple datasets.

Methods Target domain 6= Source domain Need Finetuning Test on Total size of test set (s)

Tran (16) Yes Yes LV/MYO/RV separately <200

Bai et al. (3) Yes Yes LV+MYO+RV <100

Khened et al. (17) Yes No MYO <200

Our work Yes No LV+MYO+RV 699

• Our work reveals that significant cardiac shape deformation
caused by cardiac pathologies (section 4.5), low image quality
(section 4.5), and inconsistent labeling protocols among
different datasets (section 5) are still major challenges for
generalizing deep learning-based cardiac image segmentation
algorithms to images collected across different sites, which
deserve further study.

2. RELATED WORK

There have been a great number of works which develop
sophisticated deep learning approaches to perform CMR image
segmentation tasks on a specific dataset (1, 3, 15, 16). While these
models can achieve overall high accuracy over the samples from
the same dataset, only a few have been validated in cross-dataset
settings. Table 1 shows a list of related works that demonstrate
the segmentation performance of their proposed method by
first training a model from one set (source domain) and then
testing it on other datasets (target domain). However, these
approaches requires re-training or fine-tuning to improve the
performance on the target domain in a fully supervised fashion.
To the best of our knowledge, there are few studies reported
in the literature which investigate the generalization ability of
the cardiac segmentation networks that can directly work across
various sites.

One work (18) in this line of research has been recently
presented, which integrates training samples from multiple sites
and multiple vendors (18) to improve segmentation performance
across sites. Their results show that the best segmentation
performance on their multi-scanner test set was achieved when
the data used for training and testing are from the same scanners.
Nevertheless, their solution requires collecting annotated data
from multiple vendors and sites. For deployment, this may not
always be practical because of the high data collection and
labeling costs as well as data privacy issues.

Another direction to improve model generalization is to
optimize the CNN architecture. In the work of Khened et al.
(17), the authors proposed a novel network structure with
residual connections to improve the network generalizability.
They pointed out that networks with a large number of
parameters may easily suffer from over-fitting problem with
limited data (17). They demonstrated that their light-weight
network trained on a limited dataset outperformed the U-
Net (14), achieving higher accuracy on LV, myocardium, and RV.
Moreover, model generalization was demonstrated by directly
testing this network (without any re-training or fine-tuning)
on the LV-2011 dataset (19). As a result, this model produced

comparable results to the results from a network that had been
trained on the LV-2011, achieving a high mean Dice score
for the myocardium (0.84). However, because of the lack of
RV labels in their test set, their network’s generalization ability
for the RV segmentation task is unclear. In fact, segmenting
the RV is considered to be harder than segmenting the LV
because the RV has a more complex shape with higher variability
across individuals, and its walls are thinner, making it harder
to delineate from its surroundings. Because of the high shapes
variability and complexity, it is more difficult to generalize a
model to segment the RV across domains.

In this study, we evaluate the generalizability of the proposed
method not only on the cardiac left ventricle segmentation but
also on the right ventricle segmentation. Different from the works
in Tao et al. (18) and Khened et al. (17), the proposed method
demonstrates model generalizability in a more challenging but
realistic setting: our training data was collected from only one
scanner (most of them are healthy subjects) while test data
was collected from various unseen sites and scanners, which
covers a wide range of pathologies, reflecting the spectrum of
clinical practice.

3. MATERIALS AND METHODS

3.1. Data
Three datasets are used in this study and the general descriptions
of them are summarized in Table 2.

3.1.1. UK Biobank Dataset
The UK Biobank (UKBB) is a large-scale data set that
is open to researchers worldwide who wish to conduct a
prospective epidemiological study. The UKBB study covers a
large population, which consists of over half a million voluntary
participants aged between 40 and 69 from across the UK. Besides,
the UKBB study performs comprehensive MR imaging for nearly
100,000 participants, including brain, cardiac and whole-body
MR imaging. An overview of the cohort characteristics can be
found on the UK Biobank’s website1. All CMR images we used
in this study are balanced steady-state free precession (bSSFP)
sequences, which were collected from one 1.5 Tesla scanner
(MAGNETOM Aera, syngo MR D13A, Siemens, Erlangen,
Germany). Detailed information about the imaging protocol can
be found in Petersen et al. (20). Pixel-wise segmentations of three
essential structures (LV, MYO, and RV) for both end-diastolic
(ED) frames and end-systolic (ES) frames are provided as ground

1http://imaging.ukbiobank.ac.uk/
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TABLE 2 | General descriptions of the three datasets.

Name Number of subjects Cohort Sites Scanners Image spatial

resolution

UKBB 4,875 General population 1 1.5 T, Aera, Siemens (100%) in-plane resolution:

1.8 mm2 /pixel;

slice thickness:

8 mm

ACDC 100 Without cardiac disease (20%);

Dilated cardiomyopathy (20%);

Hypertrophic cardiomyopathy

(20%);

Myocardial infarction with altered

left

ventricular ejection (20%);

Abnormal right ventricle (20%)

1 1.5 T, Area, Siemens (67%)

3 T, Trio Tim, Siemens (33%)

in-plane resolution:

1.34–1.68 mm2 /pixel;

slice thickness:

5–10 mm

BSCMR-AS 599 Aortic stenosis 6 1.5 T, Ingenia, Philips (5.2%);

1.5 T, Intera, Philips (17.9%);

1.5 T, Sonata, Siemens (6.2%);

1.5 T, Aera, Siemens (0.5%);

1.5 T, Avanto, Siemens (56.6%);

3 T, Achieva, Philips (0.7%);

3 T, Skyra, Siemens (3.8%);

3 T, Verio, Siemens (5.0%);

3 T, TrioTim, Siemens (4.2%);

in-plane resolution:

0.78–2.3 mm2;

slice thickness:

5–10 mm

truth (21). Subjects in this dataset were annotated by a group of
eight observers and each subject was annotated only once by one
observer. After that, visual quality control was performed on a
subset of data to assure acceptable inter-observer agreement.

3.1.2. ACDC Dataset
The Automated Cardiac Diagnosis Challenge (ACDC) dataset is
part of the MICCAI 2017 benchmark dataset for CMR image
segmentation2. This dataset is composed of 100 CMR images,
acquired using bSSFP imaging in breath hold with a retrospective
or prospective gating (1). The patients covered in this study have
been divided into five groups: dilated cardiomyopathy (DCM),
hypertrophic cardiomyopathy (HCM), myocardial infarction
with altered left ventricular ejection fraction (MINF), abnormal
right ventricle (ARV), and patients without cardiac disease
(NOR). Each group has 20 patients. Detailed information about
the classification rules and the characteristics of each group can
be found in the benchmark study (1) as well as its website
(see footnote 2). All images were collected from one hospital in
France. The LV, MYO, and RV in this dataset have been manually
segmented for both ED frames and ES frames. Images in this
dataset were labeled by two cardiologists with more than 10 years
of experience3.

3.1.3. BSCMR-AS Dataset
The British Society of CardiovascularMagnetic Resonance Aortic
Stenosis (BSCMR-AS) dataset (22) consists of CMR images of
599 patients with severe aortic stenosis (AS), who had been listed
for surgery. Images were collected from six hospitals across the
UK with nine types of scanners (see Table 2). Specifically, these

2https://www.creatis.insa-lyon.fr/Challenge/acdc/
3https://www.creatis.insa-lyon.fr/Challenge/acdc/evaluation.html

images are bSSFP sequences, which were acquired using standard
imaging protocols (22). Although the primary pathology is
AS, several other pathologies coexist in these patients (e.g.,
coronary artery disease, amyloid) and have led to a variety
of cardiac phenotypes including left ventricular hypertrophy,
left ventricular dilatation and regional infarction (22). A more
detailed report on patients characteristics can be found in Musa
et al. (22). In this dataset, no subjects were excluded due to
arrhythmi. A significant amount of diversity in image appearance
and image contrast can be observed in this dataset. Different from
the above two data sets, images in this dataset are partially labeled.
Only the left ventricle in ED frames and ES frames, as well as the
myocardium in ED frames, have been annotated manually. The
contours on each slice were refined by an expert.

3.1.4. Ethics Approval and Consent to Participate
The UK Biobank data has approval from the North West
Research Ethics Committee (REC reference: 11/NW/0382).
The ACDC data is a publicly available dataset for cardiac
MR image analysis which has approval from the local ethics
committee of Hospital of Dijon (France)4. The BSCMR-AS data
has approval from the UK National Research Ethics Service
(REC reference:13/NW/0832), and has been conformed to the
principles of the Declaration of Helsinki. All patients gave written
informed consent.

3.2. Training Set and Test Sets
In this study, we use the UKBB dataset for training and
intra-domain testing, and use the ACDC data and BSCMR-
AS dataset for cross-domain testing. Following the same data
splitting strategy in Bai et al. (3), we split the UKBB dataset

4https://acdc.creatis.insa-lyon.fr/description/databases.html
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into three subsets, containing 3,975, 300, and 600 subjects for
each set. Specifically, 3,975 subjects were used to train the
neural network while 300 validation subjects were used for
tracking the training progress and avoid over-fitting. The subset
consisting of remaining 600 subjects was used for evaluating
models’ performance in the intra-domain setting. In addition,
we directly tested this trained network on the other two unseen
cross-domain datasets: ACDC and BSCMR-AS datasets without
any further re-training or fine-tuning process. The diversity of
pathology observed in the ACDC dataset and the diversity
of scanners and cardiac morphologies in the BSCMR-AS set
make them ideal test sets for evaluating the proposed method’s
segmentation performance across sites.

3.3. Network Architecture
In this paper, the U-Net architecture (14) is adopted to perform
the cardiac multi-structure segmentation task since it is the
most successful and commonly used architecture for biomedical
segmentation. The structure of our network is illustrated in
Figure 1A. The network structure is as same as the one proposed
in the original paper (14), except for two main differences:
(1) we apply batch normalization (BN) (23) after each hidden
convolutional layer to stabilize the training; (2) we apply dropout
regularization (24) after each concatenating operation to avoid
over-fitting and encourage generalization.

While both 2DU-Net and 3DU-Net architectures can be used
to solve volumetric segmentation tasks (15, 25), we opt for 2D U-
Net for several reasons. Firstly, performing segmentation tasks
in a 2D fashion allows the network to work with images even
if they have different slice thickness or have severe respiratory
motion artifacts between the slices (which is not uncommon).
Secondly, 3D networks require much more parameters than 2D
networks. Therefore, it is more memory-consuming and time-
consuming to train a 3D network than a 2D one. Thirdly, the
manual annotation for images in the three datasets were done in
2D (slice-by-slice) rather than 3D. Thus, it is natural to employ
a 2D network rather than a 3D network to learn segmentation
from those 2D labels.

3.4. Training and Testing Pipeline
Since training images and testing images in this study were
collected from various scanners, it is vital to normalize the input
images before feeding them into the network. Figure 1B shows
an overview of the pipeline for image pre-processing during
training and testing. Specifically, we employ image resampling
and intensity normalization to normalize images in both the
training and testing stages while online data augmentation is
applied for improving the model generalization ability during the
training process.

3.4.1. Image Resampling
Observing that the size of the heart in images with different
resolution can vary significantly, we propose to perform image
resampling both in the training and testing phases before
cropping. The main advantage is that after image resampling,
the proportion of the heart and the background is relatively
consistent, which can help to reduce the task complexity of

the follow-up segmentation. However, image re-sampling is
not a lossless operation, and different interpolation kernels can
also affect the quality of reconstructed images (26). In the
experiments, we resampled all the images to a standard resolution
of 1.25 × 1.25 mm2, which is a median value of the pixel
spacings in our datasets. Following Isensee et al. (25), images are
resampled using the bilinear interpolation and the label maps are
resampled using nearest-neighbor interpolation.

Here we only perform image resampling within the short-axis
plane, without changing the slice thickness along the z-axis. This
is consistent with the preprocessing step in other existing 2D
CNN-based approaches for cardiac image segmentation (1, 15,
25). Also, in our experiments, we found that the slice thickness
does not have a significant impact on the model performance.
The model performs consistently well across test images of
different slice thicknesses (see Table S1), while it was only trained
using images of 8 mm slice thickness.

3.4.2. Data Augmentation
Data augmentation has been widely used when training
convolutional neural networks for computer vision tasks on
natural images. While different tasks may have different domain-
specific augmentation strategies, the common idea is to enhance
model’s generalization by artificially increasing the variety of
training images so that the training set distribution is more close
to the test set population in the real world.

In this study, the training dataset is augmented in order to
cover a wide range of geometrical variations in terms of the heart
pose and size. To achieve this goal, we apply:

• Random horizontal and vertical flips with a probability of 0.5
to increase the variety of image orientation;

• Random rotation to increase the diversity of the heart
pose. The range of rotation is determined by a hyper-
parameter search process. As a result, each time, the angle for
augmentation is randomly selected from [−30,+30];

• Random image scaling with a scale factor s: s ∈ [0.7, 1.4] to
increase variations of the heart size;

• Random image cropping. The random cropping crops images
to acceptable sizes required by the network structure while
implicitly performing random shifting to augment data
context variety without black borders. Note that cropping is
done after all other image augmentations. As a consequence,
all images are cropped to the same size of 256 × 256 before
being sent to the network.

We also experimented with contrast augmentation (27) (random
gamma correction where the gamma value is randomly chosen
from a certain range) to increase image contrast variety, but only
minor improvements were found in the experiments. Therefore,
it is not included in the pipeline. For each cropped image,
intensity normalizationwith amean of 0 and a standard deviation
of 1 is performed, which is a common practice for training deep
neural networks.

3.4.3. Training
After pre-processing, batches of images are fed to the network
for training. To track the training progress, we also use a
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FIGURE 1 | (A) Overview of the network structure. Conv, Convolutional layer; BN, Batch normalization; ReLU, Rectified linear unit. The U-Net takes a batch size of N

2D CMR images as input at each iteration, learning multi-scale features through a series of convolutional layers, max-pooling operations. These features are then

combined through upsampling and convolutional layers from coarse to fine scales to generate pixel-wise predictions for the four classes (background, LV, MYO, RV)

on each slice. (B) Image pre-processing during training and testing.

subset (validation set) from the same dataset to validate the
performance of the segmentation and to identify possible over-
fitting. Specifically, we apply the same data augmentation
strategy on both the training and validation sets and record the
average accuracy (mean intersection of union between predicted
results and ground truth) on the validation set for each epoch.
The model with the highest accuracy is selected as the best
model. This selection criterion works as early stopping and
has the benefit of allowing the network to explore if there is
further opportunity to generalize better before it reaches to the
final epoch.

3.4.4. Testing
For testing, 2D images extracted from volume data are first
re-sampled and centrally cropped to the same size as the
one of the training images. Again, intensity normalization
is performed on each image slice which is then passed
into the network for inference. After that, bilinear up-
sampling or down-sampling is performed on the outputs
of the network to recover the resolution back to the
original one. Finally, each pixel of the original image is
assigned to the class that has the highest probability among
the four classes (background, LV, myocardium, RV). As
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a result, a final segmentation map for one input image
is generated.

3.5. Implementation Details
During training, a random batch of 20 2D short-axis slices were
fed into the network for each iteration after data pre-processing.
The dropout rate for each dropout layer is set to be 0.2. In
every iteration, cross entropy loss was calculated to optimize the
network parameters through back-propagation. Specifically, the
stochastic gradient descent (SGD) method was used during the
optimization, with an initial learning rate of 0.001. The learning
rate was decreased by a factor of 0.5 every 50 epochs. The method
was implemented using Python and PyTorch. We trained the U-
Net for 1,000 epochs in total which took about 60 hours on one
NVIDIA Tesla P40 GPU using our proposed training strategy.
During testing, the computation time for segmenting one subject
is less than a second.

3.6. Evaluation Metrics
The performance of the proposed method was evaluated using
the Dice score (3D version) which was also used in the ACDC
benchmark study (1, 3). The Dice score evaluates the overlap
between automated segmentation A and manual segmentation B,

which is defined as: Dice =
2|A∩B|
|A|+|B| . The value of a Dice score

ranges from 0 (no overlap between the predicted segmentation
and its ground truth) to 1 (perfect match).

We also compared the volumetric measures derived from our
automatic segmentation results and those from manual ones
(see section 4.6), since they are essential for cardiac function
assessment. Specifically, for each manual ground truth mask and
its corresponding automatic segmentation mask, we calculated
the volumes of LV and RV at ED frames and ES frames, as
well as the mass of myocardium estimated at ED frames. The
myocardium mass around the LV is estimated by multiplying the
LV myocardial volume with a density of 1.05 g/mL. After that,
Bland-Altman analysis and correlation analysis for each pair were
conducted. Of note, for Bland-Altman analysis, we removed the
outlying mean values that fall outside the range of 1.5 × IQR
(interquartile range) in order to avoid the standard deviation of
mean difference being biased by extremely large values. These
outliers are often associated with poor image quality. As a result,
< 3% subjects were removed in each comparison.

The statistical analysis was performed using python with
public packages: pandas5, scipy.stats6, and statsmodel7.

4. RESULTS

To demonstrate the improvement of model generalization
performance, we directly tested the proposed segmentation
method across three sets: the UKBB test set, the ACDC set, and
the BSCMR-AS set, and compared the segmentation accuracy to
the performance of the segmentation method in our previous
work (3). Specifically, in Bai et al. (3), a fully convolutional neural

5https://pandas.pydata.org/
6https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
7https://www.statsmodels.org/stable/index.html

network (FCN) was proposed, which was specifically designed
to automatically segment a large scale of scans for the same
cohort study (i.e., UKBB study) with maximum accuracy whereas
the proposed method in our study focuses on improving the
robustness of the neural network-based segmentation method
(using the same UKBB training set as training data) for data from
different domains (e.g., non-UKBB data). The comparison results
are shown in Table 3.

While both methods achieve very similar Dice scores on the
intra-domain UKBB test set with high accuracy, the proposed
method significantly outperforms the previous approach on
the two cross-domain datasets: ACDC set and BSCMR-AS set.
Compared to the results predicted using the method in Bai
et al. (3) on the ACDC data, the proposed one achieves higher
mean Dice scores for all of the three structures: LV (0.90 vs.
0.81), myocardium (0.81 vs. 0.70), and RV (0.82 vs. 0.68). On
the BSCMR-AS dataset, the proposed method also yields higher
average Dice scores for the LV cavity (0.89 vs. 0.82) and the
myocardium (0.83 vs. 0.74). Figure 2 compares the distributions
of Dice scores for the results obtained by the proposed method
and the previous work. From the results, the boxplots of the
proposed method are shorter than those of the previous method
and have higher mean values, which suggests that the proposed
method achieves comparatively higher overall segmentation
accuracy with lower variance on the three datasets.

In order to identify what contributes to the improved
performance, we further compare the proposed method with
Bai et al. (3) in terms of methodology. Two main differences
are spotted:

• Network structure and capacity. Compared to the U-Net we
used in this study, FCN in Bai et al. (3) has a smaller number of
filters at each level. For example, the number of convolutional
kernels (filters) in the first layer of FCN is 16 whereas the
one in the U-Net is 64. In addition, in the decoder part, FCN
directly upsamples the featuremap from each scale to the finest
resolution and concatenates all of them, whereas the U-Net
adopts a hierarchical structure for feature aggregation.

• Training strategy in terms of data normalization and

data augmentation. Compared to the image pre-processing
pipeline in the previous work, the proposed pipeline adopts
image resampling and random image flip augmentation
in addition to the general data augmentation based on
affine transformations.

In order to study the influence of the network structure as well
as the data normalization and augmentation settings on model
generalizability, extensive experiments were carried out and the
results are shown in the next two sections.

4.1. The Influence of Network Structure
and Capacity
To investigate the influence of network structure on model
generalization, we trained three additional networks:

• FCN-16: the FCN network presented in Bai et al. (3) which has
16 filters in the first convolutional layer.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 June 2020 | Volume 7 | Article 105

https://pandas.pydata.org/
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://www.statsmodels.org/stable/index.html
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Improving CNN-Based CMR Segmentation’s Generalizability

TABLE 3 | Comparison results of segmentation performance between a baseline method and the proposed method across three test sets.

UKBB test set (n = 600) ACDC set (n = 100) BSCMR-AS set (n = 599)

Method Training set LV MYO RV LV MYO RV LV MYO*

Bai et al. (3) UKBB (n = 3,975) 0.94 (0.04) 0.88 (0.03) 0.90 (0.05) 0.81 (0.22) 0.70 (0.20) 0.68 (0.31) 0.82 (0.21) 0.74 (0.17)

Ours UKBB (n = 3,975) 0.94 (0.04) 0.88 (0.03) 0.90 (0.05) 0.90 (0.10) 0.81 (0.07) 0.82 (0.13) 0.89 (0.09) 0.83 (0.07)

Both methods were trained using the same UKBB training set. The results were evaluated on three sets. Numbers listed in the table are the means and standard deviation of Dice

scores.

*The myocardium segmentation performance on the BSCMR-AS set was only evaluated on ED frames because of the lack of annotation at ES frames, whereas the performance on

the other two datasets was evaluated on both ED and ES frames. For simplicity, Dice scores for the myocardium on the BSCMR-AS in the following tables were calculated in the same

way without further illustration.

FIGURE 2 | Boxplots of the average Dice scores between the results of our previous work (3) and the results of the proposed method on the three datasets. For

simplicity, we calculate the average Dice score over the three structures (LV, MYO, RV) for each image in the three datasets. The boxplots in orange are the results of

the proposed method whereas the boxplots in blue are the results of the previous work. The green dashed line in each boxplot shows the mean value of the Dice

scores for the segmentation results on one dataset.

• FCN-64: a wider version of FCNwhere the number of filters in
each convolutional layer is increased by 4 times.

• UNet-16: a smaller version of U-Net where the number of
filters in each convolutional layer is reduced by four times.
Same as FCN-16, it has 16 filters in the first layer.

All of them were trained using the same UKBB training set and
with the same training hyperparameters. These networks were
then compared to the proposed network (UNet-64).

Table 4 compares the performances of the four different
networks over the three different test sets. It can be seen that
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TABLE 4 | Cross-dataset segmentation performances of four different network architectures.

UKBB test set (n = 600) ACDC set (n = 100) BSCMR-AS set (n = 599)

Network structure Num of conv weights (aprox.)
LV MYO RV LV MYO RV LV MYO

FCN-16 0.98 million 0.92 (0.04) 0.84 (0.04) 0.88 (0.05) 0.80 (0.20) 0.67 (0.19) 0.68 (0.27) 0.84 (0.14) 0.77 (0.11)

FCN-64 15.6 million 0.94 (0.04) 0.87 (0.03) 0.89 (0.05) 0.87 (0.12) 0.78 (0.11) 0.77 (0.17) 0.85 (0.12) 0.79 (0.10)

UNet-16 0.84 million 0.92 (0.04) 0.83 (0.04) 0.87 (0.05) 0.87 (0.12) 0.66 (0.14) 0.67 (0.22) 0.85 (0.11) 0.73 (0.11)

Ours (UNet-64) 13.4 million 0.94 (0.04) 0.88 (0.03) 0.90 (0.05) 0.90 (0.10) 0.81 (0.07) 0.82 (0.13) 0.88 (0.09) 0.83 (0.07)

All the networks have been trained using the same UKBB training set with the proposed data normalization and augmentation strategy for 1,000 epochs. Results listed in the table are

the means and standard deviation of the Dice scores evaluated on the three sets. Numbers in red denote mean Dice scores below 0.70, whereas numbers in the bold font style denote

the highest mean Dice scores among the results of the four networks.

TABLE 5 | Cross-dataset segmentation performances of U-Nets with different training configurations.

Configurations UKBB test set (n = 600) ACDC set (n = 100) BSCMR-AS set (n = 599)

Image

resample

Rotation Aug Flip Aug Scale Aug LV MYO RV LV MYO RV LV MYO

X X X X 0.923 (0.041) 0.847 (0.038) 0.878 (0.048) 0.873 (0.101) 0.744 (0.104) 0.750 (0.187) 0.851 (0.113) 0.783 (0.095)

✗ X X X 0.916 (0.046) 0.836 (0.041) 0.864 (0.053) 0.811 (0.179) 0.614 (0.186) 0.575 (0.270) 0.798 (0.172) 0.673 (0.162)

X ✗ X X 0.922 (0.042) 0.848 (0.038) 0.878 (0.050) 0.869 (0.117) 0.733 (0.117) 0.722 (0.210) 0.853 (0.118) 0.784 (0.093)

X X ✗ X 0.924 (0.041) 0.849 (0.037) 0.881 (0.049) 0.858 (0.115) 0.705 (0.142) 0.681 (0.266) 0.862 (0.110) 0.779 (0.092)

X X X ✗ 0.921 (0.047) 0.845 (0.039) 0.876 (0.050) 0.785 (0.188) 0.640 (0.187) 0.596 (0.279) 0.834 (0.148) 0.752 (0.125)

All experiments were performed with the standard U-Net architecture: UNet-64. Each U-Net was trained using the same UKBB training set for 200 epochs to save computation.

Statistics listed in the table are the means and standard deviation of the Dice scores evaluated on the three sets. Numbers in red are those mean Dice scores below 0.70.

while there is no significant performance difference among the
four networks on theUKBB test set, small networks: UNet-16 and
FCN-16 perform much more poorly than their wider versions:
UNet-64 and FCN-64, on the ACDC set (see red numbers in
Table 4). This may indicate that in order to accommodate more
variety of data augmentation for generalization, the network
requires a larger capacity. It is also worth noticing that UNet-64
outperforms FCN-64 on all of the three test sets, while UNet-64
contains fewer parameters than FCN-64. This improvement may
result from U-Net’s special architecture: skip connections with
its step-by-step feature upsampling and aggregation. The results
indicate that the network structure and capacity can affect the
segmentation model generalizability across datasets.

4.2. The Influence of Different Data
Normalization and Data Augmentation
Techniques
In this section, we investigate the influence of different
data normalization and augmentation techniques on the
generalizability of the network, including image resampling
(data normalization), scale, flip, and rotation augmentation (data
augmentation). We focus on these four operations because
convolutional neural networks are designed to be translation-
equivariant (28) but they are not rotation-equivariant, nor scale
and flip-equivariant (29, 30). This means that if we rotate
the input, the networks cannot be guaranteed to produce the
same predictions with the corresponding rotation, indicating
that they are not robust to geometrical transformations on

images. Current methods to improve these networks’ ability to
deal with rotation/flip/scale variations still heavily rely on data
augmentation while intensity-level difference might be addressed
by further doing domain adaptation techniques such as style
transfer or adaptive batch normalization (31).

To investigate the influence of these four operations on model
generalization, we trained additional three U-Nets using the
UKBB training set, each of them was trained with the same
settings except that only one operation was removed. To save
the computational time for this ablation study, each network
was trained for 200 epochs, which still took 10 h for each
network since the training set from the UKBB dataset was
considerably large (3,975 subjects). The test results on the UKBB
test set, the ACDC dataset, and the BSCMR-AS dataset are
shown in Table 5. It can be observed that while the results
on the test data from the same domain (UKBB) with different
settings do not vary much, there are significant differences on
the other two test sets, demonstrating the importance of the four
data augmentation operations. For example, image resampling
increases the averaged Dice score from 0.673 to 0.783 for the RV
segmentation on the BSCMR-AS set, whereas augmentation by
scaling improves the mean Dice score from 0.596 to 0.750 for the
RV on the ACDC set. The best segmentation performance over
the three sets is achieved by combining all the four operations.

These results suggest that increasing variations regarding
pixel spacing (image scale augmentation), image orientation
(flip augmentation), heart pose (rotation augmentation) as well
as data normalization (image resampling) can be beneficial to
improve model generalizabilty over unseen cardiac datasets.
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TABLE 6 | Segmentation performance of the UKBB model across different scanners.

Dataset MRI scanner attributes Scanners No. of subjects LV MYO RV

BSCMR-AS Manufactures Philips 142 0.89 (0.07) 0.85 (0.04) –

Siemens 457 0.88 (0.10) 0.83 (0.08) –

Magnetic field strengths 1.5T 517 0.88 (0.09) 0.83 (0.09) –

3 T 82 0.88 (0.09) 0.84 (0.09) –

ACDC Magnetic field strengths 1.5T 65 0.89 (0.09) 0.81 (0.06) 0.80 (0.09)

3 T 29 0.91 (0.06) 0.82 (0.05) 0.80 (0.08)

Tests were performed on the BSCMR-AS dataset and ACDC dataset. This table presents the mean and standard deviation (numbers in the brackets) of the Dice score.

TABLE 7 | Segmentation performance of the UKBB model across different sites.

Dataset Site No. of subjects LV MYO RV

ACDC site A 100 0.91 (0.07) 0.81 (0.08) 0.82 (0.11)

BSCMR-AS

site B 28 0.88 (0.09) 0.83 (0.04) –

Site C 74 0.88 (0.09) 0.83 (0.04) –

Site D 150 0.89 (0.07) 0.85 (0.04) –

Site E 122 0.86 (0.11) 0.81 (0.08) –

Site F 64 0.88 (0.09) 0.84 (0.08) –

Site G 160 0.89 (0.09) 0.85 (0.08) –

This table presents the mean and the standard deviation (numbers in the brackets) of Dice scores for each site.

While one may argue that there is no need to do image
resampling if scale augmentation is performed properly during
training, we found that image resampling can significantly reduce
the complexity of real-world data introduced by heterogeneous
image pixel spacings, such that training and testing data are
more similar to each other, bringing benefits to both model
learning and prediction. In the following sections, for the sake of
simplicity, we will use “UKBB model” to refer to our best model
(the U-Net which was trained using the UKBB training set with
our proposed training strategy).

4.3. Segmentation Performance on Images
From Different Types of Scanners
In this section, UKBB model’s segmentation performance is
analyzed according to different manufacturers (Philips and
Siemens) and different magnetic field strengths (1.5 Telsa and 3
Telsa). The results on the two datasets (BSCMR-AS and ACDC)
are listed in Table 6. For ACDC data, only the results regarding
scans imaged using different magnetic strengths are reported
since these scans are all from Siemens. Furthermore, results in
the ACDC dataset with Dice scores below 0.50 are not taken
into account for this evaluation. This is because the number of
subjects from a 3T scanner in the ACDC is so small (33 subjects)
that the averaged performance can be easily affected given only a
few cases with extreme low Dice scores. Here, six subjects were
excluded. The final results show that the model trained only
using 1.5T Siemens data (UKBB data) could still produce similar
segmentation performance on other Siemens and Philips data
(top two rows in Table 6). Similar results are found on those

images acquired from 1.5T scanners and those acquired from 3T
scanners (see the bottom four rows in Table 6). This indicates
that the proposed method has the potential to train a model
capable of segmenting images across various scanners even if the
training images are only from one scanner.

4.4. Segmentation Performance on Images
From Different Sites
We also evaluate the performance of the UKBB model across
seven sites: one from ACDC data, six sites from BSCMR-
AS data. Results are shown in Table 7. From the results, no
significant difference is found when evaluating the LV and the
myocardium segmentation performances among the seven sites
(A-G) while the generalization performance for RV segmentation
still needs further investigation when more data with annotated
RV becomes available for evaluation.

4.5. Segmentation Performance on Images
Belonging to Different Pathologies
We further report the segmentation performance of the proposed
method on five groups of pathological data and the group of
normal subjects (NOR) (see Table 8). Surprisingly, the UKBB
model achieves satisfying segmentation accuracy over the healthy
group as well as DCM images and those images diagnosed with
AS, indicating the model is capable of segmenting not only those
with normal cardiac structures but also some abnormal cases with
the cardiac morphological variations in those HCM images and
AS images (see Figure 3).

However, the model fails to segment some of the other
pathological images, especially those in the HCM, MINF, and
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TABLE 8 | Segmentation performance of the UKBB model across the five groups of pathological cases and normal cases (NOR).

Dataset Group No. of subjects LV MYO RV

ACDC NOR 20 0.91 (0.05) 0.83 (0.04) 0.85 (0.14)

DCM 20 0.94 (0.04) 0.81 (0.05) 0.82 (0.11)

HCM 20 0.84 (0.12) 0.84 (0.03) 0.84 (0.08)

MINF 20 0.92 (0.05) 0.81 (0.04) 0.78 (0.13)

ARV 20 0.86 (0.13) 0.74 (0.11) 0.79 (0.16)

BSCMR-AS AS 599 0.88 (0.09) 0.83 (0.07) –

This table presents the mean and standard deviation of the Dice score. Red numbers are those mean Dice scores below 0.80.

FIGURE 3 | Visualization of good segmentation examples selected from three patient groups. NOR (without cardiac disease), DCM (dilated cardiomyopathy), AS

(aortic stenosis). Row 1: Ground truth (manual annotations); row 2: predicted results by the UKBB model. Each block contains a slice from ED frame and its

corresponding ES one for the same subject. This figure shows that the UKBB model produced satisfying segmentation results not only on healthy subjects but also on

those DCM and AS cases with abnormal cardiac morphology. The AS example in this figure is a patient with aortic stenosis who previously had a myocardial

infarction. Note that this AS case is from BSCMR-AS dataset where the MYO and RV on ES frames were not annotated by experts.

ARV pathology groups where lower Dice scores are observed.
For example, the mean Dice score for LV segmentation on
HCM images is the lowest (0.84). Figure 4 demonstrates some
of the worst cases produced by the proposed method. The first
column in Figure 4, shows a failure case where the UKBB model
underestimated the myocardium and overestimated the LV when
a thickened myocardial wall is present in a patient with HCM.
Also, the model struggles to segment cardiac structure on a
patient with MINF which contains the abnormal myocardial wall
with non-uniform thickness (the second column in Figure 4).
Compared to images in the other four groups with pathology,
images from patients with ARV seem to be more difficult for the
model to segment as the model not only achieves a low mean
Dice score on the RV (0.79) but also a low averaged value on the
myocardium (0.74).

One possible reason for these unsatisfactory segmentation
results might be the lack of pathological data in the current
training set. In fact, the UKBB data only consists of a small

amount of subjects with self-reported cardiovascular diseases,
and the majority of the data are healthy subjects in middle and
later life (3, 21, 32). This indicates that the network may not be
able to “learn” the range of those pathologies that are seen in
everyday clinical practice, especially those abnormalities which
are not currently represented in the UKBB dataset.

4.5.1. Failure Mode Analysis
We also visually inspected the images where the UKBB model
produces poor segmentation masks. In general, there are two
main failure modes we identified, apart from the failure
found on the abnormal pathological cases which we have
discussed above:

• Apical and basal slices. These slices are more error-
prone than mid-ventricle slices, which has also been
reported in Bernard et al. (1). Segmenting these slices
is difficult because apical slices have extremely tiny
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FIGURE 4 | Examples of the worst cases that have pathological deformations. Row 1: Ground truth; row 2: predicted results by the UKBB model. HCM, hypertrophic

cardiomyopathy; MINF, myocardial infarction with altered left ventricular ejection fraction; ARV, abnormal right ventricle. Column 1 shows that the UKBB model

underestimates the myocardium in patients with HCM. Column 2 shows that the model struggles to predict the cardiac structure when certain sections of the

myocardium are extremely thin. Column 3 shows a failure case where an extremely large right ventricle is shown in the image. All these images are from ACDC dataset.

objects which can be hard to locate and segment (see
Figure 5A) whereas basal slices with complex structures
increase the difficulty of identifying the contour of the LV
(see Figure 5B).

• Low image quality. Images with poor quality are found both
in 1.5T and 3T images (see Figures 5C,D). As reported in
Rajiah and Bolen (4) and Alfudhili et al. (5), 1.5T images
are more likely to have low image contrast than 3T images
due to the low signal-to-noise (SNR) limits, whereas 3T
images can have more severe imaging artifact issues than
1.5T images. These artifacts and noise can greatly affect the
segmentation performance.

4.6. Statistical Analysis on Clinical
Parameters
We further compare the proposed automatic method with
manual approach on five clinical parameters, including the end-
diastolic volume of LV (LVEDV ), the end-systolic volume of
LV (LVESV ), the left ventricular mass (LVM), the end-diastolic
volume of right ventricle (RVEDV ), and the end-systolic volume
of RV (RVESV ).

Figure 6 shows the Bland-Altman plots for the five clinical
parameters on the three datasets. The Bland-Altman plot is
commonly used for analysing agreement and bias between two
measurements. Here, each column shows the comparison results
between automated measurements and manual measurements

for one particular parameter, including the mean differences
(MD) with corresponding standard deviation (SD) and the limits
of agreement (LOA). In addition, we also conducted the Bland-
Altman analysis for the automatic method (FCN) in our previous
work (3), for comparison.

From the first two columns in the Figure 6, one can see
that both FCN and the proposed method achieve excellent
agreements with human observers on the UKBB dataset,
indicating both of them can be used interchangeably withmanual
measurements. For the other two datasets, by contrast, the
proposed method achieves much better agreement than FCN, as
the LOA between the proposed method and manual results is
narrower. For example, for LVM on the ACDC dataset, the LOA
between the proposed method and the manual approach is from
5.07 to −39.93 (MD = −17.43) while the LOA between the FCN
and the manual method is from 3.45 to −64.66 (MD = −30.61)
(see Figures 6O,P, respectively).

Finally, we calculate the Spearmanr’s rank correlation
coefficients (r2) of the five clinical parameters derived
from the automatic segmentation using the proposed
method and the manual segmentation, which are reported
in Table 9. From the results, it can be observed that the
clinical measurements based on the LV segmentation and the
myocardium segmentation derived by our automatic model are
highly positively correlated with the manual analysis (≥0.91),
although the RV correlation coefficients on the ACDC dataset are
relatively lower.
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FIGURE 5 | Examples of worst segmentation results found on challenging slices. Left: Image, middle: ground truth (GT), right: prediction from the UKBB model. (A)

Failure to predict LV when the apical slice has a very small LV. (B) LV segmentation missing on the basal slice (ES frame). This sample is from the BSCMR-AS dataset

where only the LV endocardial annotation is available. (C) Failure to recognize the LV due to a stripe of high-intensity noise around the cardiac chambers in this 1.5T

image. This sample is an ES frame image from the BSCMR-AS dataset. (D) Failure to estimate the LV structure when unexpected strong dark artifacts disrupt the

shape of the LV in this 3T image. Note that this image is an ED frame image from the BSCMR-AS dataset where RV was not annotated by experts.
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FIGURE 6 | (A-Z) are Bland Altman plots (automatic-manual) for the three datasets. Agreement of clinical measurement from automatic and manual segmentations.

Bland Altman plots (automatic-manual) are shown regarding the three sets. In each Bland-Altman plot, the x-axis denotes the average of two measurements whereas

the y-axis denotes the difference between them. The solid line in red denotes the mean difference (bias) and the two dashed lines in green denote ±1.96 standard

deviations from the mean. The title of each plot shows the mean difference (MD) and its standard deviation (SD) for each pair of measurements. FCN, the automatic

method in our previous work (3); LV/RV, left/right ventricle; EDV/ESV, end-diastolic/systolic volume; LVM, left ventricular mass.
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TABLE 9 | Spearman’s rank correlation coefficients of clinical parameters derived from the automatic measurements and the manual measurements on the three sets.

Comparison Test set LVEDV LVESV LVM RVEDV RVESV

Automatic vs. Manual UKBB (n = 600) 0.97 0.91 0.93 0.96 0.91

Automatic vs. Manual ACDC (n = 100) 0.97 0.94 0.96 0.79 0.83

Automatic vs. Manual BSCMR-AS (n = 599) 0.94 0.92 0.92 – –

All segmentations are produced by the U-Net trained with the UKBB training set.

Each coefficient reported in this table has a P-value below 0.0001.

5. DISCUSSION

In this paper, we developed a general training/testing pipeline
based on data normalization and augmentation for improving
the generalizability of neural network-based CMR image
segmentation methods. We also highlighted the importance of
the network structure and capacity (section 4.1) as well as the
data normalization and augmentation strategies (section 4.2) for
model generalizability. Extensive experiments on multiple test
sets were conducted to validate the effectiveness of the proposed
method. The proposed method achieves promising results on a
large number of test images from various scanners and sites even
though the training set is from one scanner, one site (sections
4.3, 4.4). Besides, the network is capable of segmenting healthy
subjects as well as a group of pathological cases from multiple
sources although it had only been trained with a small portion of
pathological cases.

The limitation of the current method (the UKBB model) is
that it still tends to underestimate the myocardium especially
when the size of the myocardium becomes larger (see points in
the right part of Figure 6R). Again, we conclude this limitation is
mainly due to the lack of pathological cases in the training set.

Besides, we found that the difference (bias) between the
automatic measurements and the manual measurements in
the cross-domain test sets: ACDC and BSCMR-AS, are more
significant than the difference in the intra-domain set: UKBB
test set. The larger bias may be caused by not only those
challenging pathological cases we have discussed above, but also
inter-observer bias and the inconsistent labeling protocols used
in the three datasets. The evident inter-observer variability when
delineating myocardial boundaries on apical and basal slices
in a single dataset has been reported in Suinesiaputra et al.
(19). In this study, however, there are three datasets which
were labeled by three different groups of observers. Each group
followed an independent labeling protocol. As a result, significant
variations of RV labels andMYO labels on the basal planes among
the three datasets are found. This inter-dataset inconsistency
of the RV labels on basal planes has been reported in Zheng
et al. (33). The mismatch of RV labels can partially account
for the negative MD values for the RV measurements in the
ACDC dataset (see Figure 6V). The differences in the labeling
protocols together with inter-observer variability in different
datasets pose challenges to evaluate the model generalizability
across domains accurately.

In the future, we will focus on improving the segmentation
performance of the neural network by increasing the diversity

of the training data in terms of pathology. A promising way
of doing it, instead of collecting more labeled data, is to
synthesize pathological cases by transforming existing healthy
subjects with pathological deformations. A pioneering work (34)
in this direction has successfully transported pathological
deformations from certain pathological subjects (i.e., HCM,
DCM) to healthy subjects, which can help to increase the
number of pathological cases. Similarly, one can also adopt other
types of learning-based data augmentation approaches [e.g.,
generative adversarial network based data augmentation (35),
adversarial data augmentation (36)] to improve the model
robustness on challenging cases, generating more realistic
and challenging images (e.g., apical/basal slices, images with
different types of artifacts) for the network to learn. Another
direction, is to add a post-processing module to correct those
failed predictions with anatomical constraints (37, 38). Both
of these approaches can be easily integrated in the proposed
training pipeline without significant modifications. Last but
not least, for clinical deployment, it is necessary to alert users
when failure happens. In this regard, future work can be
integrating the segmentation approach with an automatic quality
control module, providing automatic segmentation assessment
[e.g., estimated segmentation scores (39), model uncertainty
maps (40)] to clinicians for further verification and refinement.

6. CONCLUSION

In this paper, we proposed a general training/testing pipeline
for neural network-based cardiac segmentation methods and
revealed that a proper design of data normalization and
augmentation, as well as network structure, play essential roles
in improving its generalization ability across images from various
domains. We have shown that a neural network (U-Net) trained
with CMR images from a single scanner has the potential to
produce competitive segmentation results onmulti-scanner data
across domains. Besides, experimental results have shown that
the network is capable of segmenting healthy subjects as well
as a group of pathological cases from multiple sources although
it had only been trained with the UK Biobank data which has
only a small portion of pathological cases. Although it might
still have the limitations in segmenting images with low quality
and some images with significant pathological deformations,
higher segmentation accuracy for these subjects could be further
achieved by increasing the diversity of training data regarding
image quality and the pathology in the future.
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