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Acute coronary syndromes (ACS) secondary to coronary vessel plaques represent

a major cause of cardiovascular morbidity and mortality worldwide. Advancements

in imaging technology over the last 3 decades have continuously enabled the

study of coronary plaques via invasive imaging methods like intravascular ultrasound

(IVUS) and optical coherence tomography (OCT). The introduction of near-infrared

spectroscopy (NIRS) as a modality that could detect the lipid (cholesterol) content of

atherosclerotic plaques in the early nineties, opened the potential of studying “vulnerable”

or rupture-prone, lipid-rich coronary plaques in ACS patients. Most recently, the ability of

NIRS-IVUS to identify patients at risk of future adverse events was shown in a prospective

multicenter trial, the Lipid-Rich-plaque Study. Intracoronary NIRS-IVUS imaging offers a

unique method of coronary lipid-plaque characterization and could become a valuable

clinical diagnostic and treatment monitoring tool.

Keywords: near-infrared spectroscopy (NIRS), lipid-rich plaque, plaque-characterization, intravascular imaging,

intravascular ultrasound (IVUS), coronary artery disease, coronary plaque

INTRODUCTION

Coronary artery disease (CAD) has continued to be a major cause of morbidity and mortality
worldwide, despite recent advances in medical and interventional therapies (1). The pathogenesis
of acute coronary events involves the development of an early core with the accumulation of
lipid-rich free cholesterol which then progresses to the formation of a fibroatheroma (2). Coronary
angiography has been a crucial tool for detecting the gross presence of disease of coronary lesions,
it however underestimates the magnitude of atherosclerosis in non-culprit arteries particularly in
the early stages of disease process and provides no information regarding the composition of the
plaque responsible for the lesion. Intracoronary imaging including intravascular ultrasound (IVUS)
and near infrared spectroscopy (NIRS) have been studied to determine the plaque burden (PB) and
plaque composition, respectively.

Intravascular Ultrasound provides 2-dimensional cross-sections of arterial vessels which enables
the visualization and characterization of not just lumen and stent struts, but the vessel wall
dimensions and the presence of plaques within it. In spite of the usefulness of IVUS in the study of
plaques and vessel remodeling, it remains limited in the visualization and quantification of certain
plaque characteristics mainly due to the inherent properties of sound waves (3). NIRS imaging
offers the ability to penetrate blood and tissue to detect lipid core containing coronary plaques. The
technology is based on the property of different organic molecules to scatter and absorb light at
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different intensities and wavelengths (4, 5). The integration of
NIRS and IVUS systems has provided a hybrid imaging modality
which combines the penetration and high resolution of IVUS
with the lipid core quantification and characterization of NIRS
which has been demonstrated to correlate with the lipid detection
(6, 7).

We will review the present and potential clinical and research
utility of NIRS-IVUS imaging in the study of coronary lipid
plaques in the context of CAD.

NEAR INFRARED SPECTROSCOPY
TECHNIQUE

Near-infrared diffuse reflectance spectroscopy is a technique that
relies on the property of substances to absorb and scatter NIR
light (wavelengths from 800 to 2,500 nm) at different intensities
as a function of wavelengths (8–10). NIRS as a technique
has been used in various science fields, including chemistry
and pharmaceuticals, for the determination of the chemical
composition of substances.

Prior to the development of NIRS, various spectroscopy
techniques (nuclear magnetic resonance spectroscopy, Raman
spectroscopy, and fluorescence spectroscopy) had been studied
for possible intravascular applications toward the study of
atherosclerotic plaques. The Raman near-infrared spectroscopy
(NIRS) which was widely used several disciplines was based
on the inelastic scattering of photons following collision with
molecules and while it was suggested to have the potential
to identify vulnerable plaques, was limited by signal-to-noise
problems (11–14). The NIRS technology was first used in 1993
by Cassis and Lodder in animal experiments in which they
sought the characterization of low-density lipoprotein cholesterol
accumulation in the aortas of hypercholesterolaemic rabbits. This
was followed by the in-vivo use of diffuse reflectance NIRS in
imaging the lipid content in human carotid plaques exposed
during surgery (15, 16)

Validation of NIRS
In the early days of NIRS, 2 pivotal studies were carried out
to validate its accuracy for the detection of lipid core plaques
(LCPs) in human vessels. The first study by Gardner et al.
made use of 84 human heart specimens- 33 hearts were used
to develop NIRS algorithms and produce predefined endpoints
while the remaining 51 hearts were used for prospective
validation of algorithm, in a double-blinded study design, to
evaluate the accuracy of NIRS in detecting LCPs. In order to

Abbreviations: ACS, Acute Coronary Syndrome; IVUS, Intravascular ultrasound;
OCT, Optical Coherence Tomography; NIRS, Near infrared spectroscopy; PB:
Plaque Burden CAD, Coronary Artery Disease; PCI, Percutaneous Coronary
Intervention; LCP, lipid core plaques; LRP, Lipid rich plaque; FA, Fibroatheroma;
ROC, Receiver Operating Characteristic; AUC, Area Under the Curve: TVC, True
Vessel Characterization; LCBI, Lipid core burden index; NC-MACE, Non culprit
major cardiovascular events; MACE, Major adverse cardiac events; FDA, Food and
Drug Administration; TCFA, thin-capped fibroatheromas; PAD, Peripheral arterial
disease; MACCE, Major Adverse cardiovascular and cerebrovascular events; FFR,
Fractional Flow Reserve; RF-IVUS, Radiofrequency IVUS; BVS, Bioresorbable
vascular scaffold.

have a quantitative target for constructing the algorithm and
validating the findings, an LCP of interest was defined as a
“fibroatheroma” (FA) with a lipid core >60◦ in circumferential
extent, >200µm thickness, and with a fibrous cap of mean
thickness <450µm.” The primary analysis which was done by
comparing NIRS information presented on block chemogram
readings vs. the classified histologic findings showed a “receiver
operating characteristic (ROC) area under the curve (AUC) of
0.80 (95 % CI: 0.76–0.85),” confirming the ability of the NIRS
system to accurately identify the LCPs (4).

Secondly, the Spectroscopic Assessment of Coronary Lipid
(SPECTACL) study which was the first catheter-based technique
to use NIRS in humans for percutaneous application was
performed to validate the applicability of the autopsy-based LCP
detection algorithm in patients. The study, in addition to showing
that the NIRS imaging catheter had a similar safety profile to that
of IVUS, demonstrated that the spectra obtained from imaging
the epicardial vessels of living patients were similar to those from
previously validated spectra from autopsy specimens, thereby
supporting the use of NIRS for detection of LCPs in human
patients (9).

Earlier, several ex-vivo studies had examined the ability of
NIRS to identify histological features of lipid-rich atherosclerotic
plaques in human blood vessels obtained at autopsy. These
studies reported >90% sensitivity and specificity for the
identification of characteristic features suggesting lipid-rich
plaques including the rupture-prone thin-cap fibroatheromas
(TCFAs) seen in ACS patients. More recent studies have
corroborated these findings as well as pointing to the additive
value of NIRS to IVUS-derived PB in detecting vulnerable
plaques (17–21).

Intra- and Inter-catheter reproducibility of the NIRS catheter
has also been validated in a number of independent studies
(22, 23).

Principles of Near Infrared
Spectroscopy-Intravascular Ultrasound
(NIRS-IVUS) Catheter
A little over a decade ago, a single modality NIRS system was
originally developed for the invasive detection of lipid core
plaques (LipiScanTM, Infraredx Inc., Bedford, MA, USA). In later
years, a dual modality system which combined IVUS with NIRS
was developed to provide in a single catheter information on both
vessel structure and plaque composition in a single acquisition.
The NIRS-IVUS systems have continued to evolve and now exist
in the form of a dual frequency, dual modality system. (TVC
Imaging SystemTM and Makoto Intravascular Imaging SystemTM,
Infraredx Inc.) Table 1.

The NIRS-IVUS system comprises a scanning NIR laser, a
pullback and rotation unit, and a traditional IVUS-sized catheter.
The 3.2F rapid exchange catheter has an entry profile of 2.4F
and a shaft profile of 3.6F and is compatible with 6F guiding
catheters. The NIRS-IVUS can be inserted over a 0.014-inch
guide wire while its passage through the lesion is facilitated by the
hydrophilic coating present on the flexible distal 50 cm end. The
IVUS images are acquired during an automated pullback with
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TABLE 1 | Evolution of NIRS/NIRS-IVUS imaging-based systems.

Trade name Model number Year

introduced

(US)

Features/

design specifications

Advantages/

improvements/revisions

Additional comments

LipiScan NIRS-MC5 2008 NIRS (8,000 NIRS

spectra/100mm)

First FDA cleared NIRS imaging System

with two-dimensional map of LCP

LipiScan IVUS TVC-MC7 2010 NIRS (8,000 NIRS

spectra/100mm); 40 MHz,

Grayscale IVUS

First FDA cleared dual imaging system

which combined co-registered, grayscale,

40 MHz IVUS with proprietary NIR LCP

detection technology to identify LCPs,

degree of stenosis, reference vessel

diameter, and plaque burden

TVC Imaging

System

TVC-MC8 2012 NIRS (32,000 NIRS

spectra/100mm); 40 MHz,

Grayscale IVUS

First multimodality imaging to combine

IVUS and NIRS. Improved IVUS Image

quality and resolution with hydrophilic

coating on catheter and added manual

IVUS imaging features.

1. Lower frequency increases

depth-of-field while the higher

frequency improves clarity.

2. Improved resolution

enhancing visualization of

vessel detailsAdvanced TVC

Imaging System

TVC-MC8x 2014 NIRS (32,000 NIRS

spectra/100mm); 35–65 MHz,

Grayscale IVUS

High definition “HD” IVUS Image Quality

with dual-modality frequency (up to 65

MHz) capabilities. Dual-layer hydrophilic

coating. 40-micron axial resolution

TVC Imaging

System

TVC-MC9 2015 NIRS (32,000 NIRS

spectra/100mm); 35–65 MHz,

Grayscale IVUS

Enhanced user interface and IVUS image

with 20-micron axial resolution. Extended

bandwidth rotational IVUS catheter.

Makoto Imaging

System

TVC-MC10 2019 NIRS (1,300 NIRS spectra/mm);

35–65 MHz IVUS

User Interface Enhancements. Multiple

(0.5, 1.0, 2.0 mm/s) Pullback Speeds. 0.0,

2.0, 10.0mm/s Manual IVUS tip movement

speed

NIRS, Near-Infrared spectroscopy; FDA, Food Drug and Administration; TVC, True Vessel Catheterization; LCP, Lipid Core Plaque; IVUS, Intravascular Ultrasound; MHz, Megahertz

(IVUS Transducer frequency).

simultaneous co-registered NIRS measurements. In the latest
generation, the Makoto system, the catheter’s imaging core pulls
back at speeds of 0.5, 1.0, or 2.0 mm/s and rotates at 1800
rpm with a maximum imaging length of 15 cm, acquiring up to
∼130,000 NIRS per 100mm (4, 9, 24) (Figure 1).

NIRS lipid core data are automatically displayed on a
“chemogram” which displays the probability of the presence of
a lipid rich plaque with the millimeters of pull-back on the
x-axis and the circumferential position on the y-axis. Areas
containing lipid core are displayed as yellow and those without
any significant lipid core as red. A quantitative image metric is
automatically reported as a numerical lipid-core burden index
(LCBI), which represents the fraction of the chemogram yellow
pixels whose probability of lipid exceeds 0.6, per 1,000. The LCBI
provides a quantitative metric of the lipid core plaque present in
a scanned vessel and can be computed over the entire length of a
vessel scan, segments of scans, or defined width windows within
segments (such as the 4mm sliding window with the maximum
LCBI, maxLCBI4mm) (9) (Figure 2).

APPLICATIONS OF NIRS-IVUS

Lipid Rich Plaque Characterization
Prior autopsy studies have shown that lesions with a thin fibrous
cap(<65 mn of cap thickness) overlying a large necrotic core are
most frequently prone to rupture (4, 25, 26). These “vulnerable”
plaques have therefore become a target for identification by

novel intracoronary imaging modalities. Several studies in
ACS patients have since shown the presence of LCPs in the
culprit arterial segments to be major precursors of the disease
and the possible association of the lipid core burden with
adverse cardiovascular outcomes in CAD patients overtime
(27–34) (Table 2).

The PROSPECT (Providing Regional Observations to Study
Predictors of Events in the Coronary Tree) Trial, a landmark
study which included 697 acute coronary syndrome (ACS)
patients was a natural history study that sought to provide
in vivo evidence of the hypothesis that the histopathological
characteristic of plaques and not the degree of stenosis on
angiography was responsible for the development of ACS. The
study investigated the non-culprit coronary lesions in patients
with ACS who underwent three-vessel gray scale and VH-IVUS
imaging after successful PCI of culprit lesion demonstrated that
“independent predictors of non-culprit-related events were the
presence of VH-IVUS thin-cap fibroatheroma (hazard ratio 3.35;
95% confidence intervals 1.77–6.36), a PB ≥70% (hazard ratio
5.03; 95% confidence intervals 2.51–10.11), and a minimum
lumen area ≤4.0 mm2 (hazard ratio 3.21; 95% confidence
intervals 1.61–6.42)” (44).

Following the results from the PROSPECT Study, The
COLOR registry prospectively observed a positive association
between plaque morphology evaluated by NIRS and the
degree of coronary artery stenosis. It demonstrated that
increasing degree of stenosis seen by angiography was associated
with more vulnerable plaque morphology as assessed by
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FIGURE 1 | NIRS Prototype figures (A) LipiScan-NIRS-MC5 (B) LipiScan-NIRS-MC5 Display (C) 2012 TVC Imaging System-MC8 (D) 2015 TVC Imaging

System-MC9 (E) NIRS Pullback device (F) NIRS-IVUS catheter (G) 2012 TVC Display (H) Makoto Imaging System- MC10 (I) 2018 Makoto Display (All images in this

Figure are licensed content by InfraRedX Inc. and shall not be reproduced).

FIGURE 2 | (A–C) NIRS-IVUS chemograms in non-culprit lesions showing LCBI in non-stenotic angiographic segments; (A) Baseline Angiogram cine showing left

anterior descending (LAD) segment with IVUS cross-sections and NIRS-IVUS rings indicating the presence of lipid plaque, (B) Baseline NIRS-IVUS chemogram

(longitudinal view) showing the calculated maximum 4mm LCBI (max4mmLCBI) in a 4mm segment of the LAD segment shown in (A). (C) Follow up angiogram of the

same vessel segment showing a severely stenotic segment in the proximal LAD. (Courtesy of the MedStar Health Research Institute, MedStar Cardiovascular

Research Network, Invasive Imaging Core Laboratory).

NIRS-IVUS system. Also, one of the first prospective human
studies which evaluated high LCP by NIRS vs. cardiovascular
events- The ATHEROREMO-NIRS (The European Collaborative
Project on Inflammation and Vascular Wall Remodeling in
Atherosclerosis—Near-Infrared Spectroscopy) trial, a sub-study
of the ATHEROREMO-IVUS study of nearly 600 patients (to
evaluate some of the limitations of VH IVUS identified after
the PROSPECT and VIVA studies) produced promising results
regarding the possibility of the technology. The relationship of
LCBI value with the primary endpoint composite was found
to be similar in both stable angina and ACS patients. In a

more recent study, Matsumura et al. employed NIRS-IVUS in
examining the features of coronary lesions with intraplaque
hemorrhage (a key culprit in coronary lesion progression)
in a histopathological validation study and demonstrated the
presence of more FAs, greater IVUS PB and NIRS lipid core
burden present in intraplaque hemorrhage segments compared
to segments without intraplaque hemorrhage (35, 37, 45–47)
Table 2.

In the most recent prospective multicenter natural history
intracoronary imaging study—The LRP (Lipid Rich Plaque)

identified patients and coronary segments at risk of future major
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TABLE 2 | Overview of key studies evaluating the utility and efficacy of NIRS-IVUS imaging in CAD.

Study Year Study

aim

Study

design/

Sample

size

reported

Follow-Up

duration

NIRS

related

endpoint

Key merits Limitations Main conclusion

The COLOR

Trial (35)

2011 To determine whether

intracoronary NIRS can identify

plaques that are likely to cause

periprocedural MI in patients

undergoing elective PCI

Prospective

observational

62 The rate of periprocedural

MI in the groups with and

without a large LCP in the

treatment zone as assessed

by NIRS and expressed as

maxLCBI4mm

1. Showed the relationship

between the risk of

periprocedural MI and

NIRS-detected LCPs;

2. Included a comparison

group of patients without

large LCBI

1. Small sample size;

2. Selection bias due

to the availability of

post-PCI biomarkers

NIRS imaging provides a

rapid and automated

means of LCP

identification can be used

to identify large, stenotic,

coronary LCPs, which in

the study were found to

be associated with a 50%

risk of periprocedural MI

when dilated during PCI

The YELLOW

Trial (36)

2013 To evaluate the effect of

short-term statin therapy on

intracoronary plaque using FFR

and NIRS-IVUS system in

patients with multivessel CAD

undergoing PCI and with at

least 1 severely obstructive

(FFR ≤ 0.8) non-culprit

Randomized

Clinical Trial

87 7 weeks Change in lipid-core burden

index at the LCBI4mm max

segment

1. Evaluated the effect of

therapeutics on NIRS-

quantified lipid content;

2. NIRS imaging performed

at baseline and

follow-up;

3. Included correlation of

physiology (FFR) against

NIRS-derived LCBI;

4. Randomized study

design

1. Small sample size;

2. Short follow-up

duration;

3. IVUS and NIRS were

performed using

separate catheters 4.

Differences in baseline

LCBIs between the two

study groups

Significant reduction in

maxLCBI4mm in the

intensive statin group vs

the standard of care group

ATHEROREMO-

NIRS

Oemrawsingh

et al. (37)

2014 To determine the long-term

prognostic value of

intracoronary NIRS as

assessed in a non-culprit

vessel in patients with CAD

Prospective

observational

203 12 months Composite of all-cause

mortality, non-fatal ACS,

stroke, and unplanned

coronary revascularization

exclusive of culprit lesion

events

1. Clinical endpoints;

2. Results strongly

suggested the

prognostic value of NIRS

imaging in non-stenotic,

non-culprit segments

1. Small sample size;

2. A single non-culprit

coronary artery was

imaged per patient

“CAD patients with an

LCBI equal to or above

the median of 43.0, as

assessed by NIRS in a

non-culprit coronary

artery, had a 4-fold risk of

adverse cardiovascular

events at 1-year follow-up

These findings relate to

the risk throughout the

entire coronary tree and

not necessarily at the

imaged segment or a

lesion-specific risk”

(Continued)
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TABLE 2 | Continued

Study Year Study

aim

Study

design/

Sample

size

reported

Follow-Up

duration

NIRS

related

endpoint

Key merits Limitations Main conclusion

The CANARY

Trial (38)

2015 To determine whether pre-PCI

plaque characterization using

NIRS is capable of identifying

lesions at risk of periprocedural

myonecrosis

Prospective

Randomized Pilot

Trial

85 Incidence of periprocedural

MI, defined as troponin or

creatine kinase-myocardial

band increase to 3 or more

times the upper limit of

normal within 72 h

1. Randomized design;

2. Correlation of NIRS

measures vs. MI enzyme

parameters;

3. Confirmed a relationship

between NIRS-identified

LRPs and periprocedural

myonecrosis

1. Small study size;

2. Not all clinically relevant

MIs.

Pre-interventional

intravascular imaging with a

combined NIRS-IVUS

catheter is able to identify

lesions at increased risk of

periprocedural myonecrosis

after stent implantation

Furthermore, the use of a

distal embolization

protection filter did not

prevent myonecrosis after

PCI of lipid-rich plaques in

this study

IBIS-3 (39, 40) 2016 To evaluate the effect of high

intensity statin therapy on

compositional coronary plaque

changes using RF-IVUS and

NIRS in non-culprit segments

Prospective

observational

103 6 months-12

months

The effect of high

intensity-rosuvastatin on

LCP within non-stenotic

NCLs

1. Evaluated the effect of

lipid lowering

therapeutics on

NIRS-quantified LCBI in

non-stenotic segments;

2. Included study of the

stability of the plaque

necrotic core;

3. NIRS imaging at baseline

and follow-up

1. Lack of a randomized

design (no comparison

group);

2. Events incidence not

sufficient to assess

MACE

High dose rosuvastatin

therapy resulted in

non-significant change in

Necrotic Core (NC) and a

neutral effect was observed

in LCBI

The YELLOW II

Trial (41)

2017 Assess changes in plaque

morphology using intravascular

imaging, and evaluate

cholesterol eflux capacity in

stable multivessel CAD patients

receiving high-dose statin

therapy

Prospective

observational

85 8–12 weeks To examine lipid content

changes in obstructive

NCLs, measured by NIRS,

and plaque morphology,

assessed by OCT; and

compare changes in lipid

content and plaque

morphology with changes in

LDL, HDL, apo A-I, and

macrophage functionality

1. Study design included

genetic, clinical and

plaque parameters

2. Multimodality imaging-

Included OCT imaging in

assessing plaque

1. Lack of a randomized

design/ comparison

group

2. Short follow-up duration

There was no significant

change observed in plaque

lipid content quantified

using NIRS. But a significant

increase in FCT of

obstructive NCLs and

enhancement of CEC in

patients with stable

coronary artery disease

LRP Study

(42, 43)

2019 To establish the relationship

between LRPs detected by

NIRS-IVUS at the non-culprit

sites and subsequent coronary

events from new culprit lesions

Prospective cohort 1,271 24 months Non-Index Culprit Lesion

related Major Adverse

Cardiac Events (NC-MACE)

in patients and plaque in

association with

maxLCBI4mm

1. Large multicenter study

design with clinical

endpoints;

2. Included plaque and

patient level endpoints;

3. Largest intracoronary

imaging study to identify

patients and vessel

segments at risk of future

clinical events

1. Follow-up duration not

extending beyond 2

years;

2. Only a few patients had

all 3 major vessels

scanned (average of 2.1

vessels scanned/patient)

Coronary segments at

higher risk of subsequent

NC-MACE were associated

with higher analyzable

maxLCBI4mm > 400
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adverse coronary events using NIRS-IVUS system. Patients with
known or suspected CAD undergoing cardiac catherization with
possible PCI were examined via NIRS-IVUS imaging in non-
culprit arteries when possible. The study showed that 9% of
the patients had subsequent non-culprit-major adverse cardiac
events (NC-MACE) and out of these patients, higher event rate
was associated with analyzable maxLCBI4mm > 400 (HR 3.39;
95% confidence interval 1.85–6.20), pointing to the diagnostic
value of theNIRS-IVUS (42, 43). Following these results, the FDA
granted a label claim for NIRS detection and identification of
patients at increased risk ofmajor adverse cardiac events (MACE)
Table 2.

Clinical Applications of Intracoronary
Near-Infrared Spectroscopy
In general, the early evidence from NIRS-IVUS use points to
multiple potential clinical applications of this imaging system.
The identification and localization of vulnerable atherosclerotic
plaques offers a clinical tool that could help assess precise lesion
lengths including segments with a high lipid core burden toward
optimal stenting (48). Secondly, NIRS-IVUS offers information
on the necrotic core of atherosclerotic plaques and can predict
the embolization of highly thrombogenic lipid depositions. The
release of these elements into the blood stream which results
in distal embolization is a known culprit in peri-procedural
myonecrosis (35, 38, 49–51). Similarly, the utility of NIRS-
IVUS in optimizing carotid artery stenting toward preventing
periprocedural stroke is a subject of ongoing research (52, 53).

Furthermore, NIRS-IVUS has been employed in the study of
plaque morphology and composition in the peripheral arteries-
superficial femoral arteries in the setting of severe stenoses and
symptomatic peripheral artery disease (PAD) (54, 55).

Several other studies (37, 43, 56, 57) which show the
association of either max4mmLCBI or high LCBI (in the case
of Danek et al. and Oemrawsingh et al.) in non-target/non-
culprit vessel segment with increased incidence of MACCE and
the risk of future coronary events subsequent to the presence of
vulnerable plaques in non-culprit segments has given credence to
retrospective autopsy studies regarding the assessment of plaque
vulnerability. The ability of NIRS-IVUS to assess the possibility
of future coronary events based on the LCBI values in non-
culprit segments offers a unique diagnostic utility and a risk-
stratification tool. The predictive role of NIRS-IVUS shown in
these studies is being further studied in ongoing studies and
raises the question of the need for treating non-culprit vulnerable
plaques in vulnerable patients.

With the evolution of pharmacological therapies in addition to
the performance of the present lipid-lowering therapies, NIRS-
IVUS offers a tool for monitoring the effects of medications
such as statins and PCSK9-inhibitors on the coronary vasculature
lipid burden. Already, studies have investigated the effect of
lipid-lowering medications on reducing necrotic-core containing
plaques. The YELLOW (Reduction in Yellow Plaque by
Aggressive Lipid-Lowering therapy) trial was a randomized
clinical trial (rosuvastatin 40mg daily vs. the standard-of-
care lipid-lowering therapy) which recruited patients with

multi-vessel CAD (including at least 1 severely obstructive
[FFR≤0.8] non-culprit) undergoing revascularization by PCI.
The non-target lesions in both groups were evaluated at
baseline and following 7 weeks of therapy with fractional flow
reserve (FFR), and NIRS-IVUS, comparison between baseline
and follow up results for NTLs demonstrated that reduction
in LCBI4mm max was significantly higher in intensive statin
group as compared to standard group (36) In a follow up
study -the YELLOW II, the effects of high-dose statin therapy
on changes in plaque morphology (evaluated by OCT) and
plaque lipid content by NIRS were assessed in obstructive
non-culprit lesions (NCLs) in addition to a comprehensive
assessment of cholesterol efflux capacity (CEC) and peripheral
blood mononuclear cell (PBMC) transcriptomics. The mean
baseline NIRS-derived maxLCBI4mm was over 400 (416.6 ±

172.9) and the study reported no significant change in plaque
lipid content by NIRS albeit a significant change in fibrous cap
thickness after about 12 weeks of statin therapy. (41). Almost
similarly, the IBIS-3 (Integrated Biomarker and Imaging Study
3) trial demonstrated that “high dose rosuvastatin therapy had a
neutral effect on LCP (assessed by NIRS LCBI) in non-stenotic
NCLs in the coronary vessels after 6- and 12-month follow-up
intervals despite a relatively lower mean baseline maxLCBI4mm
(201.9 ± 1623.8), in the cohort of 103 patients”(39, 40). While
differences in LCBI cut-offs of the various studies could be a
possible reason for the discrepancy in findings, the mean baseline
maxLCBI4mm in the YELLOW I and YELLOW II trials were
similar, even though the baseline LCBI was significantly higher
in patients randomly allocated to the intensive vs. standard
therapy group in the YELLOW I and there was no comparative
standard therapy group in the YELLOW II. There is also the
question of short term LRP/LCBI regression occurring mostly in
plaques with a large PB and large LRPs reported in a YELLOW
trial sub-study evaluating the relationship between LRPs, plaque
morphology and lesion progression or regression. These findings
point to the need for further exploration of the effect of statins as
well as novel lipid-lowering therapies on NIRS-derived LCPs and
LCBI in conjunction with plaque morphology analysis via other
intracoronary modalities (58).

FUTURE DIRECTIONS

The findings of Waksman et al. in the recent LRP study (43)
strongly suggest the viability of NIRS-IVUS as a diagnostic and
risk-stratifying modality and opens the door to further trials
to evaluate therapeutic strategies against high lipid core burden
and/or vulnerable plaques/patients in addition to studies which
could explore the value of LCBI as a surrogate marker for the
checking the effectiveness of new therapeutic interventions.

Notably, the effects of newer LDL-lowering medications are
currently being studied in ongoing trials. The PACMAN AMI
(Vascular Effects of Alirocumab in Acute MI-Patients) trial
(ClinicalTrials.gov Identifier: NCT03067844) is examining the
effects of PCSK9-inhibiting monoclonal antibody, alirocumab on
coronary atherosclerosis in acuteMI patients via NIRS, IVUS and
OCT. Also, the FITTER (Functional Improvement of Coronary
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Artery Narrowing by Cholesterol Reduction With a PCSK9
Antibody) Trial (ClinicalTrials.gov Identifier: NCT04141579),
will be enrolling patients to investigate the impact of evolocumab
plus statins on FFR of non-infarct related arteries (non-IRAs)
in multivessel disease patients and correlating baseline NIRS-
derived lipid core burden with changes in FFR in the non-IRAs.

In a study design which integrates a natural history study
and a randomized trial, the PROSPECT II and PROSPECT
ABSORB, ClinicalTrials.gov Identifier: NCT02171065), patients
with high risk plaque were randomized to receive Absorb
BVS alongside the standard of care, optimal medical therapy
(OMT) or vs. OMT alone and changes in the plaque will
be evaluated by IVUS and NIRS at follow up. Lastly, The
Preventive Coronary Intervention on Stenosis With Functionally
Insignificant Vulnerable Plaque (PREVENT) study, is presently
recruiting patients to determine the effect of preventive PCI
on functionally insignificant coronary lesions with vulnerable
plaque characteristics using NIRS, IVUS, OCT and virtual
histology-IVUS modalities (ClinicalTrials.gov Identifier:
NCT02316886).

While the value of NIRS-IVUS and other intracoronary
imaging techniques are being shown in various imaging trials,
there are still limitations in assessing plaque characteristics which
could explain some of the conflicting study results.Multimodality
imaging may be critical in overcoming these limitations, thus
emphasizing the need for co-registration of NIRS-IVUS with
other imaging including angiography and as well as OCT or in
the form of hybrid imaging catheters (59). Finally, the ability of
NIRS-IVUS to predict the location of histologically-confirmed
TCFA and the possibility of NIRS-guided cap thickness detection,

and collagen content analysis which are already being explored
in ex-vivo studies could represent a huge breakthrough in
vulnerable plaque studies in the near future.

LIMITATIONS

One of the main limitations of NIRS-IVUS is the invasiveness
of the technique which precludes its use in primary prevention
in symptomatic patients with subclinical disease. Presently, NIRS
imaging does not have the capability to detect the depth of the
lipid core or vulnerable plaque features such as the thinness of
the fibrous cap.

CONCLUSION

NIRS in conjunction with IVUS is certainly a diagnostically
useful tool for the detection of vulnerable plaques and can
help identify patients at risk of future coronary events. While
there is a wide spectrum of clinical applications for this
technology, its viability for demonstrating the effects of present
and forthcoming lipid-lowering therapies could significantly
influence clinical perspectives and practice in the years
to come.
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