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Ventricular tachycardia (VT) caused by myocardial scaring bears a significant risk of

mortality and morbidity. Antiarrhythmic drug therapy (AAD) and catheter ablation remain

the cornerstone of VT management, but both treatments have limited efficacy and

potential adverse effects. Stereotactic body radiotherapy (SBRT) is routinely used in

oncology to treat non-invasively solid tumors with high precision and efficacy. Recently,

this technology has been evaluated for the treatment of VT. This review presents the

basic underlying principles, proof of concept, and main results of trials and case series

that used SBRT for the treatment of VT refractory to AAD and catheter ablation.
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INTRODUCTION

Ventricular tachycardia (VT), an important cause of mortality and morbidity (1), commonly
occurs in the context of structural heart diseases (e.g., post-myocardial infarction). Recent progress
in cardiac imaging and electroanatomic mapping (EAM) techniques have prompted the use of
catheter ablation (CA) for VT substrates delineation and ablation (2, 3). Antiarrhythmic drug
therapy (AAD) and CA are the cornerstone of VT management, but both treatments have limited
efficacy and potential adverse effects (4, 5). Additionally, despite significant progress in CA efficacy,
the recurrence rate after a first VT ablation is about 50% (6), exposing patients to multiple CA
procedures (7) and implantable cardioverter-defibrillator (ICD) shocks (8).
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Stereotactic radiotherapy (RT), routinely used in the realm of
oncology to non-invasively treat solid tumors with high precision
and efficacy, appears as a new tool in VT management (9). We
sought to review the current literature in order to summarize data
and perspectives of this innovative technique in the management
of VT.

VENTRICULAR TACHYCARDIA:
PATHOPHYSIOLOGY, CURRENT
MANAGEMENT, AND LIMITATIONS

VT may be idiopathic or caused by an underlying myocardial
substrate that initiates the arrhythmia (e.g., ventricular
premature contraction, VPC) and/or maintains the re-entrant
circuit. These abnormal anatomical structures are often the
result of pathologic changes like post-myocardial infarction
scars or post-inflammatory scars. Re-entry is the most common
mechanism of VT in this setting (Figure 1). Re-entrant circuits
utilize surviving myocytes within or at the border zone of
scars resulting in an isthmus (Figure 1) of slow electrical

FIGURE 1 | (A) Normal progression of the activation wavefront; (B) slow conduction after myocardial infarction; (C) re-entrant circuit; (D) ECG of a ventricular

tachycardia: (1) depolarizing wavefront; (2) slow conduction; (3) exit site. RV, Right Ventricule; LV, Left Ventricule.

conducting fibers of variable refractoriness (10). Connection of
the isthmus to the healthy myocardium determines the site of
initial ventricular activation (i.e., exit site, Figure 1) that drives
the ECG appearance of the VT. Cardiac inflammatory diseases
and post-inflammatory remodeling may also lead to scar and VT
susceptibility (11).

Developed in the late 70’s, ICDs have revolutionized the
approach to the prevention of sudden cardiac death after
myocardial infarction (12). ICDs are nowadays commonly used
to detect and promptly treat malignant ventricular arrhythmias
(13). The benefit of ICDs derives from the ability to interrupt re-
entrant VT by anti-tachycardia pacing or shocks. Although these
therapies may be life saving, ICD shocks may be traumatic and
decrease quality of life (14). Importantly, ICDs are very effective
in treating VT episodes but lack any preventive effect.

AAD to supress VT have poor efficacy and multiple side
effects that limited their use (4). Interventional therapies, such
as CA that disrupts or alters the VT substrate have become
the standard of care (6). Most CA techniques currently utilize
radiofrequency energy to heat cardiac tissue leading to tissue
necrosis, and consequently to the disruption of the VT substrate
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and circuit. Two approaches have been used over the last decade.
The first targets the isthmus of the VT in order to interrupt the
re-entrant circuit. The second one, named substrate modification,
targets in sinus rhythm any surviving myocardial fibers within
or at the border zone of the scar that could serve as potential
VT isthmuses because of their slow conducting properties.
Fractionated potentials and late activated ventricular potentials
are typical examples. Cryoablation, which utilizes a freezant
to destroy the VT substrate, has gained increased utilization
recently (15). Although CA techniques can be performed for
most tachyarrhythmias, their use are also limited by incomplete
efficacy, unfavorable side effects, and procedural risks (16). The
recurrence rate after CA is about 50% at 2 years for ischemic VT,
independently of the chosen approach (substrate modification
vs. VT isthmus ablation), with even higher recurrence rates
for intramural (e.g., in the interventricular septum) and non-
ischemic VTs (17).

For patients with VT refractory to standard treatments,
new techniques are described in the literature such as
surgical epicardial ablation, video-assisted thoracoscopic cardiac
sympathetic denervation (CSD), or intracoronary ethanol
infusion (18) and other means under extensive study such as
bipolar radiofrequency ablation, half-normal saline irrigation,
or needle electrodes (19). Despite limited series, CSD might be
an interesting option in patients with sustained VT who have

failed both antiarrhythmic medication and catheter ablation for
refractory VT (20, 21). However, the antiarrhythmic properties
of CSD on VTs arising from structural heart disease need to be
deciphered and documented on larger series. To date, there are
no data on the combination of alternative techniques with SBRT.
The development of non-invasive complementary therapies such
as SBRT appears to be an alternative for the most fragile patients
and/or those with slow VT.

FROM CONVENTIONAL RADIOTHERAPY
TO STEREOTACTIC BODY
RADIOTHERAPY

RT utilizes high energy X-rays from linear accelerators
(linac) to destroy the targeted tissue, most commonly cancer
(Figures 2–4). Historically, conventional RT as exclusive
treatment of cancer consisted of multiple daily fractions of
irradiation over 4–8 weeks at a dose of 1.8–2Gy per fraction,
leading to high cure rates of various cancers (e.g., prostate, lung,
head, and neck). The therapeutic effect of RT is influenced by
the dose per fraction and the cumulative total radiation dose,
the number of fractions, and the total delivery time. However,
the impact on healthy tissues is usually the limiting factor in
the total dose delivered to a target tissue (usually the tumor).

FIGURE 2 | Biological effect of X-ray (ionizing radiation) on human tissue.
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FIGURE 3 | Schematic diagram of a typical linear accelerator (linac).

FIGURE 4 | Schematic diagram of the CyberKnife® system.
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During the last decades, several technical innovations were
introduced in radiation oncology. Modern RT techniques,
thanks to on-board imaging systems that check the position
of the target and organs at risk (OARs) before treatment,
allowed to increase dose delivery to the target volume, while
reducing the dose to OARs, and consequently acute and late
toxicities (22, 23).

In parallel, a change in the fractionated RT treatment
paradigm arose with the advent of brain radiosurgery (24).
Radiosurgery usually consists of 1–5 fractions of very high-dose
RT (>6 Gy/fraction) delivered with stereotactic accuracy (25).
The application of radiosurgical principles outside the brain
is termed stereotactic ablative radiotherapy (SABR) stereotactic
body radiotherapy (SBRT). Compared to conventional RT,
SBRT ablates the targeted tissue with a minimum of fractions.
This is supported by radiobiologic studies showing that tumor
response is improved with larger doses of radiation delivered
in fewer fractions (26, 27). Consequently, due to the high
doses also delivered to nearby OARs, SBRT is adapted to small
volume targets.

To achieve the necessary high level of accuracy for
SBRT dedicated RT devices have been specifically developed
for stereotactic treatments at various cancer sites (28). The
TrueBeam R© system (Varian Medical Systems, Palo Alto, CA),
based on a linac, provides image-guided SBRT thank to
the on-board cone beam CT and the 6-dimensional couch.
Alternatively, the CyberKnife R© system (Accuray, Sunnyvale,
CA, USA) is an image-guided device dedicated to radiosurgery
and SBRT (Figure 4) (29). This device is mounted on a
robotic arm to deliver radiation to a tumor from different
trajectories, while minimizing dosage to adjacent normal
tissue. The CyberKnife R© is also able to track tumors directly
or alternatively fiducial markers placed in the vicinity of
the tumor to deliver highly accurate treatments in order
to minimize the dose to surrounding tissues and OARs
(30). Recently, RT devices combining linac and medical
resonance imaging (MRI) system have been developed fort SBRT
treatments (31).

Radiosurgery for non-oncologic diseases is most commonly
performed for neurologic disorders or benign central nervous
system tumors (32). The most extensively developed data
for radiosurgical treatments have pertained to treatment of
vestibular schwannoma (33), meningioma of the skull base
(34) or seizure (35). Radiosurgery has the advantage of being
delivered on an outpatient basis, and has become an excellent
alternative to invasive neurosurgery for organ preservation in
selected patients.

HEART AND RADIOTHERAPY: A COMPLEX
COMBINATION

Providing RT for a non-oncologic disease, such as within the
heart, may appear paradoxical given the well-known long-term
side effects of RT on cardiac tissue. It is important to note
that age and pre-existing heart conditions are well-established

risk factors for cardiotoxicity of any kind, including radiation-
induced cardiac toxicity. Therefore, patients undergoing SBRT
for refractory VT are likely to be a risk category (36). Radiation
induced cardiac toxicity (RICT) is a late complication of RT, with
increasing risk over years after treatment (37, 38). The use of
RT contributed to significant survival improvements for patients
with breast, lung, esophageal, lymphoma, and thymic cancers.
These successes resulted in large cohorts of cancer survivors,
who were subject to late or very late complications from RT
(39–43). Depending on indication, dose and RT techniques, any
subparts of the heart can be damaged such as the pericardium,
myocardium, heart valves, coronary arteries, capillaries, and
conduction system.

The pathophysiological pathway that leads to RICT suggests
that radiation causes both microvascular and macrovascular
damages (44). The microvascular injury is characterized by
a decrease in capillary density, causing myocardial ischemia
and fibrosis. Fibrosis can lead to several consequences:
valves dysfunction, pericardial fibrosis (45), and/or effusion,
arrhythmia (46, 47), and loss of cardiac compliance leading to
diastolic dysfunction (48). Macrovascular injury may manifest as
accelerated coronary atherosclerosis (49).

With the emergence of modern RT techniques, heart
structures can be much better spared during treatment.
Additionally, once RICT was recognized, treatment techniques
were modified to minimize cardiac irradiation such as the
development of deep inspiration breath-hold techniques during
RT for left breast cancer (50). Although there is no minimal safe
radiation dose, more recent data suggest a decrease of the dose
received by the heart with modern RT techniques, reducing most
probably RICT incidence (51).

Currently, heart dose constraints during a thoracic RT are
based on the dose received by the whole cardiac volume. To
date, there are limited data on the correlation between the
dose received by cardiac substructures (valves, coronary arteries,
etc.) and potential side effects, and no specific dose constraints
validated for each of these substructures. Hahn et al. (52)
observed in patients who received mediastinal RT for Hodgkin
lymphoma that the risk of late ischemic cardiac events is
correlated with the dose received by the coronary arteries such
as: volume of left anterior descending artery receiving 5Gy and
volume of left circumflex artery receiving 20Gy in conventional
fractionation (1.8–2Gy per fraction).

SBRT appears as a more attractive modality to irradiate the
heart than conventional RT. Thanks to the highly accurate
targeting provided by detailed electroanatomical mapping of
the arrhythmia, a better dose fall-off in all directions compared
to conventional RT and the possibility to spare cardiac
substructures, acute, and long-term toxicities may be minimized
(Figure 5) (53). An additional difficulty for cardiac SBRT,
compared to the field of neurology, is the presence of a
moving target. Indeed, the heart is submitted to its own internal
movements and also to breathing. These movements can be
taken into account by using RT devices equipped with a
tracking system or by the addition of margins corresponding
to internal movements (Internal Target Volume, ITV) for linac-
based systems.
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FIGURE 5 | Stereotactic body radiotherapy (SBRT) plan for a ventricular tachycardia (VT) arising from the interventricular septum. The planning target volume is in light

blue, the heart is in dark red, the right lung is in green, the left lung is in dark green, the esophagus is in orange, the spinal canal is in blue, the interventricular septum

is in pink and the aorta is in yellow.

FROM PRE-CLINICAL DATA TO FIRST
PATIENTS

In preclinical studies in healthy animals, the proof-of-principle
was demonstrated by irradiating heart tissue to create fibrosis
similar to CA. Sharma et al. (54) suggested that a single dose of
at least 25Gy on cavo-tricuspid isthmus, AV node, or pulmonary
veins is needed to create a lesion that alters electrophysiological
properties. The timeline showed an electrophysiologic effect
consistently over 90 days. In 2011, Maguire et al. (55)
showed that a single fraction of 25–35Gy on mini pig
pulmonary veins was able to create transmural fibrosis that
resulted in electrical isolation 6 months after irradiation.
Similarly, Blanck et al. (56) showed that doses >32.5Gy in the
healthy pig heart can induce transmural scarring of cardiac
tissue (electrophysiology study 6 months after irradiation).
Yet, the underlying electrophysiologic effects of the fibroting
and sub-fibroting doses (e.g., <30Gy) remained unknown
beyond healthy animal models. Some additional data could
be obtained from pre-clinical studies with carbon ions or
protons whose radiobiology might be slightly different as
compared to photons (57). Of note, pre-clinical data about
scar development at the ventricular level (temporal onset
and dose-response relationship) after high dose irradiation are
very limited since most studies reported data about atrial
tissue (pulmonary veins or cavo-tricuspid isthmus) or AV
node irradiation.

To date, clinical outcome of SBRT for cardiac arrhythmias is
limited to only small prospective and retrospective case series
(Table 1) and case reports. Loo et al. (58) reported the first patient
treated with SBRT for AAD-refractory VT after myocardial
infarction. The VT substrate was made of surviving myocardial
fibers within the scar according to the PET-CT. The treatment
was delivered with the CyberKnife R© with a temporary pacing
wire placed at the right ventricular apex to ensure accuracy (i.e.,
function as fiducial marker). A similar report by Cvek et al. (59)
described the first procedure using the CyberKnife R© system in
Europe in a patient suffering from a dilated cardiomyopathy. The
VT substrate location was based on an electrophysiological (EP)
study using an EAM system (CARTO3, BiosenseWebster, Irvine,
CA, USA). Both treatments were successful and delivered 25Gy
in a single fraction, in imitation of the lowest dose with any effect
from the preclinical studies.

The first systematically investigated patients cohort was
reported by Cuculich et al. (60) in 2017. In a series of five
patients, they reported a strong VT burden reduction of 99.9%
after a 6-week blanking period. To determine the location of
the VT substrate they used a completely non-invasive mapping
method combining a high density surface electrocardiographic
imaging technique (ECG-vest with 252 electrodes) that targeted
the exit site of the VT and the surrounding ischemic substrate
(i.e., infarction and its border zone), merged with a chest CT.
All patients received 25Gy in a single fraction (mean ablation
volume of 49 cc) delivered using a linac dedicated for SBRT.
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TABLE 1 | Largest case series of cardiac SBRT for refractory VT.

Washington University, USA Ostrava University, Czech

Republic

Emory University, USA Lausanne University Hospital,

Switzerland

Number of patients 19 10 10 10

Age 66 (49–81) 66 (61–78) 61 (51–78) 66 (47–75)

Cardiopathy:

I/NI/INFL

11/6/2 7/2/0 4/6/NA 3/4/2

LVEF (%) 25 (15–58) 26.5 ± 3.2 NA 37 ± 14

RT device Linac CyberKnife System Linac CyberKnife System

PTV margin (mm) 5 0 1–5 0–3

PTV (ml) 98.9 (60.9–298.8) 22 (14.2–29.6) 81.4 (29–238) 23 (14–35)

Dose (Gy) 25 25 25 22 (20–25)

Toxicity • 1 case with heart failure

exacerbation

• 1 case of radiation pericarditis

• 2 cases of radiation

pneumonitis

• 4 cases with nausea

• 1 case of possible mitral

regurgitation worsening at 17

months

• 2 cases of radiation

pneumonitis

• 1 case of nausea

• 1 case of broken rib

VT burden reduction 94% at 13 months 87.6% at 28 months 69% at 5.8 months 99.4% at 4 months

VT, Ventricular Tachycardia; Linac, Linear accelerator; PTV, Planning Target Volume; I, Ischemic; NI, Non-Ischemic; INFL, Inflammatory; NA, Not available.

Cuculich et al. then initiated a prospective phase I/II study:
ENCORE-VT (NCT02919618) aimed to primarily demonstrate
short-term safety and secondarily preliminary efficacy of SBRT
for patients with life-threatening, AAD-refractory VT. Mapping
of the VT substrate, SBRT delivery, and dose prescription (25Gy)
were similar as for their first patients (60). The main efficacy
endpoint was any reduction in VT episodes or any reduction in
premature ventricular contractions burden during the 6 months
before and after treatment (with a 6-week blanking period after
SBRT). First results of this trial with a median follow-up of 13
months have been recently published by Robinson et al. (61).
A total of 19 patients were enrolled, with remarkable efficacy
in VT burden reduction. The median VT substrate volume (i.e.,
Gross Target Volume, GTV) was 25.4 cc, the median ITV volume
(taking movements into account) was 31 cc and the median
final ablation volume (i.e., Planning Target Volume, PTV) was
98.9 cc. The median number of VT episodes decreased from
119 (range, 4–292) in the 6 months before to 3 (range, 0–31)
in the 6 months after SBRT. ICD shocks were also significantly
reduced from a median of 4 (range, 0–30) to 0 (range, 0–
7). Regarding toxicity, 2 patients (10.5%) experienced grade 3
treatment-related adverse events (heart failure and pericarditis)
within 90 days of SBRT delivery. In addition, six patients (28%)
had treatment-related pericardial effusions including one grade 3
and one grade 4; 11% of patients had pneumonitis that resolved
with steroids. The authors recently presented longer-term results
showing a persistent effect of SBRT 2 years after treatment in
most patients. Additionally, serious toxicity was low, but may
occur after 2 years: two grade 3 pericardial effusions and one
grade 4 gastro-pericardial fistula (62).

Furthermore, Neuwirth et al. (63) published a larger
retrospective case series on SBRT in VT patients refractory to
CA with longer term follow-up. Mapping of the VT substrate
was based on an electrophysiological (EP) study using an EAM
system (CARTO3, Biosense Webster, Israel) as for their first

patient (59) and SBRT was delivered using the CyberKnife R©

system with a single fraction of 25Gy (mean PTV of 22.2 cc).
Results of this series have been recently published at a median
follow-up of 28 months. Ten patients were treated, with a VT
burden reduction of 87.5% compared to baseline, however, after
a 3-month blanking period, VT recurred in 8/10 patients. Finally,
they report one possible treatment-related toxicity (mild nausea)
and a possible grade 3 late treatment related toxicity (progression
of mitral regurgitation 17 months after SBRT). To further study
the long-term safety and efficacy of SBRT for TV, the authors have
initiated a multicenter prospective study (NCT03819504) (64).

A case series has been published by Lloyd et al. (65) showing
the interest of SBRT for refractory VT in advanced heart failure
patients. A total of 10 patients with VT refractory to standard
treatments were included and received a single fraction of 25Gy
using a linac system dedicated for SBRT with a mean PTV of
81.4 cc. Among eight patients with available ICD data, the total
reduction in seconds of detected VT was 69% and the reduction
in total ICD shocks after SBRT was 68%. It should be noticed that
in this study no blanking-period was considered. They concluded
that SBRT for refractory VT was feasible and modestly effective
at reducing VT burden in advanced heart failure patients.
Interestingly, three patients had post-SBRT histology since they
received heart transplant after treatment. Microscopic analyses
of the treated regions showed oedema and vacuolization of
endothelial cells with mild fibrosis. Electron microscopy of one
sample revealed disruption of intercalated disc/gap junction area.

Our group described the first immediate and durable response
to cardiac SBRT in an intensive care patient suffering from an
electrical storm (ES) due to incessant VT unresponsive to CA
and AADs (66). An EP study performed with an EAM was
used to delineate the VT substrate location. The right ventricular
ICD lead served as a fiducial marker for tracking with the
CyberKnife R© system. A total dose of 25Gy in a single fraction
was delivered, while the patient was intubated and sedated in
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the treatment room. Surprisingly, the SBRT rapidly controlled
the ES, allowing the extubation of the patient 3 days after the
procedure without any recurrence thereafter. To date, our group
has treated 10 patients with VT refractory to AAD and CA
(67). Eight patients were elective, while the other two (one
corresponding to the previously cited patient) were hospitalized
in the intensive care unit. All patients had an EAM prior SBRT to
define the VT substrate. The mean dose of 22Gy (range, 20–25)
was delivered to the VT substrate (mean PTV of 23 cc) using the
CyberKnife R© system. At a median follow-up of 6 months (range,
1–14), the elective patients did not experience any sustained
VT recurrence or ICD shock. Importantly, no detectable severe
adverse events related to SBRT occurred (Table 1).

Recently, another prospective study published by Gianni
et al. (68) conducted on five patients mitigates these results.
Indeed, the 1-year follow-up reports a recurrence of ventricular
arrhythmias in all patients, despite an initial reduction observed
in the first 6 months post-ablation. Interestingly, three patients
had a redo procedure, which showed surviving bundles of
cardiomyocytes within the putative PTV.

Although clinical outcomes of 20–25Gy single-dose SBRT for
refractory VT remain limited to small series and few case reports,
results of this new technique are very promising. A longer follow-
up on larger cohorts is warranted to assess the efficacy and safety
of this technique.

PERSPECTIVES

The efficacy of cardiac SBRT has been attributed to radiation-
induced fibrosis (Figure 2) that creates conduction blocks within
the heart. However, the reduction of VT episodes within a
couple of days after a dose of 25Gy in the rescue procedure
reported by Jumeau et al. (66) suggests that the mechanisms
of action may not only be attributed to radiation-induced
fibrosis. Similarly, in the series by Cuculich et al. (60), all
patients presented a strong reduction in VT episodes within
the first month after SBRT, which may not only be attributed
to late radiation-induced fibrosis which is usually observed
months later. These data support an immediate benefit of
SBRT on the VT substrate by other mechanisms, which is
consistent with preclinical data showing that single fraction
doses above 30Gy are necessary to create dense, and transmural
fibrosis in the heart (56). In vivo data by Fajardo and Stewart
(69) in animal models showed the presence of inflammatory
cells in heart tissue within hours after heart irradiation
that could explain this early response. Another interesting
experimental finding is that RT might be antiarrhythmic
by restoring localization Connexin 43 at intercalated disks
both in normal and post-mocardial infarction tissue, which
was associated with improved conduction properties and
reduced repolarization dispersion (70). There is therefore a
need to better understand the pathophysiological mechanisms
of SBRT on heart tissue and more specifically on the
VT substrate.

While clearly promising, these first steps represent only the
beginning of a journey to introduce SBRT into the treatment

of cardiac arrhythmias. It is essential to make the technique as
safe as possible to avoid toxicities by minimizing unnecessary
irradiation of the heart and surrounding tissues. The two main
parameters that influence this “unnecessary” irradiation are the
ablation volume (i.e., VT substrate) and the prescribed dose.
Therefore, there is a need to determine the minimal radiation
dose level capable to maintain the efficacy of SBRT for the
treatment of cardiac arrhythmias. Importantly, the dose of 25Gy
used so far in cardiac SBRT for VT ablation is relatively high
compared to other benign diseases: 18–20Gy in a single fraction
for an arterio-venousmalformation (71) or 18Gy for seizure (35).
By reducing the target dose to a minimal effective level, the dose
to the surrounding tissue will be reduced, which will lower the
probability of long-term complications.

It is also important to keep in mind that the VT substrate
is related to the underlying heart disease, e.g., in ischemic VT
the substrate is usually delineated, confluent, and limited to the
distribution area of a coronary epicardial vessel. In non-ischemic
dilated cardiomyopathy, arrhythmogenic cardiomyopathy, or
myocarditis/sarcoidosis, the substrate is usually scattered and
involves a larger area of the heart. Additionally, the ablation
volume is not only related to the VT substrate volume, but also
to the SBRT technique. In fact, depending on the SBRT device
or on the tracking method, additional geometric safety margins
for uncertainty are needed that increase the final ablation volume
(i.e., planning target volume, PTV). This has been well-observed
in the series of Cuculich and Robinson et al. (60, 61) where the
non-invasive mapping of the VT exit (and not of the VT isthmus)
and of the ischemic substrate combined with a free-breathing
linac based treatment resulted in high PTV dimensions. This
has been investigated by Knutson et al. (72) in a dosimetric
analysis from ENCORE-VT trial that showed a decrease of PTV
between the first and the last treated patient (i.e., learning curve).
Hence, wider dose spreading (Figure 1) to OARs could promote
pneumonitis and pericarditis.

Recent advances in medical imaging and RT have improved
target definition and tracking accuracy. New image-guided
RT techniques are currently emerging, including MRI-linac
that can combine the possibility of continuous non-ionizing
imaging with direct target tracking (73). In the future there
is probably a lot to expect from protons and carbon ions as
many pre-clinical studies are based on these particle beams
(74); a first VT patient has been recently treated using
protons (75).

Finally, as with any novel technological advance, radiation
therapy for the treatment of cardiac arrhythmias will ultimately
have to be tested in well-controlled clinical trials in order to
adequately assess the benefits and risks associated with this
promising approach. A multi-center, multi-platform clinical
feasibility trial on the initial safety profile of radiosurgery for
ventricular tachycardia (RAVENTA, NCT03867747) is now
recruiting in Germany. To date, several studies have also
begun or are in preparation in Milan, Italy (NCT04066517);
Calgary, Canada (NCT04065802) or Amsterdam, The
Netherlands (NL7510). Before results of these trials with
clearly defined protocols become available, this therapy
needs to be limited to large centers with collaborative
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network knowledge in order to optimize patient benefit
and safety.

CONCLUSIONS

Cardiac SBRT only recently emerged as a promising treatment
option for the management of refractory VT. It appears to be
an effective and non-invasive option. Given the recentness of
this technology and the scarcity of prospective clinical data

with limited long-term follow-up, further research and clinical
experience are warranted within prospective clinical trials.
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