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Background: Fast strain-encoded cardiac magnetic resonance imaging (cMRI,

fast-SENC) is a novel technology potentially improving characterization of heart failure

(HF) patients by quantifying cardiac strain. We sought to describe the impact of

isometric handgrip exercise (HG) on cardiac strain assessed by fast-SENC in HF patients

and controls.

Methods: Patients with stable HF and controls were examined using cMRI at rest and

during HG. Left ventricular (LV) global longitudinal strain (GLS) and global circumferential

(GCS) were derived from image analysis software using fast-SENC. Strain change <-0.5

and > +0.5 was classified as increase and decrease, respectively.

Results: The study population comprised 72 subjects, including HF with reduced,

mid-range and preserved ejection fraction and controls (HFrEF n = 18 HFmrEF n = 18,

HFpEF n= 17, controls: n= 19). In controls, LV GLS remained stable in 36.8%, increased

in 36.8% and decreased in 26.3% of subjects during HG. In HF subgroups, similar

patterns of LV GLS response were observed (HFpEF: stable 41.2%, increase 35.3%,

decrease: 23.5%; HFmrEF: stable 50.0%, increase 16.7%, decrease: 33.3%; HFrEF:

stable 33.3%, increase 22.2%, decrease: 44.4%, p = 0.668). Mean change between

LV GLS at rest and during HG ranged close to zero with broad standard deviation in all

subgroups and was not significantly different between subgroups (+1.2 ± 5.4%, −0.6

± 8.3%, −1.7 ± 10.7%, and −3.1 ± 19.4%, p = 0.746 in controls, HFpEF, HFmrEF

and HFrEF, respectively). However, the absolute value of LV GLS change—irrespective

of increase or decrease—was significantly different between subgroups with 4.4 ±

3.2% in controls, 5.9 ± 5.7% in HFpEF, 6.8 ± 8.3% in HFmrEF and 14.1 ± 13.3%

in HFrEF (p = 0.005). The absolute value of LV GLS change significantly correlated with

resting LVEF, NTproBNP and Minnesota Living with Heart Failure questionnaire scores.
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Conclusion: The response to isometric exercise in LV GLS is heterogeneous in all HF

subgroups and in controls. The absolute value of LV GLS change during HG exercise

is elevated in HF patients and associated with measures of HF severity. The diagnostic

utility of fast-SENC strain assessment in conjunction with HG appears to be limited.

Trial Registration: URL: https://www.drks.de; Unique Identifier: DRKS00015615.

Keywords: heart failure, cardiac magnetic resonance imaging, strain, fast SENC, isometric handgrip

INTRODUCTION

Heart Failure (HF) remains a significant burden for patients
and health systems worldwide and, with high mortality despite
optimal therapy, refinement of therapeutic and diagnostic
strategies is needed (1). Different phenotypes in HF—namely HF
with preserved, mid-range and reduced ejection fraction (HFpEF,
HFmrEF, and HFrEF, respectively) (2)—respond differentially to
medical therapy (3–6). Thus, accurate diagnosis and stratification
of HF patients is of paramount importance.

Cardiac strain is an emerging diagnostic target in cardiac
imaging, describing myocardial deformation throughout the
cardiac cycle in three dimensions (7). Global longitudinal strain
(GLS) and global circumferential strain (GCS) have been shown
to be more sensitive in detecting myocardial dysfunctions
than left ventricular (LV) ejection fraction (EF) and therefore
promise earlier diagnosis and initiation of treatment (8, 9). Also,
strain could facilitate accurate stratification of and consecutively
appropriate therapy for HF patients (10). Cardiac magnetic
resonance imaging (cMRI) represents the gold standard for
cardiac imaging, especially for measuring volumes (2). Among
other methods to quantify myocardial strain in cMRI, such
as myocardial tagging, displacement encoding with stimulated
echoes (DENSE) and feature tracking (FT) (11–13), fast strain-
encoded cMRI (fast-SENC) is a relative novel approach which
allows for reproducible and fast strain measurement (14, 15).

Physical stress testing can unmask myocardial dysfunction in
early stages of HF—especially in HFpEF (16). For stress testing
during cMRI, isometric handgrip exercise (HG) represents an
accessible and reliable tool, potentially avoiding motion artifacts
associated with dynamic exercise. The combination of strain
analysis and HG has successfully been employed for detection
of ischemia and could provide a new diagnostic approach for
HF (17). HG represents an acute increase in afterload which
physiologically is met by an elevation in HR and an increase of
cardiac output. In patients with a poor cardiac reserve a rise in
the left ventricular end-diastolic pressure can be expected (18).
Also an effect on myocardial performance indices such as global
strain might therefore be conceivable. Therefore, in this study we
sought to characterize the impact of HG stress testing on cardiac
strain assessed by fast-SENC, in HF patients and healthy controls.

METHODS

Study Population
The Analysis of parameters of external and internal cardiac
power, output and aortal compliance using cardiac MRI in

patients with HF study (EMPATHY-HF) was an investigator-
initiated, prospective, cross-sectional study (German Clinical
Trials Register ID: DRKS00015615). The study was performed
in compliance with the Declaration of Helsinki and the study
protocol was approved by the local institutional review board
(Ethikausschuss 4 am Campus Benjamin Franklin, Charité
Universitätsmedizin Berlin). All patients provided written
informed consent before entering the study. A dedicated analysis
of specific resting cMRI parameters derived from this study
population has been published previously (19).

We included patients with stable chronic HF. Inclusion
criteria are described in detail elsewhere (20). In brief, dyspnea
NYHA class II or more and NTproBNP≥ 220 ng/l were required
for all HF patients, while specific imaging requirements applied
for HFpEF (LV EF ≥ 50%, E/e’ ≥ 13 or left atrial volume index
>34 mL/m2 or LV septum thickness >12mm), HFmrEF (LV EF
40–49%) and HFrEF (LV EF ≤ 40%), as per European Society
of Cardiology guidelines (2). All patients had to receive medical
therapy as recommended in current guidelines. Additionally, we
included controls without HF.

Exclusion criteria included atrial fibrillation (AF), high-grade
valvular disease or a history of valve replacement, and cMRI
contraindications such as implanted cardioverter-defibrillator
(ICD) or pacemaker, BMI >38 kg/m2 as well as a history of
adverse contrast-medium reaction.

Study Procedures
All subjects underwent comprehensive clinical work-up
including physical examination laboratory evaluation, ECG, 6-
min walk test and quality of life assessment using the Minnesota
Living with Heart Failure Questionnaire (MLHFQ). Medical
history, current diagnoses and medication were extracted from
electronic health records.

CMRI was performed using a clinical 1.5 Tesla MRI scanner
(Achieva, Philips Healthcare, Best, The Netherlands) with a
cardiac five-element phased array coil. Cine images were acquired
using a retrospectively gated cine-cMRI in cardiac short-axis,
vertical long-axis and horizontal long-axis orientations using
a steady-state free precession sequence at rest. Fast-SENC was
acquired at rest and during HG in real-time free breathing
technique, as described previously (14). In brief, this SENC
method generates temporary markers within the myocardium
based on the unique MRI properties of tissue. The deformation
of the myocardium during the cardiac phases changes the density
of the markers, which when captured using an MRI spiral
acquisition produces a cine sequence of SENC images (Figure 1).
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FIGURE 1 | Fast strain-encoded cardiac magnetic resonance imaging. (A) 62

year-old male with heart failure with reduced ejection fraction; (B) 62 year-old

male without heart disease; all subjects were at physical rest during image

acquisition; all images were acquired at end-systole; global longitudinal strain

is derived from short axis views at apical, mid and basal level; global

circumferential strain is derived from two-, three-, and for-chamber views.

Three short-axis planes (apical, mid, and basal level) as well as
two-, three- and for-chamber planes were assessed.

After 15min of supine rest, resting blood pressure and
heart rate were obtained, followed by resting cMRI sequences.

For HG exercise testing, a MRI-safe hand dynamometer was
used (Stoelting, Wood Dale, Illinois). After determination of
maximum voluntary contraction using the dominant hand,
subjects were instructed to sustain 30% of maximum voluntary
contraction for ∼3min, avoiding Valsalva maneuver by
continued breathing. Continuing HG exercise, blood pressure,
heart rate and stress cMRI sequences were recorded under
stress conditions.

Image Analysis
Image analysis was performed using the software Medis R©

Suite 3.1.16.8 (Medis medical imaging systems, Leiden, The
Netherlands) for left ventricular volume, mass and function
measurements and the software MyoStrain 5.0 (Myocardial
Solutions, Inc., Morrisville, North Carolina, USA) for fast-SENC
strain measurements.

Trained operators manually traced endocardial and epicardial
borders at end-systole and end-diastole. For quantitative
assessment of global longitudinal strain (GLS), 3 short-axis planes
(apical, mid and basal level) were analyzed using MyoStrain.
Strain was calculated for each myocardial segment and then
averaged. For quantitative global circumferential strain (GCS)
assessment, three long-axis planes (two-, three-, and for-chamber
view) were analyzed using the same software. Strain was
calculated for each myocardial segment and then averaged.
Myocardial shortening during systole translates to negative strain
values. When communicating comparisons of strain values (e.g.,
strain decrease or increase) we will refer to the absolute value of
strain, as recommended elsewhere (7).

We classified strain response to HG as stable, increase or
decrease. In a recent study, our group investigated intra-observer
reliability for LV GLS assessment employing fast-SENC in very
similar cohort of healthy subjects and HF patients and found
limits of agreement of −0.6 and +0.5 (15). Based on this
observation, we decided that in order to classify as increase
or decrease, LV GLS change must exceed <-0.5 or > +0.5,
respectively. Accordingly, LV GLS change between ≥-0.5 and
≤+0.5 was classified as stable.

Statistical Analysis
Continuous variables are reported as mean (standard deviation),
while categorical variables are reported as percentage. After
testing for non-normality in distribution of continuous variables
using the Shapiro-Wilk test, independent sample t-test, paired
sample t-test and analysis of variance (ANOVA) for continuous
response variables and Chi-square test for categorical response
variables were used, as appropriate. For post-hoc analysis
of intergroup differences in ANOVA we used Tukey’s test.
Pearson’s coefficients were used to assess correlations between
two continuous variables. For logarithmic transformations, the
natural logarithm of variables of interest was utilized. Two-
sided p < 0.05 were considered statistically significant. Sample
size was chosen pragmatically based on similar previous studies
and available research capacities (15, 21–23). Power calculation
demonstrated that with the achieved sample size of n = 18 per
subgroup and a standard deviation in LV GLS percentage change
of±12 overall, we were able to detect a subgroup difference of±5
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in LV GLS percentage change in ANOVA at a significance level of
0.05 yielding a statistical power of 0.83 (24).

Statistical analysis was performed using R version 3.5.1
(2018-07-02) (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Study Population
The final analysis comprised 72 subjects, 18 HFrEF patients, 18
HFmrEF patients, 17 HFpEF patients and 19 controls.

Baseline characteristics varied widely between subgroups
(Table 1). HFpEF patients were the oldest, most likely to be
female and had the highest prevalence of hypertension and
diabetes mellitus. HFmrEF patients had the highest prevalence
of coronary artery disease but had the least severe dyspnea
symptoms according to New York Heart Association (NYHA)
classification. HFrEF patients were most likely to be men, had the
highest BMI the most smoking pack years on average.

On laboratory examination, HFpEF patients had lowest
levels of N-terminal pro-brain natriuretic peptide (NTproBNP),
hemoglobin and red blood cells, but the highest levels of
low-density-lipoprotein cholesterol, high-sensitivity Troponin
T, high-sensitivity C-reactive protein, compared to other
HF patients.

Almost all HFrEF patients received beta blockers (BB), and a
majority also received angiotensin-converting enzyme inhibitors
(ACEI) andmineralocorticoid antagonists (MRA). 22% of HFrEF
patients received an angiotensin receptor blocker / neprilysin
inhibitor (ARNI). HFmrEF patients were less likely to receive BB,
ACEI or ARB and MRA compared to HFrEF patients. Among
HFpEF patients, a majority received BB and either ACEI or ARB,
17.6% received MRA and one patient received off-label ARNI.

Hemodynamic Features at Rest and During
Exercise
Hemodynamic features at rest and during HG are reported in
Table 2 and Figure 2. We report change as percentage change to
account for subgroup differences at baseline. Numeric differences
between rest and HG are reported in Supplementary Table 1. At
rest, there were no differences between subgroups in regard of
systolic blood pressure (BP), diastolic BP, pulse pressure (PP) or
heart rate (HR).

In response to HG exercise, systolic and diastolic BP, HR and
PP increased in all subgroups. Changes in BP, HR, and PP from
rest to HG was not significantly different between subgroups.
During HG exercise, we observed a stepwise decrease of systolic
BP from controls to subjects with HFpEF, HFmrEF, and HFrEF
with 163.2 ± 20.1, 156.2 ± 18.8, 147.8 ±17.3, and 140.7 ± 22.8
mmHg, respectively (p = 0.006). A similar pattern was found
in PP during HG. Meanwhile, diastolic BP during HG was not
different across subgroups.

Strain at Rest and During Isometric
Exercise
At rest, LV strain was highest in healthy controls and decreased
stepwise with HF category (Table 2, Figure 3). This held true for

both LV GLS) and LV GCS. During HG exercise, we found mean
LV strain to be largely unchanged. Correspondingly, there was
a stepwise decrease with HF category in both LV GLS and LV
GCS. A post-hoc analysis of subgroup differences in strain and
hemodynamic parameters is detailed in Supplementary Table 2.

Mean percentage change between LV GLS at rest and during
isometric exercise ranged close to zero with broad standard
deviation in all subgroups (Table 2) and was not significantly
different between subgroups (+1.2 ± 5.4%, −0.6 ± 8.3%, −1.7
± 10.7%, and −3.1 ± 19.4%, p = 0.746 in controls, HFpEF,
HFmrEF, and HFrEF, respectively). LV GLS change and LV GCS
change in response to HG exercise were not correlated (r =

−0.02, p= 0.865).
On subject level, strain response could be stable, as well as

negative or positive (Figure 4). Strain change between ≥-0.5 and
≤+0.5 was classified as stable as specified above. In controls, LV
GLS remained stable in 36.8%, increased in 36.8% and decreased
in 26.3% of subjects in response to HG. In HFpEF, HFmrEF
and HFrEF patients, similar distributions of LV GLS response
to HG were observed (Table 3). The distribution of LV GLS
response to HG did not vary significantly between subgroups
(p = 0.668). There were no differences with regard to baseline
characteristics between subjects with increase, decrease and no
change of LV GLS in response to HG (Supplementary Table 3).
LV GCS response to HG did not vary significantly between
subgroups, either (p= 0.831).

Of note, the range of LV GLS change was narrow in
controls (minimum: −11.0%, maximum: +10.0%), but wide in
HFrEF (minimum: −42.0%, maximum: +32.0%). This led us
to hypothesizing, that the absolute value of strain percentage
change, rather than the direction of strain change (i.e., increase
or decrease), was associated with presence of HF.

Absolute Value of Strain Change in
Response to Isometric Exercise
Analyzing the absolute i.e., non-negative value of percentage
change in strain as a measure of variability rather than increase
or decrease in response to HG, we found substantial differences
between subgroups (Table 4). In controls, the absolute value of
LV GLS change was 4.4 ± 3.2%, in HFpEF it was 5.9 ± 5.7%, in
HFmrEF it was 6.8 ± 8.3% and in HFrEF it was 14.1 ± 13.3%
(p= 0.005). The absolute value of percentage change in LV GCS,
again, was lowest in controls (8.6 ± 6.6%) followed by HFpEF
(9.8± 6.6%), and HFrEF (14.7± 10.2%), and highest in HFmrEF
(28.3± 40.4%, p= 0.028).

Plotting strain change against various surrogate parameters
associated with HF illustrates that the absolute, non-negative
value of LV GLS percentage change rather than the direction
of this change (i.e., increase or decrease) was associated with
disease severity (Figure 5). We further investigated different
modes of expressing strain response (i.e., percentage change and
the absolute value of percentage change) and their association
with clinical, laboratory and imaging parameters. LVGCS change
was not correlated with any parameter of HF severity — neither
percentage change nor the absolute value of percentage change.
Similarly, LV GLS percentage change was not correlated with
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TABLE 1 | Baseline characteristics.

Controls

n = 19

HFpEF

n = 17

HFmrEF

n = 18

HFrEF

n = 18

p-value

Female Sex–no. (%) 9 (47.4) 8 (47.1) 6 (33.3) 3 (16.7) 0.176

Age–years 61.5 ± 8.1 77.9 ± 8.0 67.9 ± 9.2 65.4 ± 10.5 <0.001

BMI–kg/m2 25.1 ± 3.2 27.6 ± 3.8 27.3 ± 4.6 28.1 ± 3.8 0.104

CAD–no. (%) 0 (0.0) 11 (64.7) 15 (83.3) 13 (72.2) <0.001

Hypertension–no. (%) 7 (36.8) 15 (88.2) 14 (77.8) 15 (83.3) 0.002

Previous MI–no. (%) 0 (0.0) 7 (41.2) 14 (77.8) 8 (44.4) <0.001

Previous PCI–no. (%) 0 (0.0) 9 (52.9) 14 (77.8) 12 (66.7) <0.001

Diabetes mellitus–no. (%) 2 (10.5) 5 (29.4) 3 (16.7) 5 (27.8) 0.441

LBBB on ECG–no. (%) 0 (0.0) 0 (0.0) 1 (5.6) 2 (11.1) 0.281

Ever Smoked–no. (%) 4 (21.1) 8 (47.1) 15 (83.3) 13 (72.2) 0.001

Packyears–years 2.0 ± 4.3 3.9 ± 6.8 29.8 ± 32.1 34.7 ± 52.7 0.003

NYHA Class II–no. (%) 0 (0.0) 10 (58.8) 15 (83.3) 15(72.2) <0.001

III–no. (%) 0 (0.0) 7 (41.2) 3 (16.7) 3 (27.8)

Leg Edema–no. (%) 3 (15.8) 12 (70.1) 14 (77.8) 12 (66.7) <0.001

6min walk distance–m 523.0 ± 118.6 344.4 ± 118.3 411.7 ± 86.0 417.4 ± 122.8 <0.001

MLHFQ QOL Score 4.7 ± 5.7 31.0 ± 23.1 25.2 ± 21.0 30.6 ± 25.8 <0.001

CONCOMITANT MEDICATION

Beta-Blocker–no. (%) 6 (31.6) 11 (64.7) 14 (77.8) 17 (94.4) <0.001

ACE-Inhibitor - no. (%) 2 (10.5) 3 (17.6) 6 (33.3) 10 (55.6) 0.015

ARB–no. (%) 4 (21.1) 12 (70.6) 7 (38.9) 8 (44.4) 0.027

MRA–no. (%) 0 (0.0) 3 (17.6) 4 (22.2) 11 (61.1) <0.001

ARNI–no. (%) 0 (0.0) 1 (5.9) 0 (0.0) 4 (22.2) 0.026

Statin–no. (%) 2 (10.5) 9 (52.9) 15 (83.3) 11 (61.1) <0.001

Loop Diuretic–no. (%) 0 (0.0) 3 (17.6) 6 (33.3) 7 (38.9) 0.02

HCT–no. (%) 4 (21.1) 4 (23.5) 2 (11.1) 1 (5.6) 0.401

LABORATORY

Hb–g/dl 14.0 ± 1.1 13.0 ± 1.3 13.7 ± 1.1 14.9 ± 1.2 <0.001

RBC–/pl 4.7 ± 0.4 4.4 ± 0.5 4.5 ± 0.5 4.9 ± 0.5 0.007

WBC–/nl 6.1 ± 1.5 7.2 ± 2.4 8.5 ± 2.4 8.3 ± 2.3 0.003

Platelets–/nl 263.4 ± 65.9 265.8 ± 74.9 266.9 ± 74.0 209.7 ± 48.2 0.03

Hematocrit 0.40 ± 0.03 0.38 ± 0.03 0.41 ± 0.03 0.43 ± 0.04 0.001

Cholesterol–mg/dl 203.5 ± 33.5 172.5 ± 35.4 154.2 ± 44.3 156.1 ± 37.3 <0.001

LDL–mg/dl 133.0 ± 39.4 106.8 ± 29.5 92.2 ± 39.2 87.8 ± 30.4 0.001

HDL–mg/dl 66.5 ± 25.3 52.6 ± 12.8 49.4 ± 14.7 51.6 ± 18.3 0.029

Triglycerides–mg/dl 130.4 ± 79.6 129.7 ± 50.2 137.9 ± 81.1 173.3 ± 153.1 0.508

HbA1c –% 5.4 ± 0.5 5.9 ± 0.8 5.9 ± 0.7 5.8 ± 0.82 0.215

NTproBNP–ng/l 88.7 ± 61.1 459.1 ± 470.3 543.7 ± 385.5 2413.1 ± 3417.3 0.001

logNTproBNP–ng/l 4.26 ± 0.73 5.72 ± 1.13 6.06 ± 0.73 7.01 ± 1.20 <0.001

Hs TroponinT– ng/l 7.1 ± 3.4 19.9 ± 18.2 18.2 ± 19.67 19.4 ± 12.4 0.029

CRP–mg/l 1.3 ± 1.4 2.9 ± 2.7 3.1 ± 4.2 1.1 ± 0.7 0.029

CARDIAC MRI PARAMETERS

LVEF –% 61.6 ± 5.4 61.6 ± 6.1 45.1 ± 2.7 33.5 ± 4.9 <0.001

LV EDV–ml 148.0 ± 34.5 130.3 ± 35.5 175.9 ± 28.8 261.8 ± 59.4 <0.001

LV ESV–ml 56.1 ± 18.4 50.9 ± 18.5 96.8 ± 17.7 175.6 ± 48.5 <0.001

LV SV–ml 90.1 ± 17.4 79.3 ± 20.1 79.1 ± 12.7 86.2 ± 16.6 0.144

ARB, angiotensin receptor blocker; ARNI, angiotensin receptor blocker–neprilysin inhibitor; BP, blood pressure EDV, end-diastolic volume; EF, ejection fraction; ECG, electrocardiogram;

ESV, end-systolic volume; GCS, global circumferential strain; GLS, global longitudinal strain; HF, heart failure; HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF

with reduced EF; LBBB, left bundle branch block; MI, myocardial infarction; MLHFQ, Minnesota living with heart failure questionnaire; MRA, mineralocorticoid receptor antagonist, PCI,

percutaneous coronary intervention; QOL, quality of life; RBC, red blood cells; WBC, white blood cells.
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TABLE 2 | Hemodynamic characteristics and strain at rest and during isometric exercise.

Controls n = 19 HfpEF n = 17 HfmrEF n = 18 HfrEF n = 18 p-value

Heart rate (/min) Rest 59.9 ± 8.5 63.6 ± 9.8 64.3 ± 7.1 65.2 ± 7.0 0.231

HG 69.4 ± 10.9* 71.5 ± 10.6* 71.7 ± 8.5* 74.2 ± 8.1* 0.514

% Change +16.2 ± 11.8 +12.9 ± 9.4 +11.6 ± 7.1 +14.3 ± 9.7 0.531

Systolic BP (mmHg) Rest 129.8 ± 14.9 126.5 ± 19.2 119.9 ± 17.8 118.6 ± 17.7 0.165

HG 163.2 ± 20.2* 156.2 ± 18.8* 147.8 ± 17.3* 140.7 ± 22.8* 0.006

% Change +26.3 ± 13.5 +24.8 ± 16.4 +24.1 ± 10.6 +18.9 ± 9.7 0.343

Diastolic BP (mmHg) Rest 70.5 ± 6.6 67.8 ± 9.7 67.9 ± 8.8 68.8 ± 8.6 0.757

HG 86.7 ± 8.6* 84.7 ± 11.9* 82.2 ± 8.3* 82.7 ± 13.1* 0.562

% Change +23.3 ± 11.5 +25.7 ± 13.7 +22.1 ± 13.3 +20.6 ± 14.7 0.714

Pulse pressure (mmHg) Rest 59.4 ± 13.4 58.8 ± 13.2 51.9 ± 12.6 49.7 ± 11.9 0.06

HG 76.5 ± 18.5* 71.5 ± 11.4* 65.6 ± 13.7* 58.1 ± 13.9* 0.002

% Change +30.0 ± 22.2 +24.9 ± 25.3 +28.2 ± 18.1 +17.3 ± 11.7 0.238

LV GLS Rest −20.1 ± 1.7 −19.1 ± 1.2 −16.0 ± 2.8 −11.4 ± 4.0 <0.001

HG −20.2 ± 1.5 −19.0 ± 2.1 −15.6 ± 2.6 −11.0 ± 4.1 <0.001

% Change +1.2 ± 5.4 −0.6 ± 8.3 −1.7 ± 10.7 −3.1 ± 19.4 0.746

LV GCS Rest −18.7 ± 2.4 −16.9 ± 2.3 −13.0 ± 3.5 −11.2 ± 3.3 <0.001

HG −18.4 ± 2.5 −17.2 ± 2.0 −13.1 ± 2.6 −10.6 ± 2.8 <0.001

% Change −0.8 ± 11.0 +3.1 ± 11.6 10.8 ± 48.6 −2.4 ± 18.1 0.467

*Difference between rest and HG significant (p<0.05), assessed with paired t-test. BP, blood pressure; EF, ejection fraction; GCS, global circumferential strain; GLS, global longitudinal

strain; HF, heart failure; HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF with reduced EF, HG, isometric handgrip; LV, left ventricle.

FIGURE 2 | Hemodynamic measurements at rest and during isometric exercise (A) at rest and (B) during isometric exercise. Reported are p-values from analysis of

variance. Asterisks indicate significant inter-group difference in Tukey’s post-hoc test of analysis of variance (p < 0.05). BP, blood pressure; EF, ejection fraction; HF,

heart failure; HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF with reduced EF.

surrogate parameters of HF severity. The absolute value of LV
GLS percentage change, however, was moderately correlated
with resting LV EF (r = −0.37, p = 0.001), NTproBNP
(r = 0.33, p = 0.004), log-transformed NTproBNP (r =

0.35, p = 0.002), MLHFQ quality of life score (r = 0.26, p
= 0.028), LV end-diastolic volume at rest (r = 0.40, p =

0.006), and LV end-systolic volume (r = 0.43, p = 0.001)
at rest.
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FIGURE 3 | Cardiac strain at rest and during isometric exercise (A) at rest and (B) during isometric exercise. Asterisks indicate significant inter-group difference in

Tukey’s post-hoc test of analysis of variance (p < 0.05). EF, ejection fraction; GCS, global circumferential strain; GLS, global longitudinal strain; HF, heart failure;

HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF with reduced EF; LV, left ventricle.

DISCUSSION

This study investigating cardiac strain in HF patients and

controls undergoing cMRI paired with HG yielded the

following findings:

1). The response to isometric exercise in LV GLS and GCS is

heterogeneous, with increase and decrease in some subjects,

and stable strain in others. This pattern was found in

controls, as well as in all HF subgroups.

2). In HF patients, the extent of LV GLS change is elevated,
regardless of whether strain increases or decreases, when
compared to controls. This difference is most pronounced in
patients with HFrEF.

3). The absolute value of LVGLS percentage change significantly
correlates with surrogate parameters of HF severity.

Clinical Applications of Strain Assessment
Cardiac strain is a reliable and meaningful tool for detection of
myocardial dysfunction in several diseases (2, 7). Multiple studies
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FIGURE 4 | Strain response to isometric exercise (A) LV GLS overall and in subgroups, (B) LV GCS overall and in subgroups. EF, ejection fraction; GCS, global

circumferential strain; GLS, global longitudinal strain; HF, heart failure; HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF with reduced EF; LV,

left ventricle.

demonstrated its potential use for early detection of myocardial
dysfunction, prognostic stratification and discrimination of
different HF entities (8–10). A recent Heart Failure Association
consensus recommendation for the diagnosis of HFpEF included
impaired GLS into their HFA-PEFF score as a minor criterion
(25). Especially in patients with borderline EF, assessment
of cardiac strain could facilitate accurate diagnosis of HF, a
possibility that future research has to investigate in depth.

The aim of this study, however, was to investigate the
feasibility and diagnostic value of cardiac strainmeasured by fast-
SENC in conjunction with HG exercise. Fast-SENC acquisition

is rapid, within a single cardiac cycle, making the technique
especially helpful for severely ill patients unable to hold breath
as in typical cMRI exam (14, 26). It also requires minimal post-
processing time to provide accurate and reproducible strain
measurements. The SENC images can also be utilized for
additional purposes, such as ultra-fast estimation of LV volumes
and LV EF (15, 21).

To our best knowledge, our study was the first one to
systematically evaluate the combined diagnostic approach of fast-
SENC-based LV strain quantification and HG in HF patients
and controls.
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TABLE 3 | Categorization of change in strain during isometric exercise.

Controls

n = 19

HfpEF

n = 17

HfmrEF

n = 18

HfrEF

n = 18

p-value

LV GLS Increase–no. (%) 7 (36.8) 6 (35.3) 3 (16.7) 4 (22.2) 0.668

No change–no. (%) 7 (36.8) 7 (41.2) 9 (50.0) 6 (33.3)

Decrease–no. (%) 5 (26.3) 4 (23.5) 6 (33.3) 8 (44.4)

LV GCS Increase– no. (%) 7 (36.8) 9 (52.9) 6 (33.3) 7 (38.9) 0.831

No change– no. (%) 4 (21.1) 4 (23.5) 3 (16.7) 3 (16.7)

Decrease–no. (%) 8 (42.1) 4 (23.5) 9 (50.0) 8 (44.4)

Increase: 1 LV GLS < −0.5; No change: −0.5 ≤ 1 LV GLS ≤ +0.5; Increase: 1 LV GLS > +0.5; Abbreviations: EF, ejection fraction; GCS, global circumferential strain; GLS, global

longitudinal strain; HF, heart failure; HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF with reduced EF; LV, left ventricle.

TABLE 4 | Change in strain during isometric exercise.

Controls

n = 19

HfpEF

n = 17

HfmrEF

n = 18

HfrEF

n = 18

p-value

LV GLS

% change +1.2 ± 5.4 −0.6 ± 8.3 −1.7 ± 10.7 −3.1 ± 19.4 0.746

Absolute value of %

change

4.4 ± 3.2 5.9 ± 5.7 6.8 ± 8.3 14.1 ± 13.3 0.005

LV GCS

% change −0.8 ± 11.0 +3.1 ± 11.6 +10.8 ± 48.6 −2.4 ± 18.1 0.467

Absolute value of %

change

8.6 ± 6.6 9.8 ± 6.6 28.3 ± 40.4 14.7 ± 10.2 0.028

EF, ejection fraction; GCS, global circumferential strain; GLS, global longitudinal strain; HF, heart failure; HFpEF, HF with preserved EF; HFmrEF, HF with mid-range EF; HFrEF, HF with

reduced EF, HG, isometric handgrip; LV, left ventricle.

FIGURE 5 | Association of absolute change in strain during isometric exercise and (A) LV EF at rest, (B) log NTproBNP, and (C) MLHQ quality of life score. Reported

are Pearson’s r coefficients. NTproBNP was transformed by the natural logarithm function. EF, ejection fraction; GLS, global longitudinal strain; LV, left ventricle;

MLHQ, Minnesota living with heart failure questionnaire; NTproBNP, N-terminal pro-brain natriuretic peptide.

Isometric Exercise, Afterload, and
Contractility
In spite of only involving a relatively small group of
muscles, HG exercise increases cardiac afterload, which has
substantial effects on the cardiovascular system (18, 27):
Systolic BP, diastolic BP and HR increase markedly which
is believed to be due to a circulatory reflex serving to

increase perfusion pressure in the contracting muscle groups
(28). An early invasive study found that cardiac output

(CO) increases during isometric handgrip exercise. However,

this increase was mainly driven by a higher heart rate—

LV systolic function even decreased slightly (18). A recent

meta-analysis of imaging trials investigating the effects of HG
on hemodynamic parameters confirmed that HR significantly
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increases, while SV and CO did not change significantly from
rest to HG (29). All these studies support the notion, that
the increase in cardiac afterload during HG is predominantly
compensated by an increase in HR rather than in systolic
myocardial contractility.

Strain has been postulated as the optimal measure of cardiac
contraction and multiple studies demonstrated the close relation
of strain with other measures of contractility (30–32). Thus,
whether strain as a metric of contractility is an adequate measure
to characterize the response to increased afterload, remains a
question at issue.

Previous Studies on Strain Response to
Increased Afterload
The dependency of myocardial strain on preload as implied by
the principles of cardiac mechanics was already established by
several early echocardiography studies (33–35). Conversely, the
short-term impact of increased afterload on myocardial strain
remains controversial.

Fredholm et al. examined 21 patients after cardiac surgery
and found no change in strain in response to increased
afterload after phenylephrine infusion (36). A study by Stefani
et al. analyzed athletes and healthy controls undergoing speckle
tracking echocardiography (STE) during HG. The authors found
significant changes from baseline longitudinal strain exclusively
in the medial to apical myocardial segments of athletes. In
controls, no significant change in response to increased afterload
was found, whatsoever (37).

On the contrary, a study by Donal et al. of 18 pigs employing
open-chest echocardiography during graded aortic banding
found a stepwise decrease in longitudinal strain with increasing
afterload (38). The authors also found a differences between
longitudinal strain, which already deteriorated after moderate
increases in afterload (i.e. +10 mmHg) and radial strain, which
was preserved during moderate increases in afterload and only
deteriorated when afterload was further increased. This study
indicates that the different vector components of myocardial
strain, i.e. longitudinal, circumferential and radial strain, might
react differentially to increased afterload. Of note, quantification
of radial strain is technically not possible using fast-SENC (22). A
study by Weiner et al. examining 18 healthy subjects undergoing
STE found a significant decrease of LV longitudinal strain in
response to HG. Simultaneously, parameters of LV twisting
decreased significantly (39). Murai et al. observed decreased
LV GLS in 41 young and healthy volunteers undergoing a
similar STE + HG protocol (23). In addition, they measured
ventricular wall stress in order to directly quantify afterload
on the myocardium and found that the increase of wall stress
and the decrease of strain during HG are inversely correlated.
The authors also found that strain rate (SR) was less closely
correlated to wall stress, suggesting that SR is less dependent
on afterload than strain. All of the previous studies are limited
by the shortcomings of hand-held echocardiography, namely
angle-dependency of 2D image acquisition and intra-observer
variability (7).

Heterogeneous Strain Response to
Isometric Exercise in Controls and HF
Patients
Our study expands this limited body of evidence employing
a more accurate and reproducible fast-SENC acquisition-
based approach to quantify strain and applying isometric HG
exercise to increase afterload. Previous studies by our group
demonstrated excellent inter-study, inter-observer and intra-
observer reproducibility of fast-SENC based LV GLS assessment
in both healthy controls and HF patients, providing evidence
on the reliability of our strain measurements (15). Since the
association of GLS and prognosis inHF is well established, we will
focus on LV GLS changes in the following (9). In line with such
previous evidence, we also found that the association with indices
of HF severity is more pronounced with LV GLS compared to
LV GCS.

We found a non-uniform LV GLS response to increased
afterload with high variability between subjects. Investigating
healthy controls, we found stable LV GLS as well as increase and
decrease, with strain changes ranging from a −11.0 to +10.0%.
In heart failure patients, strain changes ranged from −42.0 to
+32.0%. Our findings imply that assessing strain response to
HG based on whether strain increases or decreases might be
misleading. Not only in HF patients, but also in healthy subjects,
strain response appears to be heterogeneous.

Even though counter-intuitive at first glance, this finding
appears to be in line with the preexisting literature: As lined out
above, previous evidence on strain response to isometric exercise
in non-HF subjects is equivocal with some studies reporting no
change in longitudinal strain (36, 37), others reporting decreased
GLS during HG (23, 38, 39). Most notably, none of these previous
studies elaborated on the heterogeneity of strain response to
afterload. Usually, only mean differences are reported. However,
in some previous studies figures indicate a mixed response
pattern with both increase and decrease of deformation indices
present in some subjects (36, 39).

Thus, our observation of a non-uniform LV strain response
in controls reconciles contradictory preliminary evidence and
explicitly addresses a pattern already implicitly present in
previous study reports.

Increased Absolute Value of Strain Change
in HF Patients
In HF patients, LV GLS could be stable as well as increased or
decreased in response to isometric exercise. This pattern did not
significantly differ between HF patients and controls. However,
the extent of strain change irrespective of whether strain
increased or decreased was significantly elevated, particularly
in HFrEF patients. In addition, the absolute value of LV GLS
change was significantly associated with indicators for severity of
symptoms. Patients with substantial change in strain—without
regard to the direction of change– were more likely to have
reduced LV EF, high levels of NTproBNP and to suffer from
severe HF symptoms as quantified by MLHFQ. This association
with HF severity also raises the question whether extreme strain
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changes in response to HG might have prognostic implications
in HF patients. The significant correlation of the absolute value
of LV GLS change and LV end-diastolic and LV end-systolic
volumes also establishes a mechanical relationship to cardiac
dilation and preload which stipulates further investigation.

The question remaining is what determine decrease or
increase of strain in response to HG given that they occur in both
healthy and HF subjects. Based on previous studies indicating
that increased afterload was compensated by a rise in HR rather
than an increase in myocardial contractility, we hypothesized
that there might be an association between LV GLS change
and with HR change to HG (18, 29). In fact, in an exploratory
analysis including only HF patients, we found a significant
inverse association between HR change and LV GLS change in
response to HG (r = −0.31, p = 0.023, Supplemental Figure 1).
This supports the notion that strain change and HR change are
inversely related and excessive increase in LV GLS might be an
expression of inability to adjust HR in response to isometric
exercise. However, this association dissipated when including
controls into this exploratory analysis (r =−0.20, p= 0.095).

Implications for Future Research Into
Strain Response to Increased Afterload
The potential association of strain change and HR change again
points toward SR, i.e. the temporal derivative of strain, as a
promising measure for future studies into the effects of HG
on myocardial contractility. SR depends on both strain and
the length of the cardiac cycle (40). During HG exercise, HR
physiologically increases leading to a shortening of myocardial
contraction time per heartbeat. With strain decreasing while the
cardiac cycle is shortening in response to increased afterload, SR
which is a function of strain and contraction time might stay
relatively stable. Murai et al. in fact demonstrated that SR is less
dependent on afterload than strain in healthy subjects (23). Thus,
significant changes in SR during HG could potentially reflect
dysbalance regarding response of strain and HR to increased
afterload in HF patients. However, due to software limitations we
were not able to quantify SR in this study.

Furthermore, it is important to bear in mind that the LV is
not operating mechanically in isolation. Both the right ventricle
(RV) and the left atrium (LA) have been identified to play
important roles in exercise hemodynamics (41, 42). Thus, further
investigation into LA strain, RV strain and their relation to LV
strain in exercise settings with increased afterload are necessary
in order to fully understand cardiac deformation mechanics
during HG.

Even though our findings elucidate cardiac adaption
mechanisms in response to acute increase in afterload, our
study suggests that the diagnostic utility of strain assessment
in conjunction with HG is limited. With heterogeneous
response patterns and dependency on heart rate variability and
presumably other factors not yet fully understood, assessment
of strain response to isometric exercise does not appear to
provide substantial additional diagnostic value on top of strain
assessment during physical rest. Other stress testing modalities
such as pharmacological stress induction and dynamic exercise

testing have more drastic effects on HR and stroke volume and
might be better suited for diagnostic purposes (29).

Limitations
Several limitations of this study have to be addressed. We
cannot rule out the possibility of confounding by unmeasured
variables. While including more patients than previous studies
investigating the impact of increased afterload on strain, our
sample size was still relatively small. We had to exclude
patients with implanted ICD and Pacemakers due to MRI
contraindication. This limits the generalizability of our study to
the general HF population, especially in patients with HFrEF.
Concomitant medication, namely BB, might have influenced
the hemodynamic response to isometric exercise, particularly
regarding the physiological increase in HR. Similarly, left bundle
branch block in particular is known to compromise cardiac
adaption to increased afterload and different prevalence of LBBB
within different subgroups might have impacted our findings
(43). Also, we cannot rule out the possibility that ischemia-
related motion abnormalities influenced our findings. Besides,
HG exercise testing is prone to measurement errors due to lack
of cooperation or Valsalva-maneuver during handgrip leading
to elevated intrathoracic pressures. Diligent patient instruction
and supervision during exercise by trained personnel was
implemented to prevent such errors. However, our findings
should only be considered hypothesis-generating.

CONCLUSION

In conclusion, we found that the strain response to isometric
exercise quantified by fast-SENC is heterogeneous: LV GLS and
GCS are stable in some patients, but decrease or increase in
others, with no significant differences between controls and HF
subgroups. However, the absolute value of strain change during
isometric exercise—rather than increase or decrease—is elevated
in HF patients and associated with measures of HF severity. Our
observations indicate that the applicability of strain assessment
in conjunction with HG for diagnostic purposes in HF seems to
be limited.
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