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There are many approaches to maintaining wellness, including taking a simple vacation

to attending highly structured wellness retreats, which typically regulate the attendee’s

personal time and activities. In a healthy English-speaking cohort of 112 women and

men (aged 30–80 years), this study examined the effects of participating in either a 6-days

intensive wellness retreat based on Ayurvedic medicine principles or unstructured 6-days

vacation at the same wellness center setting. Heart rate variability (HRV) was monitored

continuously using a wearable ECG sensor patch for up to 7 days prior to, during,

and 1-month following participation in the interventions. Additionally, salivary cortisol

levels were assessed for all participants at multiple times during the day. Continual HRV

monitoring data in the real-world setting was seen to be associated with demographic

[HRVALF: βAge = 0.98 (95% CI = 0.96–0.98), false discovery rate (FDR) < 0.001] and

physiological characteristics [HRVPLF: β = 0.98 (95% CI = 0.98–1), FDR =0.005] of

participants. HRV features were also able to quantify known diurnal variations [HRVLF/HF:

βACT : night vs. early−morning = 2.69 (SE= 1.26), FDR < 0.001] along with notable inter- and

intraperson heterogeneity in response to intervention. A statistically significant increase

in HRVALF [β = 1.48 (SE = 1.1), FDR < 0.001] was observed for all participants

during the resort visit. Personalized HRV analysis at an individual level showed a distinct

individualized response to intervention, further supporting the utility of using continuous

real-world tracking of HRV at an individual level to objectively measure responses to

potentially stressful or relaxing settings.
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INTRODUCTION

Stress, in varying degrees and of varying durations, impacts every
single human and has a major influence on their health (1).
Healthy individuals typically can manage short, acute episodes
of routine stress without health consequences. However, if stress
becomes persistent, the long-term effects can significantly impair
mental and physiological well-being (2). When recognized,
people can often address and ideally eliminate specific acute
stressors (3). Chronic stress, however, is often insidious and
develops slowly, making it difficult for an individual experiencing
it to recognize it (4). In addition, the marked variability in
stress responses among individuals can make it difficult to be
clearly recognized by others, including family and even mental
health professionals (5). Therefore, there is a critical need for
objective, reproducible measures of an individual’s ability to
recover from stress.

The autonomic nervous system (ANS) plays an important
role in the body’s response to stress. Composed of the
parasympathetic and sympathetic nervous systems (PNS and
SNS) (1), the response to stress is driven primarily by the SNS and
the hypothalamic–pituitary–adrenocortical axis (1, 6). On the
other hand, the PNS is important in alleviating the stress response
(7). While at present there is no universally accepted standard
for objective stress measurement (8), fluctuations in the length of
heartbeat intervals, commonly referred to as heart rate variability
(HRV) (6, 9, 10), which is under the control of the ANS, has been
found in a number of studies to be a potentially viable objective
biomarker of the stress response (6). HRV also has the advantage
of being non-invasively and potentially continuously measured,
typically using an electrocardiogram.

Historically, one of the challenges to demonstrating the
effectiveness of wellness interventions has been a focus on a
population-wide effect that is based on a single “snapshot”
recording taken before and after the intervention, typically
in an artificial setting outside of routine daily activities. This
approach, however, is often hampered by the wide interindividual
variability in physiological parameters at baseline and in
responsiveness to the intervention, as well as intraindividual
variability that is common throughout the day. The noise created
by these multiple sources of variation can easily overwhelm
any metric of change that is population based and prevents
identifying potentially important changes in an individual.
However, with the recent growth in consumer-grade devices
and wearables (11, 12), new and innovative ways of collecting
real-world (13) multi physiological data for prolonged periods
of time have become feasible (14, 15). This rich data allow
for a detailed and personalized analysis of normal physiological
changes and how they relate to each other, over time, and
in the daily lives of people. Such a multivariate longitudinal
measure of an individual’s physiology can enable assessment
of short- and long-term changes in the functioning of the
autonomous nervous system (16, 17) especially relative to
one’s own baseline. In particular, features related to HRV,
generated using biosignals obtained from continual monitoring
of heart, have been linked with ANS-related neurocardiac
functioning such as stress, autonomic balance, blood pressure

(BP), and vascular tone including being impacted by external
environmental and psychological variations over time (18, 19).
To quantify such complex and dynamic non-linear associations
between ANS functioning and HRV, it is recommended to use
both the time and frequency domain features of HRV (10, 20).
Briefly, time-domain HRV features (21, 22) quantify the variation
in the interbeat interval (IBI) between successive heartbeats with
standard deviation of the IBI of normal sinus beats [standard
deviation of interbeat intervals (SDNN)] considered the gold
standard for clinical cardiac risk evaluation (23). The frequency-
and amplitude-based HRV features are derived based on power
spectral analysis (24) to derive energy within a prespecified four
frequency bands (23). Of these, the low-frequency (LF) (0.04–
0.15Hz, between 7 and 25 s) band has been linked to vagal
and sympathetic activity, whereas the high-frequency (0.15–
0.4Hz, between 2.5 and 7 s) has been linked to parasympathetic
activity of the ANS (20). Salivary cortisol is another frequently
used biomarker of stress as a measure of hypothalamus–
pituitary–adrenal axis (HPAA) activity. Obtaining repeated saliva
samples during the course of a day is an established method
of determining the diurnal variation of cortisol, including for
intervention studies (25, 26).

In the current study, utilizing a novel sensor patch that
could monitor multiple physiological parameters, including
ECG, continuously for up to 7 days, we investigated whether it
was feasible to detect changes in HRV relative to a participant’s
baseline, in response to two different week-long wellness
programs, one a structured wellness program and the other an
unstructured wellness vacation at the same resort location (27).
We further explored if changes in HRV sustained over a period
of time by remotely monitoring participants 1 month after the
interventions. Additionally, any significant differences in salivary
cortisol levels across home, wellness center visit, and across the
two cohorts were also assessed for their relationship to HRV.

METHODS

Study Participants and Design
Participants were recruited via email announcements from the
UC San Diego faculty and staff and Chopra Center for Well-
Being mailing lists. The announcements described the Self-
Directed Biological Transformation Initiative (SBTI), a research
study examining the effects of a structured wellness program
based on Ayurvedic principles called the Perfect Health Program
(PH) or an unstructured vacation retreat (RELAX) (28). The
majority of enrolled participants were from the greater San Diego
and Los Angeles areas. Flyers stated that the week-long (28)
study would be conducted at the La Costa Resort in Carlsbad,
CA and that participants would either participate in the PH
program or take a regular vacation at the same resort. All study
participants stayed onsite at the resort for 1 week (Figure 1). The
study was approved by the UC San Diego Institutional Review
Board (#171715) and was registered on ClinicalTrials.gov with
Identifier: NCT02241226.

Eligible participants were healthy English-speaking women
and men aged 30–80 years with no current major medical or
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FIGURE 1 | Overall schematic flow of the study showing participant recruitment, screening, consent, and wearable sensor-based tracking of physiological

characteristics across the three sessions. The week prior to starting the program (session 1), the last 2 days of the respective intervention program (session 2), and at

home ∼1 month after completion of the intervention programs (session 3).

mental illnesses. Exclusion criteria included being a smoker,
pregnancy, estrogen or hormone replacement therapy, a body
mass index (BMI) ≥35 kg/m2, and current use of non-
prescription drugs. Individuals were not excluded if they took
prescription drugs. Participants were willing to refrain from
drinking more than one alcoholic beverage per day during
the weeklong stay at the resort. Finally, individuals who have
previously participated in the PH program or other Chopra
Center programs or a yoga or meditation retreat of any
kind within the past 12 months were also excluded from
study participation.

A total of 261 individuals were screened for eligibility, learned
details of study involvement, and were asked to consider their
commitment and availability before they were enrolled in the
study. It was emphasized that this included a commitment
to stay in the study even if they were not randomized into
their preferred group. A total of 112 individuals consented
to enroll in the study and were randomly assigned in a 1:2
ratio to either the PH group or the RELAX group. Within the
enrolled cohort, a group of 23 individuals (20.5%) who were
previously planning to take the PH program were assigned
to the PH program in a non-randomized fashion. There were
no expenses for participation in the study. Participants were
not compensated financially or with any type of non-financial
incentives other than having their expenses covered while at
the resort.

Study Interventions
The intervention groups were not blinded, and site investigators
and study personnel knew to which group participants were
assigned. The two groups had no contact with each other during
the study and did not know the details of the daily schedule of
the other group. Upon arrival at the resort, participants were
given a 1-h orientation meeting with the study team where they
learned about the overall study schedule and procedures and the
assessment schedules.

PH Program Intervention
PH is essentially an Ayurvedic immersion program of
detoxification and rejuvenation that is based on core principles
from the Ayurvedic system of medicine (28). The program
was developed ∼20 years ago, with ∼800 individuals taking
the course every year. The PH program addresses the physical,
emotional, and spiritual well-being through daily practices and
lectures. Components of the program included physical cleansing
through ingestion of herbs, fiber, and oils, two Ayurvedic meals
daily (breakfast and lunch), which provided a light plant-based
diet, daily Ayurvedic massage treatments, and heating treatments
through the use of dry sauna and/or steam sauna. The program
includes lectures on Ayurvedic principles and lifestyle as well as
lectures onmeditation and yoga philosophy. The PH study group
participated in twice-daily group meditation and daily yoga,
practiced breathing exercises, as well as emotional expression
through a process of journaling and emotional support. The daily
yoga practice consisted of a standard set of 10 yoga postures.
During the program, PH participants received a 1-h integrative
medical consultation with a physician and a follow-up with an
Ayurvedic health educator. The teachers of the PH Program
delivered their standard program to the SBTI study participants.

RELAX Intervention
Participants randomized to the RELAX group were asked to
do what they would normally do on a resort vacation with the
additional following restrictions: they were asked not to engage
in more exercise than they would in their normal lifestyle and
to refrain from using La Costa Resort spa services. RELAX
participants were also asked not to drink ginger tea or take gingko
biloba during the 2 days prior to and during the study week.

Salivary Cortisol
To assess diurnal variations in cortisol levels, saliva samples
at four different periods were collected: at the participant’s
home the week prior to coming to the retreat, day 1 of the
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retreat, day 6 of the retreat, and at home 1 month following
the retreat. Participants were provided an information sheet on
how to properly self-collect, label, and store their saliva samples.
Participants collected their saliva into salimetrics saliva collection
tubes using the passive drool method at the following times:
immediately upon awakening, 30min post-awakening, noon,
4:30 PM, 8:00 PM, and bedtime. Upon collection, participants
put their samples on ice or in a −20◦C freezer. For samples
collected at home, participants placed the samples on ice packs
and sent them to the UC San Diego Clinical Research Biomarker
Laboratory samples using overnight shipping, where they were
placed in −80◦C until assay (29). Saliva cortisol levels were
determined by commercial ELISA (Salimetrics, Carlsbad, CA,
USA). Intraassay coefficients of variation were <5%; interassay
coefficients of variation were <8%.

Continual Physiological Monitoring
An adhesive wearable patch (MultiSenseTM) developed by
Rhythm Diagnostic Systems (RDS), which has multiple sensors
embedded in a “Band-Aid”-like strip (Figure 2), was used to
continually monitor multiple physiological parameters of study
participants. MultiSenseTM wearable patch is a self-contained,
reusable, rechargeable, battery-powered, flexible strip, measuring
4 × 1.2 in and weighs <15 g. The MultiSense device collects
and stores raw biosensor data from a single lead ECG, a

FIGURE 2 | Picture of the Rhythm Diagnostic Systems (RDS) patch and

recommended placement on the body.

three-axis accelerometer, a skin temperature sensor, and a Red
and IR photoplethysmography (PPG) sensor. The device stores
all physiological data in onboard memory and can be worn for
up to 10 days with the data then downloaded via USB.

All study participants were asked to wear the sensor patch on
three occasions: the week prior to starting the program (session
1), the last 2 days of the program (session 2), and at home ∼1
month after completion of the program (session 3). The wearable
sensor was one of the many components of a much broader SBTI
program (28, 30).

Feature Extraction
Vital signs and physiological features were derived from the raw
sensor data using a proprietary library of signal processing and
data analytics algorithms developed by PhysIQ (31) (Figure 3).
The offline feature extraction engine, using the raw sensor data
[ECG, a three-axis accelerometer, PPG (red & IR)], generated
22 cardiopulmonary-related features. For the present analyses,
we used a subset of eight heart rate and HRV-related features
(Table 1) that are known to be a potential biomarker for
stress (6, 32).

In addition, an ECG signal quality metric was calculated that
is designed to identify snippets of ECG data that can result
in inaccurate feature calculations [due to loss of signal, low
signal-to-noise ratio (SNR), and motion artifacts). The algorithm
is based on a combination of analyzing the kurtosis of 15-s
moving windows of ECG data and heuristics rules that identify
non-varying samples as well as completely random samples
within each window. A binary decision is rendered for each
15-s window identifying it as either “usable” or “non-usable”
in the context of the feature extraction engine. A decision is
made every 5 s by sliding the window of ECG data by 10 s. A
corresponding proportion is generated for each minute based
on the 5-s positive decisions made during each window of data.
This proportion is the ECG signal quality metric. A default
threshold of 0.9 (90%) is used as a basis for feature calculation
quality filtering. A filtered sample is replaced with a NaN
(not-a-number) value, indicating that ECG data existed during
the corresponding minute, but the calculated feature is very
likely unreliable.

FIGURE 3 | Schematic overview of feature extraction translating the raw sensor data collected using the Rhythm Diagnostic Systems (RDS) MultiSense patch.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 July 2020 | Volume 7 | Article 120

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Pratap et al. HRV Changes to Wellness

TABLE 1 | Brief description of features generated by the feature extraction engine

that were used for the present analysis.

Vital

sign

label

Feature

domain

Units Description

HR Time bpm 1-min trimmed mean time averages of

beat-to-beat HR

SDNN Time Milliseconds 1-min trimmed mean time averages of the

trimmed (remove upper and lower 5% of

samples) standard deviation of interbeat

intervals (SDNN) in 30-s windows calculated

every 5 s

ACT Frequency g’s 1-min trimmed mean time averages of gross

activity level (essentially overall movement in all

directions combined)

ALF Frequency s2 1-min trimmed mean time averages of power in

the low-frequency band of heart rate variability

(0.040–0.150Hz)

AHF Frequency s2 1-min trimmed mean time averages of power in

the high-frequency band of heart rate variability

(0.150–0.400Hz)

PHF Frequency s2 1-min trimmed mean time averages of

normalized power in the low-frequency band of

heart rate variability (0.040–0.150Hz)

PLF Frequency s2 1-min trimmed mean time averages of

normalized power in the high-frequency band

of heart rate variability

LF/HF Frequency – 1-min trimmed mean time averages of the ratio

of low frequency to high-frequency HRV power

ECG

goodness

Time % 1-min trimmed mean time averages of ECG

signal quality metric (100% is good, 0% is bad)

Statistical Analysis
The evaluation of inter- and intraindividual changes in HRV
overtime was a secondary and exploratory goal of the SBTI trial,
and therefore, the randomization of participants into RELAX
and PH interventions was not optimally powered to assess the
difference between the interventions.

Prior to analysis, the data in the upper and lower 1% quantile
of HR and HRV features were filtered out to exclude potential
outliers in the data due to technical noise at the cohort level.
Additionally, all data points identified as likely to be indicative
of poor accuracy due to biosignal noise, and the presence of
motion artifacts was removed from the downstream analysis.
Those samples included any with a corresponding ECG signal
quality metric that was <90%. Finally, only those participants
who contributed at least 24 h worth of continual sensing data
were considered for the cohort-level analysis. Differences in
demographics variables across the RELAX and PH groups were
assessed using a chi-square test.

Generalized estimating equations (GEEs) (33) were used
to estimate the population-level average effect of heart rate
variability between (a) PH and RELAX cohorts, (b) three sessions
(session 1: at home before the interventions; session 2: at
the resort; session 3: at home 1 month after the respective
intervention), and (c) diurnal variations of HRV. Briefly, a GEE
is a semiparametric method to estimate population-averaged
effects by accounting for time-invariant, unobservable differences

within individuals using robust and unbiased standard errors.
The GEE model accounted for covariates such as age,
BMI, gender, and physical activity (estimated by the triaxial
acceleration sensor onboard the MultiSenseTM wearable patch;
see Table 1). A tri-level interaction between the three covariates,
cohort (RELAX and PH), three sessions, and diurnal variations,
were used in the model to estimate the population level
significance of these interactions on HRV. We also tried to
account for the subject level heterogeneity using a linear mixed-
effects (LME) modeling approach (34, 35). Several LME models
were fit using the lmer (36) package with combinations of
fixed and random effects; however, due to missing sensor data
across the sessions for some subjects, most LME models did not
converge and therefore were dropped from further analysis.

To further investigate the high interperson heterogeneity in
HRV, a personalized “N-of-1” analysis approach was used to
assess the significance of a visit to the resort (session 2) on
HRV regardless of the intervention group that an individual was
assigned. Newey–West robust regression (37) method was used
to account for the serial correlation structure in the data. Briefly,
this approach allows conducting robust regression modeling
using a non-parametric kernel-based heteroskedasticity and
autocorrelation consistent (HAC) estimator of the covariance
matrix that is able to account for both heteroscedasticity and
autocorrelation of unknown form. We further adopted the
Newey–West HAC estimator, using Bartlett kernel, and the
automatic bandwidth selection procedure (38), and implemented
in the sandwich R package (39). Time-of-the-day and average
acceleration were included as covariates to account for individual
diurnal variations. All analysis was done using the R statistical
programming language (40).

RESULTS

Data Summary
A total of 261 individuals were screened for the study of which
112 individuals (69 PH, 44 RELAX) were enrolled, contributing
11,355 h worth of continual sensor-based monitoring data
using the RDS MultiSenseTM patch (Figure 4). Of these, 87
participants (57 PH, 30 RELAX) wore the patch and contributed
at least 24 h of physiological monitoring data and were
included in the population-level analysis. A smaller subset
of the sample (N = 43) contributed at least 24 h of data
for two out of the three sessions, and finally, 22 (16 PH, 6
RELAX) participants contributed at least 24 h of data for all
three sessions (Supplementary Figure 1). Overall, no significant
difference in baseline demographic characteristics was seen
between the participants in PH and RELAX cohorts including
the subset of participants that were non-randomly assigned to
PH intervention (Supplementary Table 1). The mean age of the
participants in the PH cohort was 53.9 (SD = 10.96) years and
56.1 (SD = 10.02) years in the RELAX cohort. The majority of
participants in both cohorts were female (PH, 78.2%; RELAX,
71.4%) (Table 2).

The three primary physiological parameters of heart rate,
heart rate variability, and average accelerations showed similar
marginal distributions across the three sessions (Figure 5). The
average heart rate was 72.5 (SD = 13.6) beats per minute (bpm)
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FIGURE 4 | CONSORT flow diagram for Self-Directed Biological Transformation Initiative (SBTI) study participants.

TABLE 2 | Comparison of baseline characteristics across the RELAX and PH

study groups.

PH RELAX

N 57 30

Age [mean (SD)] 53.87 (10.96) 56.15 (10.02)

Gender = female (%) 43 (78.2) 20 (71.4)

Height [mean (SD)] 66.34 (3.41) 66.13 (4.19)

Weight [mean (SD)] 150.09 (31.26) 155.19 (41.45)

Hours of MultiSense patch recording

Session 1 [mean (SD)] 80.18 (37.92) 59.35 (32.24)

Session 2 [mean (SD)] 39.38 (9.17) 36.97 (29.38)

Session 3 [mean (SD)] 80.37 (32.11) 72.53 (28.24)

with significant differences across gender (female = 73.7 ± 14.0
bpm, male = 68.7 ± 11.7 bpm, p < 0.0001, Figure 5). The mean
HRV for the cohort was 37.7 (SD = 24.2) ms with a significant
difference between gender (mean female = 38.9, male = 33.8,
p < 0.0001).

Cohort-Level Assessment of HRV and
Salivary Cortisol Levels
The cohort level model showed a limited statistically significant
impact of wellness center visit on the study participants

assessed by evaluating differences in HR- and HRV-related
features (Supplementary Figure 2). The topmost HRV features
associated with the covariates of interest are presented here with
the complete results from GEE models available as part of the
Supplementary Table 2. At the population level, participant’s
age was statistically significantly associated with HRV feature
ALF [β = 0.98 (CI = 0.96–0.98), false discovery rate (FDR)
< 0.001]. Participants’ BMI was also found to be statistically
significantly associated the most with HRV feature PLF [β =

0.98 (CI= 0.98–1), FDR= 0.005). The high-frequency biosignals
were also sensitive to capture the diurnal variations and the
impact of physical activity on HR and HRV. For example, the
daily variation in heart rate was significantly associated with
the time of day [βevening vs. earlymorning = 29.60 (CI = 13.35–
45.85), FDR < 0.001]. HRV-related feature LF/HF ratio was
also associated jointly with the time of day and physical activity
[βACT : night vs. earlymorning = 2.69 (CI = 1.7–4.27), FDR < 0.001].
A statistically significant interaction between the wellness center
visit and time of day was also found. All participants regardless
of the subcohort (PH, RELAX) showed a significant difference
in HR- or HRV-related features during session 2 (wellness center
visit) in the morning and afternoon period compared to session
1 (at home). Specifically, a marginally significant decrease in
heart rate was seen during the afternoon for all participants
[β = −4.26 (CI = −7.58—0.94), FDR = 0.03], and HRV feature
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FIGURE 5 | Density histograms of heart rate (HR), select features related to heart rate variability (HRV), and overall physical activity stratified by gender.

ALF showed statistically significant increase during the morning
[β = 1.48 (CI = 1.23–1.82), FDR < 0.001] and afternoon [β =

1.55 (CI = 1.23–1.95), FDR = 0.001] during the wellness center
visit. While a marginally statistically significant difference in one
HRV-related feature PLF was observed between PH and RELAX
cohort [β = 0.66 (CI = 0.49–0.89), FDR = 0.04], the change
was not persistent over time (session 3). Additionally, while
the salivary cortisol assay was sensitive to capturing the known
diurnal variations (41, 42) in cortisol levels, no other significant
differences in both PH and RELAX cohorts based on wellness
center visits were observed (Figure 6, Supplementary Table 3).

Personalized N-of-1 Analysis
With a high level inter- and intraperson variability in HRV
features, personalized N-of-1 models for a subset of individuals
(N = 22) that contributed data for at least 24 h across all
three sessions were evaluated. Figure 7 summarizes the HRV
variation at an individual level along with deviation from the

median HRV of the cohort for each session. Personalized models
showed statistically significant differences in at least one of
the features related to HRV for 45.5% (N = 10) individuals
in session 1 vs. 2 (home vs. wellness center visit). However,
a significantly larger proportion of the participants 81.8% (N
= 18) showed a statistically significant difference in session 1
vs. 3 (pre- vs. post-visit home) in at least one of the HRV-
related features. Figure 8 shows the p-values (FDR corrected)
obtained from the robust Newey–West regression of the pairwise
differences in HRV-related features across the three sessions
showing varying response patterns across participants. The
results show a highly individualized response to wellness center
visits. Across the heterogeneous patterns of response (Figure 8),
we observed four broad profiles of participant response: (1)
no statistically significant difference in HRV across the three
sessions; (2) long-term responder where participant showed a
statistically change in HRV during the wellness center visit
(session 2) compared to the at-home assessment before wellness
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FIGURE 6 | Cortisol levels (nmol/L) across the six different times of the day. Cohort level model shows no statistically significant differences in cortisol levels between

RELAX and PH cohort.

center visit (session 1) and persistence of change on participants’
return to home (session 3) after wellness center visit; (3)
short-term responder showing an increased HRV in session
2;however, it regressed toward the baseline mean in session 3;
and finally, (4) decreased in HRV in session 2 that persists in
the session 3 (Figure 9). Significant intraperson variability in
cortisol levels in the morning time [interquartile range (IQR)
= 3.1–33] was seen compared to afternoon and evening (IQR
= 1.1–1.8) (Supplementary Figure 3). However, no statistical
test was used to assess N-of-1 differences in cortisol levels
due to the limited number of data points per participant
(Supplementary Figure 4).

DISCUSSION

We sought to better understand changes in HRV over time
and how it can be influenced, both in the short and longer
term, by active participation in week-long wellness or vacation
relaxation interventions. Key findings from our study show
the potential utility of continual real-world monitoring of
HRV to assess individualized response to health and wellness
interventions including inter- and intraperson variability over
time. Our findings provide further evidence of the value of
utilizing personalized and longitudinal physiological monitoring
approaches for assessing individualized health and wellness
(“precision health”) (43).

The cohort level models showed the efficacy of HR- and HRV-
related biosignals collected in real-world settings to be associated
with known demographic and physiological characteristics such

as age (44), BMI (45), and physical activity (46). While we did
not find a significant and persistent difference in HRV response
among those participating in the PH program vs. the regular
vacation (RELAX), both groups showed a significant positive
increase in HRV while being at a resort location. This confirms
that a relaxing environment does, at least on a population level,
lead to an overall general increase in parasympathetic activity
due to, presumably, a decrease in stress. As has been previously
described (41, 42), significant diurnal variations in HRV were
also observed at the individual level that should be taken into
consideration while analyzing longitudinal physiological data.
This variation could also be associated with long-term health,
manifested by nocturnal drops in blood pressure and pulse (47).

Through continuous monitoring, we identified individuals
with varying degrees of HRV responses in the three different
sessions. Some individuals (exemplified by participant S157) were
found to have a significant increase in HRV during session 2,
which wasmaintained through follow-up in session 3, supporting
a relaxation response that was sustained (Figure 9B). Others,
such as participant S125, were found to have an increase in
HRV during session 2, but by session 3, both had returned
to session 1 levels (Figure 9C). Finally, the two other cases
were consistent with no relaxation or with both no significant
HRV differences across the sessions (S109, Figure 9A) or with a
significant decrease in HRV (S103, Figure 9D) in sessions 2 and
3 compared to session 1.

HRV has been suggested to be of value as an objective
measure of an individual’s level of stress or calmness, as it
measures fluctuations in autonomic nervous system input to the
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FIGURE 7 | Boxplots of individual-level mean hourly heart rate variability feature, SDNN (log10) across the three study sessions colored by participants’ cohort status.

The vertical orange line in each session shows the median value of the cohort for each session.

heart and the changing balance between parasympathetic and
sympathetic systems influences. With the growing availability
of sensor technologies designed for personal use that are
able to continuously track heart rate and HRV, this can
provide people with valuable insights into their stress level,
and potentially more importantly, an understanding of what
activities impact that level, both positively or negatively. While
prior studies have confirmed that HRV changes track well with
acute emotional stress, such as when skydiving, its value in
measuring long-term changes in calmness has beenmore difficult
to study (48).

A wide range of personal digital health technologies (12)
has recently made it much easier for interested individuals to
measure their heart rate, either by using pulse rate measured via
photoplethysmography (PPG), common to many smartwatches
or other wearable devices, or by ECG. While both methods
appear to be equally accurate for measuring heart rate, especially
at rest, the very subtle, millisecond differences in measurements
of beat-to-beat variation in heart rate are still more accurately
assessed using an ECG (49). For an individual to track their
own ECG, current devices available to consumers only allow for
very short (usually 30 s) sampling of HR and HRV. Our results
suggest that such instantaneous snapshots of HRV may not

adequately capture important situational changes unless tracked
at high frequency. In fact, much of the existing data on HRV
and clinical outcomes are based on just 24 h of ECG recording.
Until PPG sensors can be further refined, ECG-based wearables,
especially multiday wear ECG patches as used in the current
study, are likely to be most valuable in tracking daily and day-to-
day fluctuations in HRV (50). Additionally, while salivary cortisol
is frequently used as a biomarker of stress (51, 52), in the present
sample, we did not find any significant changes in cortisol levels
at the cohort level besides the known diurnal variations. This
may further suggest the utility of high-frequency sensor-based
objective assessment of physiological changes such as HRV over
infrequent biological assays that may not be able to capture the
dynamic response. Individualized differences in cortisol levels
were not assessed due to limited data (one measurement per time
of day) across sessions.

Most of what is currently known about HRV as a measure
of risk in cardiovascular disease is based on population-level
cutoffs of risk (23). Our findings suggest that with such
high heterogeneity in HRV levels among individuals, a more
meaningful measure of changes in autonomic activity would
be based on deviations from individual-level baselines over
time. In addition, external factors such as medications (53) and
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FIGURE 8 | Heatmap of false discovery rate (FDR) corrected p-values from personalized models comparing heart rate variability (HRV)-related features across session

1 vs. 2 (home vs. wellness center visit) and session 1 vs. 3 (pre vs. post visit at home). Significantly associated HRV features (FDR < 0.05) across individuals are

shown using magenta color with darker hue showing stronger significance.

mood disorders (54) can impact an individual’s HRV, making it
even more important to track individualized responses. Heart
rate recovery after exercise is another measure of autonomic
nervous system input to the heart that is determined by
recording the velocity of decrease in heart rate following exercise
and has also been found to be associated with cardiovascular
outcomes (55). Although it is highly personalized based on an
individual’s exercise capacity, the expected decrease in heart
rate at 1 or 2min after exertion is population based. In our
study, HRV was correlated with activity during monitoring, but
that might just have been a surrogate for individuals’ levels
of activity, and therefore cardiorespiratory fitness and vagal
activity prior to participation. Novel personal wearable sensors
(12)—including watches, rings, clothing, earphones, and more—
that allow a person’s unique changes in HR and HRV to be
continuously monitored and benchmarked to themselves rather
than a population norm may have great value in improving
wellness and preventing both mental and cardiovascular disease.
The findings support the viability of the continuous tracking
of HRV to objectively measure an individual’s response to
potentially stressful or relaxing stimuli. Approaches to wellness,
whether structured or unstructured, can support the restoration
of HRV.

The present study also surfaces challenges in the use of

wearable technology for longitudinal monitoring. Recent
research has shown that participant retention (56) and
compliance (57), i.e., the amount of time the wearable sensor

patch is worn continuously, remains a challenge. Of the 112
enrolled participants, only 22 (19.6%) wore the patch for at
least 24 h across all three sessions. The resulting data sparsity
affected cohort and individual-level analyses, restricting the
use of more generalized methods such as mixed effect models.
However, despite the present data collection challenges, the use
of wearable technology was shown to have a promising prospect
for fully remote prospective intervention trials. The ability
to objectively assess individualized physiological responses to
interventions in a real-world setting at scale and at a fraction
of the cost could help advance our ability to assess potential
beneficial effects of a multiple of different types of wellness
intervention programs.

CONCLUSION

Simple, wearable sensors enable the ability to continuously
monitor HRV during routine daily activities. Personalized HRV
analysis at an individual level showed distinct HRV trajectories,
further supporting the utility of using continuous real-world
tracking of HRV at an individual level to objectively measure
responses to potentially stressful or relaxing settings. This holds
promise for identifying personalized stress and calm. However,
there remain substantial challenges to fully understanding
how to best measure it to extract actionable data to benefit
the individual.
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FIGURE 9 | Four different profiles of individuals selected on the basis of personalized response to wellness center visit. (A) No significant difference in standard

deviation of interbeat intervals (SDNN) across the three sessions. (B) Long-term responder, (C) short-term responder, and (D) persistent decrease in SDNN.
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