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Weperform unsupervised analysis of image-derived shape andmotion features extracted

from 3,822 cardiac Magnetic resonance imaging (MRIs) of the UK Biobank. First, with

a feature extraction method previously published based on deep learning models, we

extract from each case 9 feature values characterizing both the cardiac shape and

motion. Second, a feature selection is performed to remove highly correlated feature

pairs. Third, clustering is carried out using a Gaussian mixture model on the selected

features. After analysis, we identify 2 small clusters that probably correspond to 2

pathological categories. Further confirmation using a trained classification model and

dimensionality reduction tools is carried out to support this finding. Moreover, we examine

the differences between the other large clusters and compare our measures with the

ground truth.
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1. INTRODUCTION

In recent years, more and more data are made accessible for research in medical image analysis. For
instance, the UK Biobank study by Petersen et al. (1) has released a dataset containing the cardiac
cine MRI images of thousands of volunteers, from which various key cardiovascular functional
indexes can be extracted for analysis (2). The Alzheimer’s Diseases Neuroimaging Initiative [ADNI
(3)] has accumulated brain scan images of about 2,000 participants. The abundant data available in
the community are certainly a highly valuable resource (4, 5). Researchers are hence less constrained
by the scarcity of data, which has been a prevailing challenge for a long time. Further research is
necessary (6, 7) on new topics associated with big data. For example, one major challenge is how
to make good use of unlabeled data (8, 9). In fact, while there are more and more labeled data
available, an important part of medical images is still unlabeled. This is understandable as it is in
general expensive and tedious to diagnose and label cases by human experts. Methods that can
extract useful information from unlabeled data are hence interesting and might potentially save a
lot of time and effort.

Many research projects have been developed to perform pathology-related analysis using
features extracted from medical images. Many of these works focus on brain scan images. For
example, in (10), feature vectors extracted from brain images are used for the prediction of
autism spectrum disorder and Alzheimer’s disease. An anatomical landmark-based deep feature
representation for MRI is proposed in (11) for diagnosis of brain disease. Some other studies
are based on digital histopathological images. For instance, Madabhushi and Lee (12) discuss the
predictive modeling of digital histopathological images from a detection, segmentation, feature
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extraction, and tissue classification perspective. Komura and
Ishikawa (13) review the machine learning methods for

histopathological image analysis. But there are less pathology-

related and feature-based research on cardiac images than on

brain scan images and digital histopathological images. And

currently, this research (14–19) is mostly about pathology
classification in the dataset of Automatic Cardiac Diagnosis
Challenge (ACDC) of MICCAI 2017, which contains 100 cases

with labels. The work of Attar et al. (2) is one of the very first
projects to propose a fully automatic, high-throughput image

parsing workflow for the analysis of cardiac MRI in UK Biobank
with systematic tests of the performance. In addition to MRI,
echocardiography sequences are also useful in characterizing

cardiac pathology (20). As an extension of the previous works
and a challenge to ourselves, we wish to conduct unsupervised
analysis on large unlabeled cardiac image datasets.

Clustering, an unsupervised machine learning technique

that groups similar entities together, might be suitable for

analyzing large unlabeled datasets. Up to now, clustering has
been widely used on image segmentation in medical image
analysis. For example, Kinani et al. (21) develop a tool based
on clustering to outline brain lesion contours. Unsupervised

segmentation of 3D lung Computed tomography (CT) images

is proposed in (22) based on clustering and deep representation
learning. Some studies show that clustering is also a powerful

tool for classification. For instance, a clustering method is
applied to classify the analyzed brain images into healthy and
multiple sclerosis disease in (23). Kawadiwale and Rane (24)
introduce various clustering techniques to classify brainMagnetic
resonance (MR) images into normal and malformed. While
most of the application of clustering in the domain is on brain
images, we aim to extend its application to cardiac images.
Furthermore, we consider clustering as an example of the family
of unsupervised learning methods. As pointed out above, how
to extract useful information from unlabeled data of medical
images is an important research topic, and unsupervised learning
methods are natural candidates for this task. We hence hope that
the results obtained with clustering would inspire and encourage
researchers to further consider the family of unsupervised
learning methods.

In this paper, we perform a cluster analysis of a group of
features extracted from the cardiacMR images of the UKBiobank
dataset. The process of analysis is summarized in Figure 1.
With neural networks trained to perform segmentation and flow
generation on MRI frames (14, 25), segmentation masks and
apparent flow are generated for the extraction of several features.
After feature selection to reduce information redundancy,
unsupervised cluster analysis using Gaussian mixture model
is carried out to give rise to clusters, among which 2 are
identified as probably corresponding to pathological categories.
We hence demonstrate that given a large dataset, even with a
small number of features that contain only a very limited amount
of information available in cardiac MR images, unsupervised
analysis enables us to come up with valuable results.

Our main contributions are three-fold:

• We conduct a cardiac pathology–related analysis on a large
unlabeled dataset.

• As a novel application of a classic method in medical image
analysis, clustering is used in our analysis to group cases
without supervision.

• Among the resulting clusters, 2 can indeed be identified as
leaning toward pathological categories.

2. DATA

2.1. UK Biobank
The proposed method was applied to the very large UK Biobank
cardiac MRI dataset [see (26)1]. It comprises short-axis balanced
steady-state free precession (bSSFP) cine MRI of about 5,000
participants from the general population, stored in DICOM
image files. More details of the magnetic resonance protocol
are available in (26). Each time series consists of 3D volumes
with slice thickness of 8 mm for short-axis images. The in-
plane resolution is 1.8 × 1.8 mm. Volumes at end-diastole (ED)
and end-systole (ES) and ejection fraction for left ventricle (LV)
cavity were derived from InlineVF analysis algorithm (27, 28)
performed by UK Biobank (Field 22421-22422). Those values are
considered in this paper as ground-truth (or reference) values.
To be consistent with our previous research, such as in (25)
and (14), we exclude roughly 1,000 cases that are provided with
incomplete or unconvincing ground truth. The remaining 3,822
cases are then used for cluster analysis. For part of these cases, the
measures of LV volumes at ED and ES and LV ejection fraction
are provided as ground truth by UK Biobank.

As pointed out on the website of UK Biobank2 and in
(29), while UK Biobank participants are not representative
of the general population with evidence of a “healthy
volunteer” selection bias (and hence cannot be used to provide
representative disease prevalence and incidence rates), valid
assessment of exposure–disease relationships are nonetheless
widely generalizable and does not require participants to be
representative of the population at large.

2.2. Automatic Cardiac Diagnosis
Challenge
In the experiment part, we will show the correspondence between
some resulting clusters and the definition of some pathology
categories defined in the ACDC. Furthermore, a classification
model trained on ACDC by (14) will be applied on UK Biobank
for comparison with the clustering method proposed in this
paper. The ACDC dataset3 consists of 100 cases, which are
divided into the following 5 pathological groups of equal size
according to their pathology on either the LV or the right
ventricle (RV):

• Dilated cardiomyopathy (DCM): LV cavity volume at ED
larger than 100 mL/m2 and LV ejection fraction lower than
40%;

• Hypertrophic cardiomyopathy (HCM): LV cardiac mass
higher than 110 g/m2, several myocardial segments with

1Application Number 2964.
2https://www.ukbiobank.ac.uk/scientists-3/
3https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
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FIGURE 1 | Graphical abstract of the analysis performed in this study.

TABLE 1 | The 9 features generated by our feature extraction method.

Feature Notion Selected

RV volume at ED VRV,ED Yes

LV volume at ES VLV,ES Yes

RV ejection fraction EFRV Yes

LV ejection fraction EFLV No

Ratio between RV and RRVLV,ED Yes

LV volumes at ED

Ratio between LVM and RLVMLV,ED Yes

LV volumes at ED

Maximal LVM thickness MTLVM,ED Yes

in all the slices at ED

Radius motion RMD Yes

disparity

Thickness motion TMD Yes

disparity

Among them 8 are selected for cluster analysis.

a thickness higher than 15 mm at ED and a normal
ejection fraction;

• Myocardial infarction (MINF): LV ejection fraction
lower than 40% and several myocardial segments with
abnormal contraction;

• RV abnormality (RVA): RV cavity volume higher than 110
mL/m2 or RV ejection fraction lower than 40%;

• Normal subjects (NOR).

The definitions of the pathological groups above might seem
somewhat simplistic. For example, guidelines for cardiologist
encompass more detailed criteria for diagnosing HCM. But these
more operative and straightforward definitions are good enough
for the current study to show the effect of the proposed methods.

3. METHODS

There are mainly three steps in the proposed method: feature
extraction, feature selection, and cluster analysis.

3.1. Feature Extraction
The feature extraction method used in this paper is the same as
the one proposed in our previous work published by Zheng et al.
(14). We briefly describe its principal steps again as follows.

The first part of the feature extraction method generates 7
shape-related features. Segmentation with spatial propagation
has been proven to be consistent and robust (25, 30, 31).

On the one hand, spatial propagation enforces the consistency
of segmentation across different slices, including the most
challenging ones. On the other hand, preprocessing techniques
such as extreme pixel value cutting, resizing, and normalization
are applied to minimize the differences across subjects and
datasets such that the method can be successfully applied
regardless of sites and scanners. With the cardiac segmentation
method proposed in (25), the cardiac images are segmented such
that we obtain the masks of LV, left ventricle myocardium (LVM),
and RV on both ED and ES frames. Compared to single ventricle
segmentation models, a bi-ventricular model like that in (25)
not only is faster since it goes through each image once instead
of twice, but also might be more accurate and robust as it may
exploit the interrelationship between the 2 ventricles. Then the
volumes of LV, LVM, and RV at both ED and ES can be computed
directly, as can the thickness of LVM. Finally, 7 shape-related
features are generated (the first 7 terms in Table 1).

The second part of the method extracts 2 motion-
characteristic features. Using a neural network that outputs
apparent flow maps given image pairs, we get a series of apparent
flow maps characterizing the in-plane motion for each MRI
slice of each case. Combined with the LVM segmentation mask
obtained as described above, the motion of each myocardium
pixel is hence available. Eventually, 2 features are computed to
present the disparity of the radial myocardial motion and the
myocardial thickening, respectively (the last 2 rows in Table 1).

In total, from the images of each case, 9 features characterizing
the shape and the motion of the heart are extracted.

3.2. Feature Selection
As shown in (14), these extracted features can be used for cardiac
pathology classification in the ACDC dataset with performances
comparable to the state-of-the-art. However, these features are
not necessarily independent. Some might be redundant if there
are highly correlated feature pairs. In cluster analysis, if too many
variables are used simultaneously, the redundant ones serve only
to create noise that harms the clustering. So it is helpful to select a
sub-group of features by removing highly correlated feature pairs.

For each pair among the 9 extracted features, we compute the
Pearson correlation coefficient (i.e., Pearson’s r) and the maximal
information coefficient (MIC) (32). The former measures the
linear correlation between 2 features, whereas the latter measures
the mutual information between features. If there is any
highly correlated pair according to these measures (i.e., Pearson
correlation coefficient of absolute value above 0.8, or MIC above
0.5), we will exclude 1 feature in this pair. The remaining features
are then considered as selected.
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3.3. Cluster Analysis
Cluster analysis is the task of grouping objects such that objects in
the same group (also called cluster) aremore similar to each other
than to those in other groups. Some common clustering methods
are agglomerative hierarchical clustering, k-means clustering,
andGaussianmixturemodel clustering. In this study, we perform
a model selection of Gaussian mixture model using the Bayesian
information criterion (BIC). Then the selected Gaussian mixture
model is applied to cluster the 8 selected features.

3.3.1. Gaussian Mixture Model Selection
A Gaussian mixture model (33) is a probabilistic model that
assumes that the data points are generated from a mixture
of a certain number of Gaussian distributions with unknown
parameters. An expectation–maximization algorithm is used to
iteratively estimate its parameters from data. Then the fitted
model can assign to each sample the Gaussian component it most
likely belongs to.

We use the Gaussian mixture model as implemented in scikit-
learn (34). It has 2 major parameters, the type of covariance
matrix and the number of components, upon which a selection
is necessary. For this purpose, we calculate the BIC (35) for
Gaussian mixture models with different types of covariance
matrix and numbers of components. In theory, BIC recovers the
true number of components approximately. We fit the Gaussian
mixture models with the following types of covariance matrix:

• “tied”: all components share the same covariance matrix;
• “diag”: each component has its own diagonal covariance

matrix;
• “full”: each component has its own covariance matrix.

The number of components is also varied. By looking for models
with the smallest BIC scores, we wish to select the most simple
model that can fit the data, thereby identifying the most suitable
type of covariance matrix and a range of reasonable numbers
of components.

The number of components will finally be determined by
examining the sizes of resulting clusters of the Gaussian mixture
models. More details will be provided in section 4.

3.3.2. Analysis of the Resulting Clusters
The clusters generated by the selected model will be examined.
In particular, we verify if the cases in any of the clusters
correspond to a pathological category according to the definitions
of pathologies given by the ACDC.

4. EXPERIMENTS AND RESULTS

4.1. Feature Extraction
With the feature extraction method introduced in section 3, for
each of the 3,822UKBiobank cases, 9 feature values are extracted.

4.2. Feature Selection
We calculate the Pearson correlation coefficient andMIC for each
pair of features among the 9 extracted features. In Figure 2, the
plot of Pearson correlation coefficient vs. MIC, it is clear that the
absolute values of the Pearson correlation coefficient and MIC

FIGURE 2 | Pearson correlation coefficient (i.e., Pearson’s r) vs. MIC. Each

point corresponds to a pair of features. The point in the upper left corner

corresponds to VLV,ES and EFLV . The strong negative correlation between

these 2 features is reasonable, since by definition EFLV = 1− VLV,ES/VLV,ED, in

which VLV,ED is the LV volume at ED.

are positively correlated. There is only 1 point on the upper
left corner of the plot representing a highly correlated pair. It
corresponds toVLV ,ES and EFLV , which are of Pearson correlation
coefficient −0.80 and MIC 0.51. The strong negative correlation
between these 2 features is reasonable, since by definition EFLV =

1 − VLV ,ES/VLV ,ED, in which VLV ,ED is the LV volume at ED.
Therefore, VLV ,ES and EFLV appear to be redundant. Hence, we
exclude EFLV and select the remaining 8 features for cluster
analysis (Table 1).

4.3. Cluster Analysis
4.3.1. Gaussian Mixture Model Selection
The BIC scores of the Gaussian mixture models with various
types of covariance matrix and numbers of components are
plotted in Figure 3. It is clear that the “full” covariance matrix
type is the best among the 3. The “full” covariance matrix type is
hence selected.

And in terms of the number of components, the Gaussian
mixture models with the “full” covariance matrix type of 3–
10 components have the smallest BIC scores. Among them, we
find that:

• The models of 3–6 components only generate large clusters,
each of which contains at least about 100 cases;

• The models of 7 and 8 components bring about only 1 small
cluster (less than a dozen cases);

• Themodels of 9 and 10 components give rise to 2 small clusters
(less than a dozen cases).

According to the statistics4 provided by the British Heart
Foundation , about 7 million people in the UK are living
with cardiovascular diseases, which is more than 10% of the

4https://www.bhf.org.uk/what-we-do/our-research/heart-statistics (accessed

November 18, 2019).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 November 2020 | Volume 7 | Article 539788

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zheng et al. Unsupervised Analysis of Pathological Clusters

FIGURE 3 | Bayesian information criterion (BIC) scores of Gaussian mixture models with various types of covariance matrix and numbers of components.

total population. More specifically, if we look at the most
common cardiovascular disease categories, the percentages of UK
population living with myocardial infarction, atrial fibrillation,
and heart failure are about 1.5, 2.0, and 1.4%, respectively. This
means that most of the cases in the general population do not
have a cardiac pathology. Taking the “healthy volunteer” selection
bias of UK Biobank, mentioned in section 2.1, into account, the
cases of cardiovascular diseases are hence probably exceedingly
rare in UK Biobank. Thus, if there is any cluster that is related
to a specific pathological category in an interpretable manner, its
size should be small, say, no more than 76 (2% of the 3,822 UK
Biobank cases).

So we can now suggest that a component number of 9 or 10 is
probably most suitable. We choose the model of 9 components
for further analysis. But we would like to point out that the 2
resulting small clusters of the models of 9 and 10 components
are very similar in terms of size and cases. So the results and the
conclusions shown below will be roughly the same if we use the
model of 10 components.

To summarize, the Gaussian mixture model with the “full”
covariance matrix type and 9 components is selected.

4.3.2. Analysis of the Resulting Clusters
Among the 9 resulting clusters (termed clusters #1–#9) of the
selected model, 2 are of small sizes (clusters #5 and #8). We
find that they actually correspond to 2 pathological categories
according to the definition given by the ACDC (RVA and
DCM, respectively).

Cluster #5 has 11 cases (examples are given in Figure 4). As
listed in Table 2, these cases have exceptionally large RVs, which

are above 130mL/m2. In the ACDC, the RVA cases are described
as of RV volumes higher than 110mL/m2 or RV ejection fraction
lower than 40%. Hence according to the definition of ACDC,
cluster #5 is a group of cases belonging to RVA.

Cluster #8 has 4 cases (examples are given in Figure 4). As
shown in Table 3, these cases have large LV volumes at ED (above
130 mL/m2) and low LV ejection fractions (below 30%). In the
ACDC, DCM cases are those with LV volumes larger than 100
mL/m2 and LV ejection fraction lower than 40%. So cluster #8
is a group of DCM cases according to ACDC. In addition, we
find that the ground-truth measures of LV volume at ED and
LV ejection fraction are available for all 4 cases in UK Biobank
(last 2 columns in Table 3). It is straightforward to see in Table 3

that the measures generated by our feature extraction method are
quite close to the ground truth.

For the other 7 clusters, which are of much larger sizes (above
70), we do not identify any clear correspondence between them
and the pathological categories defined in the ACDC. This is
somewhat expected as the participants of the UK Biobank dataset
are from the general population. So most of them are actually
healthy. Moreover, only 5 out of many pathological categories are
taken into account in our analysis. It is hence not surprising that
only 2 clusters are identified as pathological.

4.4. Further Analysis for Confirmation
To further confirm the discovered correspondence between the 2
small clusters and the 2 pathological categories, as well as to verify
whether the large clusters represent normal cases, in addition to
manual verification of the segmentationmasks and apparent flow
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FIGURE 4 | Examples of the cases in clusters #5 and #8. First row: example cases in cluster #5, of which the right ventricles (RVs) appear to be exceptionally large.

Second row: cases in cluster #8, of which the left ventricles (LVs) seem to be dilated.

TABLE 2 | Right ventricle (RV) volumes and ejection fraction at end-diastole (ED)

of the cases of cluster #5 based on our feature extraction method.

ID RV volume at ED RV ejection

(mL/m2) fraction

2512949 133.13 63.61%

2628396 175.77 43.91%

3423847 140.50 65.24%

3713328 169.65 71.59%

3874816 183.96 56.22%

4366978 134.68 52.53%

4681487 139.82 54.39%

4710306 144.86 29.69%

5101726 145.93 43.82%

5319688 151.30 51.93%

5561149 180.48 41.88%

maps to ensure the exactness of the features, we also conduct the
following analysis.

4.4.1. Interpretation of the Results of an ACDC

Classification Model
We apply a pathology classification model (14) trained using the
ACDC dataset on the cases of clusters #5 and #8.

Seven of the 11 cases of cluster #5 are predicted to be RVA,
which is as expected. However, the other 4 cases (2512949,
3423847, 4681487, and 5319688) are predicted to be NOR (i.e.,
normal). We suggest that this is partially due to the difference

TABLE 3 | Left ventricle (LV) volumes at end-diastole (ED) and ejection fraction of

the cases of cluster #8 based on our feature extraction method (the second and

third columns).

Ground-truth Ground-truth

ID LV volume at ED LV ejection LV volume at ED LV ejection

(mL/m2) fraction (%) (mL/m2) fraction (%)

2432774 189.28 19.74 208.24 20

3378112 213.28 18.75 213.03 15

4879002 133.09 27.03 144.59 29

5618713 192.87 26.74 192.43 27

The same measures provided by the UK Biobank dataset are also shown (the fourth and

fifth columns). The 2 sets of measures are quite close to each other.

in the distributions of RV ejection fraction. In ACDC, a great
majority of the RVA cases are of RV ejection fraction well below
50%. So the trained model has learned to rely on this feature
to determine RVA cases. Yet in UK Biobank, some RVA cases,
including the 4 listed above, are of RV ejection fraction above
50%. They are not as severe cases as in ACDC.

All 4 cases of cluster #8 are predicted to be DCM by the
classificationmodel, which supports the correspondence between
cluster #8 and DCM. In addition, by manually checking the
motion, we can confirm areas of hypokinesia and akinesia for
these cases but also dyskinesia for 1 case (3378112). For case
ID 2432774, we also observe discoordinate movement of the
LV myocardium suggestive of bundle branch block, which is a
type of electrical conduction disease commonly associated with
structural heart disease and heart failure. These observations
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suggest that these cases might also have some relation to MINF.
In fact, as pointed out in the ACDC, the increase in LV volume
can be a consequence of the adaptation of LV due to MINF (also
called cardiac remodeling).

4.4.2. Reduced Dimensionality Visualization Using

Principal Component Analysis
To better visualize the 2 isolated clusters (#5 and #8), we perform
a principal component analysis to reduce the dimensionality of
the 3,822 vectors of size 8 (8 selected features of 3,822 cases) of
UK Biobank to 2. Furthermore, the centers of the 9 clusters are
also projected to the sample space of the 2 principal components.
As can be seen in Figure 5, the points corresponding to the cases

of clusters #5 and #8, as well as the centers of the 2 clusters,
are indeed located far away from most of the other points. This
supports the suggestion that the cases in clusters #5 and #8, which
are pathological, are quite different from most of the cases in the
general population.

4.4.3. Visualization Using t-SNE
Similarly, another tool to visualize high-dimensional data called
t-distributed stochastic neighbor embedding [t-SNE; (36)] is
applied. Its main advantage is the ability to preserve local
structure. So roughly speaking, points which are close to
one another in the high-dimensional space will still be close
to one another after the dimensionality reduction. t-SNE is

FIGURE 5 | The results of dimensionality reduction by principal component analysis. (Left) The data points of the 3,822 UK Biobank cases projected to the space of

the 2 principal components. Each data point is colored according to its cluster. (Right) Projection of the centers (marked by the corresponding indexes and colors) of

the 9 clusters to the same space.

FIGURE 6 | The results of dimensionality reduction by t-distributed stochastic neighbor embedding (t-SNE). (Left) The data points of the 3,822 UK Biobank cases in

the space of the 2 embedding dimensions after t-SNE. Each data point is colored according to its cluster. (Right) A plot similar to the left one with only differences on

coloring. Only the points of clusters #5 and #8 are highlighted with colors and circles.
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applied to the set of the 3,822 vectors of the UK Biobank
cases, as well as to the set of 3,831 vectors that consists
of the 3,822 UK Biobank cases and the 9 cluster centers.
Before applying t-SNE, a normalization is performed for each
feature of the original data. The purpose is to make sure

that each feature is on the same scale and hence has the
same importance in t-SNE. As shown in Figure 6, the points
of the cases and the centers of clusters #5 and #8 are at
the edge of the ensemble of points in the embedding space.
This phenomenon is again consistent with the suggestion

FIGURE 7 | Histograms of some important measures of the cases in clusters #1 (pink) and #4 (cyan). The colors of the columns are set to be partially transparent

such that their overlaps appear to be dark blue. The distributions of #1 and #4 are pretty similar in terms of left ventricle (LV) volume and LV ejection fraction (first row).

But they are different in case of right ventricle (RV) volume, RV ejection fraction, and maximal myocardial thickness (second and third rows). On average, the cases of

#1 have larger RVs with higher ejection fractions. And their myocardiums also tend to be thicker than that of the cases of #4. For both clusters, the measures are well

in normal ranges according to the definitions given by Automatic Cardiac Diagnosis Challenge (ACDC).
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that clusters #5 and #8 correspond to pathological cases,
which are rather different from the other cases in the
general population.

4.4.4. Examination of the Two Largest Clusters
As pointed out previously, while the pathological categories of
clusters #5 and #8 are identifiable, we do not see how the other 7
large clusters correspond to any cardiac pathology. In particular,
the largest clusters which are of several hundreds or even more
cases probably represent groups of normal cases. To verify this,
we further examine the 2 largest clusters (#1 and #4, 889 and
1,075 cases, respectively).

We plot the histograms of their ventricle volumes and ejection
fractions, as well as their maximal myocardial thicknesses
(Figure 7). The distributions of #1 and #4 look pretty similar
in terms of LV volume and LV ejection fraction. But they are
different on RV volume, RV ejection fraction and maximal
myocardial thickness. On average, the cases of #4 have larger
RVs with higher ejection fractions. And their myocardiums also
tend to be thicker than that of the cases of #1. Furthermore,
we perform the unpaired unequal variance t-test to prove that
the corresponding means of the distributions of #1 and #4 are
different. Under the null hypotheses that the corresponding
distributions have the samemean, the p-values for LV volume, LV
ejection fraction, RV volume, RV ejection fraction and maximal
myocardial thickness are all much below 0.05 (< 10−7), which
are small enough to reject the null hypotheses. This means that
clusters #1 and #4 actually exhibit significant different values of
the 5 features (LV volume at ED, LV ejection fraction, RV volume
at ED, RV ejection fraction and maximal myocardial thickness).

For both clusters, at least a great majority of the cases satisfy:

• LV volumes at ED less than 100mL/m2;
• LV ejection fraction above 40%;
• RV volumes at ED less than 110mL/m2;
• RV ejection fraction above 40%;
• Maximal myocardial thickness less than 15 mm.

Hence according to the definitions in ACDC, these 2 clusters do
not correspond to any of the 4 pathological categories (DCM,
HCM, MINF, and RVA).

4.4.5. Examination of the Seven Large Clusters
To further understand the 7 large clusters, we first systematically
perform the unpaired unequal variance t-test. For each pair of
clusters in the 7 large clusters, and for each of the 8 extracted
features, under the null hypothesis the distribution of the feature
has the samemean for both clusters, and the p-value is computed.
In this way, 21 × 8 = 168 p-values are obtained. In total, 149
p-values among them are below 0.05, which are small enough
to reject the corresponding null hypotheses. This confirms that
the clusters have different distributions on the features. Nineteen
p-values among them are above 0.05, which signify a kind
of similarity between pairs of clusters (Table 4). Similarly, we
perform the unpaired 2-sided Mann-Whitney rank tests, under
the null hypotheses that the corresponding distributions of the
features are the same for both clusters. And we find again that a

TABLE 4 | The large p-values of the unpaired unequal variance t-tests for the 21

pairs of clusters in the 7 large clusters, and for the 8 extracted features, under the

null hypothesis that the distribution of the feature has the same mean for both

clusters.

Cluster pair p-values above 0.05 (and the corresponding features)

(#1, #4) 0.07 (VLV,ES)

(#1, #6) 0.56 (RMD), 0.05 (TMD)

(#1, #9) 0.55 (VRV,ED), 0.76 (RRVLV,ED)

(#2, #3) 0.17 (RRVLV,ED), 0.80 (RLVMLV,ED)

(#2, #4) 0.31 (TMD)

(#2, #7) 0.85 (RRVLV,ED), 0.76 (RMD)

(#3, #4) 0.29 (RRVLV,ED)

(#3, #6) 0.12 (EFRV )

(#3, #7) 0.07 (EFRV ), 0.28 (RRVLV,ED),

0.61 (MTLVM,ED), 0.25 (TMD)

(#4, #6) 0.70 (RLVMLV,ED), 0.14 (TMD)

(#6, #7) 0.27 (EFRV )

For most of the cluster pairs and features, the p-values are below 0.05.

TABLE 5 | The means and standard deviations of the measures (in mL/m2 ) by the

automatic pipeline vs. the ground truth.

Automatic pipeline Ground truth

LV volume at ED (mL/m2 ) 70.56 (13.91) 75.48 (28.62)

LV volume at ES (mL/m2 ) 24.06 (9.02) 33.87 (22.82)

LV ejection fraction 66.41% (7.33%) 56.04% (6.53%)

great majority (147) of the p-values are below 0.05 such that the
corresponding null hypotheses can be rejected.

4.4.6. Measures by the Automatic Pipeline vs. the

Ground Truth
As mentioned previously, for part of the UK Biobank cases, the
ground-truth measures given by the InlineVF analysis algorithm
of LV volumes at ED and ES and LV ejection fraction are
available. In particular, among the 3,822 cases used in this
paper, we have access to all of the 3 ground-truth measures for
3,212 cases. The comparison between the means and standard
deviations of the measures generated by the automatic pipeline
used in this paper and the ground-truth measures are shown in
Table 5. It is clear that the ground-truth measures of the volumes
are higher and of larger standard deviations than those estimated
by the automatic pipeline.

To better understand the cause of these differences, we plot
the points of the measures in Figure 8. We can see that the
ground-truth values contain some obvious outliers, which are
often of values well above the realistic range of LV volumes.
This explains the fact that the ground-truth volumes have higher
means and larger standard deviations than those estimated by the
automatic pipeline. Moreover, proportionally, the mean of the
ground-truth values of LV volume at ED is 7.0% (= 75.48/70.56 -
1) above that of the estimates by the automatic pipeline, while
for LV volume at ES the ground-truth is on average 40.8%
(= 33.87/24.06 -1) higher than the values obtained via the
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FIGURE 8 | The plots of the measures (in mL/m2 ) generated by the automatic pipeline against the ground truth for the LV volume at ED (Left) and at ES (Right). We

can see that the ground-truth values contain some obvious outliers, which are often of values well above the realistic range of LV volumes. This explains the fact that

the ground-truth volumes have higher means and larger standard deviations than those estimated by the automatic pipeline. The lines corresponding to the robust

linear regression models (red) and the lines corresponding to ground-truth=automatic-pipeline (black) are also plotted. The red line and the black line almost overlap

with each other.

automatic pipeline. This also explains why the ground truth of
LV ejection fraction is on average lower than that given by the
automatic pipeline. The models obtained by the robust linear
regression using Huber’s criterion for LV volume at ED and ES
are ground-truth=1.002×automatic-pipeline+3.373 and ground-
truth=0.923×automatic-pipeline+10.303, respectively. The lines
corresponding to the robust linear regression models (red)
and the lines corresponding to ground-truth=automatic-pipeline
(black) are plotted in Figure 8. On both graphs in Figure 8,
the red line and the black line almost overlap with each
other. This means that our regression lines are near the
lines of identity, which signifies a similarity between the
measures by our method and those based on the InlineVF
algorithm. By comparing the regression lines and identity
lines in Figure 4 of (37), we can also conclude a similarity
between the measures derived from manual segmentation and
those based on the InlineVF algorithm. Hence, our method
actually generates measures that are close to both manual and
InlineVF values.

We believe that the differences between the measures by
the automatic pipeline used in this paper and the ground
truth are partially due to the lack of quality control on the
ground truth. In fact, as pointed out in (37), the ground
truth is generated by the InlineVF algorithm, which may
fail and hence make unreliable predictions on some cases.
Without quality control, these failures causes the outliers in
Figure 8.

Also, in addition to being useful for quality control,
methods using ground truth like the linear regression
performed above are complementary to unsupervised
learning methods. Actually, in our method, ground truth
is necessary for training the neural networks, which are
then used for feature extraction. The combination of

supervised and unsupervised methods hence looks worth
further exploration.

5. CONCLUSION AND DISCUSSION

In this paper, we proposed a method of unsupervised cluster
analysis on a large unlabeled dataset (UK Biobank) of the
general population to identify pathological cases based on shape-
related and motion-characteristic features extracted from cardiac
cine MRI images. As far as we know, this is a topic that has
rarely been studied before. In our cluster analysis, a Gaussian
mixture model is applied to cluster similar cases together without
supervision. As a result, among the generated clusters, we
identify 2 that probably correspond to 2 cardiac pathological
categories. This idea is further supported by the observations
on the results of a trained classification model and of the
dimensionality reduction tools including principal component
analysis and t-SNE.

As more and more large and unlabeled datasets are available
in the community, researchers will be able to extract interesting
information by data mining. Identification of cardiac pathology
is just one among other topics such as the analysis of motion
patterns, the relationship between motion and shape features,
and so on. In the future, more research may be carried out by
including more data and different types of data (38), using more
features, targeting other abnormalities or phenotype properties,
etc. For instance, 1 main advantage of cardiac MRI is that it
allows tissue characterization with late gadolinium enhancement
and parametric maps (T1, T2, T2*). As a result, more useful
features might be extracted from these variables for analysis.
Furthermore, if feasible, using information from a 4-chamber
segmentation (both ventricles and both atria) might improve
the performance of pathology detection. Various unsupervised
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learning methods (39) other than a Gaussian mixture model can
also be applied.
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