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Cardiovascular disease causes almost one third of deaths worldwide, and more than half

are related to primary arterial hypertension (PAH). The occurrence of several deleterious

events, such as hyperactivation of the renin–angiotensin system (RAS), and oxidative

and inflammatory stress, contributes to the development of small vessel disease in

PAH. Small resistance arteries are found at various points through the arterial tree, act

as the major site of vascular resistance, and actively regulate local tissue perfusion.

Experimental and clinical studies demonstrate that alterations in small resistance artery

properties are important features of PAH pathophysiology. Diseased small vessels in

PAH show decreased lumens, thicker walls, endothelial dysfunction, and oxidative stress

and inflammation. These events may lead to altered blood flow supply to tissues and

organs, and can increase the risk of thrombosis. Notably, PAH is prevalent among

patients diagnosed with COVID-19, in whom evidence of small vessel disease leading to

cardiovascular pathology is reported. The SARS-Cov2 virus, responsible for COVID-19,

achieves cell entry through an S (spike) high-affinity protein binding to the catalytic domain

of the angiotensin-converting enzyme 2 (ACE2), a negative regulator of the RAS pathway.

Therefore, it is crucial to examine the relationship between small resistance artery disease,

ACE2, and PAH, to understand COVID-19 morbidity and mortality. The scope of the

present review is to briefly summarize available knowledge on the role of small resistance

artery disease and ACE2 in PAH, and critically discuss their clinical relevance in the

context of cardiovascular pathology associated to COVID-19.

Keywords: primary arterial hypertension, angiotensin-converting enzyme 2, COVID-19, SARS-CoV2, endothelial

dysfunction, renin–angiotensin–aldosterone system, oxidative and inflammatory stress, small resistance arteries

INTRODUCTION

Hypertension remains the leading cause of death globally, accounting for 10.4 million deaths
worldwide every year (1). Regrettably, the prevalence, morbidity, and mortality of hypertension are
increasing (2). Current evidence demonstrates that alterations in small resistance artery properties
are important pathophysiological features of primary arterial hypertension (PAH). Diseased small
vessels in PAH show decreased lumens, thicker walls, endothelial dysfunction, and increased
oxidative stress and inflammation, events that may lead to altered blood flow supply to tissues and
organs, and increase the risk of thrombosis.
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PAH is prevalent among patients diagnosed with coronavirus
disease 2019 (COVID-19), in whom rapid disease progression
has been reported. However, it is still not clear if raised blood
pressure is a risk factor for increase COVID-19 lethality (3, 4).
The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), responsible for COVID-19, achieves cell entry through
an S (spike) high-affinity protein binding to the catalytic domain
of the angiotensin-converting enzyme 2 (ACE2), a negative
regulator of the renin–angiotensin system (RAS) pathway that
has been shown to have protective effects in animal models of
hypertension. Given the importance of small resistance artery
disease and ACE2 in PAH, it is crucial to examine their
relationship with SARS-CoV-2-induced endothelial cell injury
(5) to understand COVID-19 morbidity and mortality.

The objective of this review is to briefly summarize available
knowledge on the role of small resistance artery disease in PAH
and the contribution of the ACE2 pathway, and critically discuss
their clinical relevance in the context of cardiovascular pathology
associated to COVID-19.

SMALL RESISTANCE ARTERY DISEASE IN
HYPERTENSION: THE CONTRIBUTION OF
THE RAS PATHWAY

The cause of PAH is still not known in spite of it represents
90–95% of cases. A transient increase in sympathetic activity
and cardiac output occurs during the early stages of the disease
(6). However, the event that consistently promotes the rise in
blood pressure is the increase in total peripheral resistance (7).
Peripheral resistance is determined by the lumen of vessels,
especially resistance vessels (i.e., microcirculation), because their
small lumens (<300µm when relaxed) extremely slow the blood
flow through the arteries.

An increase in peripheral resistance occurs when lumen
diameter narrows as, according to Poiseuille’s law, small decreases
in lumen diameter result in large increases in resistance to
flow. Lumen narrowing can develop because of structural,
mechanical, and functional alterations. Structural remodeling of
the small arteries is a hallmark of PAH pathophysiology (8).
In PAH, resistance arteries suffer from eutrophic remodeling,
which increases the media/lumen ratio without a change in
the media cross-sectional area, and enhanced wall stiffness
(9–12). Mechanical forces on the vessel wall also contribute to
hypertensive remodeling in response to altered fluid shear stress
and circumferential strain (11). Additionally, functional changes
can also contribute to increase peripheral resistance (12). Either
an increase or a decrease in the vasoconstrictor and vasodilator
influence, respectively, can promote lumen narrowing. For
instance, increases in myogenic tone (13), enhanced responses
to norepinephrine (14), and endothelial dysfunction (15) can
contribute to increase peripheral resistance. In hypertension,
the increased pulse-wave velocity resulting from large vessel
stiffening induces small vessel remodeling and endothelial injury,
ultimately causing microvascular damage (16). The RAS pathway
controls systemic vascular resistance, by regulating blood volume
and arterial pressure. When renin is released into the blood,

it acts upon circulating angiotensinogen of hepatic origin to
form the decapeptide angiotensin (Ang) I. Ang I is cleaved by
angiotensin converting enzyme (ACE), found predominantly in
the lung capillaries, which removes two amino acids from the
C-terminal of Ang I to form Ang II. In 2000, two independent
research groups discovered an ACE homolog, ACE2 (17, 18),
which has distinct enzymatic actions and tissue distribution,
and is predominantly expressed on the cell surface (19), though
a soluble form exists. Importantly, classical ACE inhibitors do
not affect ACE2 activity (18). ACE2 acts as a carboxypeptidase
removing a single C-terminal amino acid from Ang II generating
Ang-(1–7) or, less efficiently, from Ang I leading to the formation
of Ang-(1–9), whereas ACE removes the C-terminal dipeptide
from Ang I to form Ang II. Additionally, ACE2 cleaves a
terminal residue from several other bioactive peptides including
neurotensin, dynorphin A (1–13), apelin-13, and des-Arg9
bradykinin (17, 20).

Ang II is the principal effector of the RAS pathway, and causes
relevant biological actions through interaction with two cell-
surface G-coupled receptors: AT1R andAT2R (21, 22). Activation
of AT1R is responsible for the majority of physiological and
detrimental effects of Ang II, whereas AT2R activation promotes
cardiovascular protection by partly opposing AT1R-induced
effects (23). Ang-(1–7) is a vasodilator and mediates protective
effects in the cardiovascular system through the Mas receptor,
which is involved in the regulation of blood pressure and possess
anti-atherosclerotic and antifibrotics effects (24, 25). Ang-(1–9) is
formed from Ang I by ACE2, carboxypeptidase A, and cathepsin
A, and exerts vasculoprotective actions through AT2R receptors
(26, 27), though its biological actions are relatively unexplored.

Pharmacological agents targeting the RAS pathway and,
specifically, the synthesis of Ang II (ACE inhibitors) or Ang
II receptor signaling (Ang II receptor blockers or ARBs) are
effective in reversing hypertension-induced vascular remodeling
in conductive and resistance arteries (28–31). In fact, several
clinical studies reported that ACE inhibitors and ARBs improve
resistance vessels structure, whereas β-blockers do not (32, 33).

HYPERTENSION, ACE2, AND SARS-COV2
INFECTION

PAH is a major risk factor of mortality worldwide being its
prevalence in adults high and particularly high in the elderly (34).
Lately, the impact of hypertension is emphasized in the context
of the novel SARS-CoV-2 infection. The severity of COVID-19
and the poor outcome of SARS-CoV-2 infected patients is
commonly associated with aging, hypertension, diabetes and
other cardiovascular disorders (35). Furthermore, the severity of
the primary respiratory syndrome is increased in patients with
pre-existing cardiovascular disease (36).

The use of RAS inhibitors is widely proven to reduce
mortality in cardiovascular disease. RAS blockers are first-
line drugs to treat hypertension and associated cardiovascular
and renal comorbidities (37). Thus, ACE inhibitors, ARBs,
and mineralocorticoid receptor antagonists are the standard
therapy in hypertension and myocardial infarction (38, 39). The
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use of AT1R blockers and ACE inhibitors is encouraged in
hypertensive patients because these drugs are vasoprotective, and
their associated increase in ACE2 expression (see the paragraph
below) protects against hypertension (3, 4, 40). Discontinuation
of this therapy leads to deterioration of cardiac function and heart
failure with a possible increase in mortality within a short period
of time (41).

Solid evidence from human and rodent studies suggests that
inhibition of RAS by AT1R blockers leads to upregulation of
ACE2 (42, 43). Nevertheless, evidence of ACE inhibitors affecting
the expression of ACE2 is more limited (3, 44). Recently,
the hypothesis that ACE inhibitors could act as a potential
risk factor for fatal COVID-19 by up-regulating ACE2 was
proposed (45, 46). However, there is enough evidence that
allows stating also the opposite hypothesis. Indeed, there is
currently no clinical data evidencing a direct link between
ACE2 activity and SARS-CoV-2 associated mortality or between
RAS inhibitors intake and impaired outcome in COVID-19
(4, 47). Recently, Sama et al. (2020) reported that neither ACE
inhibitors, ARBs, nor mineralocorticoid receptor antagonists
were associated with ACE2 concentrations in plasma in a wide
cohort of patients with heart failure, albeit a group at high
risk for COVID-19 (48). Furthermore, ACE2 is a target for
several coronaviruses and influenza viruses, and its expression
and signaling pathway is severely affected by pneumonia virus
infection (49–51). The decrease of surface ACE2 levels leads to
increased Ang II local levels, an effect that probably contributes
to the significant mortality rates resulting from SARS-induced
acute lung injury and fibrosis (49, 52). Therefore, cardiovascular
protection induced by ACE2-induced degradation of Ang II and
increase of Ang-(1–7) might be compromised (53–56), leading to
RAS overstimulation (57).

ACE2 is involved in infection and pathology induced
by SARS-CoV and the new SARS-CoV-2 which is causing
COVID-19 pandemic, through its unexpected function as the
cell-surface receptor for the virus facilitating viral RNA entry in
the lungs (58). Since the SARS-CoV outbreak in 2002, extensive
structural analyses has revealed key atomic-level interactions
between the SARS-CoV spike protein receptor-binding domain
and its host receptor ACE2, which regulate both the cross-
species and human-to-human transmissions of SARS-CoV. The
spike glycoprotein (S protein) of SARS-CoV on the virion
surface mediates receptor recognition and membrane fusion.
During viral infection, the trimeric S protein is cleaved into
S1 and S2 subunits, and S1 subunits are released (59, 60).
S1 directly binds to the extracellular peptidase domain of
ACE2 through the receptor-binding domain, which in turn
is recognized by the peptidase domain of ACE2 (61, 62),
whereas S2 is responsible for membrane fusion. An N-terminal
peptidase domain and a C-terminal collectrin-like domain, which
ends with a single transmembrane helix and a ∼40-residue
intracellular segment, form full-length ACE2. The sequence of
the 2019-nCoV spike protein (S protein), including its receptor-
binding motif that directly contacts ACE2, is similar to that of
SARS-CoV. Moreover, several critical residues in 2019-nCoV
receptor-binding motif (particularly Gln493) provide favorable
interactions with human ACE2, consistent with 2019-nCoV’s

capacity for human cell infection (63, 64). In principle, the
virus has limited potential to escape soluble ACE2 mediated
neutralization without simultaneously decreasing affinity for
native ACE2 receptors, thereby attenuating virulence. Soluble
ACE2 has proven safe in healthy human subjects and 45 patients
with lung disease (65, 66), and recombinant soluble ACE2 is
being tested in a clinical trial for COVID-19 in Guangdong
province, China (Clinicaltrials.gov #NCT04287686).

SMALL RESISTANCE ARTERY DISEASE
AND ACE2 IN COVID-19-RELATED
VASCULAR PATHOLOGY

Advanced age, hypertension, diabetes mellitus and obesity, are
all among the risk factors associated with a poor outcome
in COVID-19. These cardiovascular disease risk factors show
a common link: they are associated with pre-established
vascular dysfunction. This evidence rises the hypothesis an
environment of deteriorated vascular cell function is more
prone to SARS-CoV-2 pathogenesis. Thus, SARS-CoV-2-infected
microvascular endothelial cells (ECs) may exacerbate endothelial
dysfunction (5).

Evidence of Hypertension-Like Small
Resistance Artery Disease in COVID-19
The endothelium is a crucial regulator of vascular tone by
releasing vasoconstrictors and vasodilators that contribute to
vessel homeostasis. Its function is impaired in hypertensive
patients, with the presence of reduced vasodilation (i.e.,
endothelial dysfunction), increased vascular tone, inflammation
and thrombosis. In addition, ECs are linked to adjacent cells
to form cellular barriers between the blood and tissues that
restricts the movement of water, proteins, certain chemicals, and
blood cells (67). Evidence indicates that SARS-CoV-2 is able to
infect ECs from lung capillaries leading to the development of
acute respiratory distress syndrome (68). Pre-existing endothelial
dysfunction due to aging is aggravated with the infection
of vascular cells by SARS-CoV-2 (5). Thus, patients with
severe COVID-19 show vascular leakage and pulmonary edema,
because of EC dysfunction, lysis, and death (69). Notably, in
patients with COVID-19, EC infection occurs in tissues distal
from the primary infection site, leading to multi-organ failure
(68). These outcomes could be the result of the disruption of the
pulmonary EC barrier under the hypothesis that endothelium
is a crucial target of SARS-CoV-2, which permits the virus to
spread to distant target organs and may explain its systemic
manifestations (70). A further consequence of endothelial
damage in COVID-19 is the excessive activation of coagulation
pathways (69), a common feature in hypertensive patients.

Endothelial dysfunction in hypertension is partly due to
the presence of inflammatory and oxidative stress. Increased
oxidative and inflammatory stress induced by activated immune
cells, inflammatory cell infiltration, and vasoactive molecules
promoting vasodilation, all contribute to EC de-structuring
and dysfunction, which facilitate the amplification of the
inflammatory response. The pulmonary microvascular ECs
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with inflammatory phenotype are more prone to vascular
permeability, which facilitates neutrophil extravasation, and
initiate arteriolar vasoconstriction (71). In addition, viral
pneumonia activates innate immune response by increasing the
release of inflammatory mediators, which can induce systemic
inflammatory response syndrome. Although respiratory failure
because of respiratory distress syndrome is the primary
cause of mortality (72), many patients with COVID-19
exhibit a secondary exaggerated inflammatory response
called “cytokine storm,” a hyperinflammatory syndrome
characterized by a fulminant and fatal hypercytokinaemia
with multiorgan failure (73). The cytokine storm leads
to pulmonary parenchymal inflammation and edema that
interfere with alveolar gas exchange and results in hypoxemia.
Hypoxia and carbon dioxide retention cause the reflex
spasm of pulmonary blood vessels ending in pulmonary
hypertension. The high levels of cytokines in these patients
under an environment of EC dysfunction may amplify
the cascade of events leading to multi-organ failure and
death. In fact, immune dysregulation observed in severe
course of COVID-19 is similar to immune dysregulation in
hypertension (74). CD4+ T-cells, and in particular CD8+

T-cells, are abnormally regulated in hypertension, showing
greater production of pro-inflammatory cytokines (75).
Moreover, hypertension is associated with a characteristic
immunosenescent profile in CD8+ cells, which is prone to
overproduction of cytokines, while are less efficient in antiviral
defense (75, 76).

Potential Impact of SARS-CoV-2–Induced
“Cytokine Storm” on Small Resistance
Artery Properties
Recently, the pro-inflammatory cytokine and chemokine profile
associated with COVID-19 disease severity, driving amore severe
and fatal clinical course, has been unveiled in twoWuhan (China)
populations. Several clinical studies have shown a notably
increase in circulating levels of different interleukins, C-reactive
protein, granulocyte-colony stimulating factor, interferon-γ
inducible protein 10, monocyte chemoattractant protein 1,
macrophage inflammatory protein 1-α, and tumor necrosis
factor-α (77, 78). Consistently, interleukin-1β, interleukin-2,
and interleukin-6 were identified decades ago as predictors of
outcome in severe adult respiratory distress syndrome (79).
Furthermore, tumor necrosis factor-α and interleukin-1β activate
ECs to initiate coagulation pathways by expressing P-selectin,
von Willebrand factor and fibrinogen (80), an effect that
might partly explain the hypercoagulability observed in COVID-
19 patients.

It is noticeable that several of these cytokines have been
previously associated with small vessel disease. Receptors for
tumor necrosis factor-α and interleukin-1β are expressed in
both ECs and smooth muscle cells (SMCs) (81, 82). Long-term
exposure to both cytokines can either reduce or increase
vasoconstrictor responses, an effect similar to that induced
by exposure to interleukin-6 (83). In rat resistance arteries,
either subchronic “in vivo” (84) or “in vitro” (85) exposure

to interleukin-1β and interleukin-6 reduce acetylcholine-
mediated relaxation, which is a hallmark of endothelial
dysfunction commonly related to cardiovascular disease (15).
The cytokine-induced endothelial dysfunction is associated
with an increase in superoxide anion production that reduces
nitric oxide bioavailability (85). Importantly, superoxide
anion causes higher vasoconstriction in rat pulmonary vs.
systemic arteries, suggesting that the pulmonary artery bed
may be more prone to cytokine-induced vascular dysfunction
(86). Overall, the effects of cytokines on vascular reactivity
are complex, and they are vascular bed and exposure
time dependent, with short times inducing a direct effect
and longer times involving the contribution of crucial
secondary mediators such as nitric oxide, prostanoids, and
endothelin (83).

Because of available data show elevated plasma levels
of certain inflammatory cytokines in some COVID-19
subpopulations, a cytokine storm-targeted rescue therapy
for patients with COVID-19 infection who exhibit rapid
disease progression has been proposed (87). Nevertheless,
an anti-cytokine approach has not yet been proven
safe and effective. Several ongoing clinical trials are
investigating the use of tocilizumab, an interleukin-6
receptor inhibitor, as a potential treatment for COVID-
19 (88), and a small (21 patients with severe or critical
COVID-19) clinical trial in China (ID: ChiCTR2000029765)
has shown encouraging results. Other studies have
observed that those patients with COVID-19 and
hyperinflammation, could benefit from corticosteroids
treatment, which induces immunosuppression that could
improve mortality (73), whereas in those patients not showing
hyperinflammation corticosteroids might cause further lung
injury (89).

Small Resistance Artery Disease and ACE2
in Vascular Pathology
ACE2, which is highly expressed in SMCs and ECs, regulates
cellular responses to inflammation (90). SARS-CoV-2 binds
to ACE2 reducing its activity (49–51, 91), which leads to RAS
overstimulation (54). ACE2 deficiency exacerbates vascular
injury (92), whereas reduced ACE2 activity can increase
neutrophil infiltration and induce lung inflammation (93).
In addition, ACE2 protects from experimental acute lung
injury (94). Stimulation of the ACE2/Ang-(1–7)/Mas axis
reduces SMC proliferation (95), migration (96), endothelial
dysfunction (97), and thrombosis (98). Furthermore, previous
studies have demonstrated that selective ATR2 activation
suppresses the action of inflammatory cytokines both “in
vitro” and “in vivo” (99–102). However, only few works
have reported the association between ACE2 and ATR2
(103, 104). Activation of ATR2 enhances ACE2 expression and
activity in human ECs contributing to the anti-inflammatory
effects of ATR2-mediated signaling (105). Furthermore,
ACE2-induced activation of ATR2 by Ang-(1–7) after
ATR1 blockade is associated with improvement of vascular
remodeling (53).
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FIGURE 1 | Potential role of SARS-CoV-2, responsible for COVID-19, in small resistance artery dysfunction and organ/tissue injury. The SARS-Cov2 virus infects

endothelial cells from lung capillaries because it achieves cell entry through an S (spike) high-affinity protein binding to the catalytic domain of angiotensin-converting

enzyme 2 (ACE2). The virus causes endothelial damage by increasing pro-inflammatory cytokines and chemokines expression and excessive activation of coagulation

pathways. Furthermore, the interaction of SARS-CoV-2 with ACE2 compromises ACE2-induced degradation of angiotensin (Ang) II and reduces Ang-(1–7) levels,

leading to renin–angiotensin system overstimulation. Altogether, these events may contribute to endothelial cell dysfunction and death, which can induce vascular

leakage, pulmonary edema and parenchymal inflammation, hipoxemia and, ultimately, acute respiratory distress syndrome. Notably, in patients with COVID-19,

peripheral manifestations of endothelial dysfunction occur in tissues distal from the primary infection site, probably because of the disruption of the pulmonary

endothelial cell barrier that permits the virus to spread to distant target organs, and/or due to the secondary exaggerated inflammatory response (cytokine storm).

This endothelial damage would cause small resistance artery dysfunction and alter blood flow supply to tissues and organs, increasing the risk of thrombosis and

multi-organ failure. The presence of cardiovascular disease risk factors such as advanced age, hypertension, diabetes mellitus and obesity, which are associated

with pre-existing endothelial dysfunction, may worsen the above-mentioned pathological mechanisms leading to poor outcome in COVID-19. IL, interleukins; CRP,

C-reactive protein; G-CSF, granulocyte-colony stimulating factor; IP-10, interferon-γ inducible protein 10; MCP-1/CCL2, monocyte chemoattractant protein 1;

MIP-1α/CCL3, macrophage inflammatory protein 1-α; TNF- α, tumor necrosis factor-α.

CONCLUSIONS AND UPCOMING
PERSPECTIVES

Few works have been focused on describing the
anomalies and potential underlying mechanisms of
small resistance artery disease in COVID-19 (Figure 1).
The dysfunction of these vessels, which resembles
those from hypertensive patients, seems crucial for the
development of severe COVID-19, and for the long-term
target organ damage observed during the follow-up of
these patients.

The present review highlights the beneficial roles of
ACE2 signaling in small arteries through the control of
the RAS pathway. The reduction of circulating levels of
Ang II and the anti-inflammatory actions of Ang-(1–7)
and ATR2 signaling are the main mechanisms involved
in ACE2-induced vasculoprotection. Nevertheless, the

role of ACE2 in the anti-inflammatory actions of ATR2
has not been studied “in vivo,” which warrants further
investigation. Available evidence suggests that the use of
pharmacological interventions to increase NO bioavailability,
enhance Ang-(1–7) and ATR2 signaling, and improve
ACE2 activity might have a positive impact on small
resistance artery disease in either hypertension or COVID-19
(5, 106, 107).
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