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The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

that causes coronavirus disease 2019 (COVID-19) has led to 47m infected cases and

1. 2m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients

with acute respiratory distress syndrome (ARDS) appears to be a virally-induced

over-activation or unregulated response of the immune system, termed a “cytokine

storm,” featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6,

IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for

SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems.

Indeed, many COVID-19 positive patients develop cardiovascular complications, such

as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are

associated with higher mortality. Drug and cell therapies targeting immunosuppression

have been suggested to help combat the cytokine storm. In particular, mesenchymal

stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown

promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In

this review, we will discuss the mechanistic underpinnings of the cytokine storm on the

cardiovascular system, and how MSCs potentially attenuate the damage caused by the

cytokine storm induced by COVID-19. We will also address how MSC transplantation

could alleviate the long-term complications seen in some COVID-19 patients, such as

improving tissue repair and regeneration.
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INTRODUCTION

As of 3rd November 2020, there are >47 million cases of the
coronavirus 19 or severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-
19) in the World. There have been >1.2 million reported
deaths due to COVID-19, and >34 million infected cases have
recovered. As it stands, the infection and death rate due to
COVID-19 is below that of previous pandemics. For example,
the 1918 Spanish flu outbreak saw 500 million people infected
throughout the World and 17–50 million people died over a 2
year span; with up to 25 million deaths in the first 25 weeks (1).
Prior to the 1918 flu pandemic, influenza outbreaks had only
killed juveniles and the elderly or already weakened patients.
However, the Spanish flu was killing completely healthy young
adults, while leaving children and those with weaker immune
systems still alive (2). This high mortality was attributed to
malnourishment, overcrowdedmedical camps and hospitals, and
poor hygiene, all exacerbated by the recent war which promoted
bacterial superinfection (3). The outcome of the COVID-19
pandemic is impossible to predict, however history shows that
past pandemics have reshaped societies in profound ways. It is
clear that COVID-19 has already changed theWorld and the way
we live and work forever.

SARS-CoV-2 gains entry to human cells through the
angiotensin-converting enzyme 2, or ACE2 receptor (4). ACE2-
mediated viral entry is facilitated by serine proteases, most
notably transmembrane protease serine 2 (TMPRSS2), which
primes the SARS-CoV-2 spike glycoprotein (5). Initial infection
of lung epithelia or alveoli allows SARS-CoV-2 to access
the otherwise enclosed systemic circulation, subsequently pre-
disposing multiple organs to potential infection. Multiple organs
and tissues, such as the lungs, heart, kidneys, liver, and the
vasculature, contain cells which co-express ACE2 and TMPRSS2,
or other serine proteases (cathepsin B and cathepsin L1) (6–9).

Similar to other diseases caused by coronaviruses, the main
transmission route of SARS-CoV-2 is via respiratory droplets
and aerosolised particles (10) that are propelled into the
air when a person speaks, coughs, shouts, sings, sneezes, or
laughs. At the onset of the COVID-19 pandemic, the main
symptoms were fever (98%), cough (76%), and myalgia or
fatigue (44%) (11). Then, loss of sense of taste and smell,
termed anosmia, became a symptom in March 2020 (12),
with a large proportion of those reporting anosmia presenting
with mild symptoms. Patients can then develop breathing
difficulty within 1 week and the severely ill patients soon
developed acute respiratory distress syndrome (ARDS), acute
cardiac injury, secondary infections, or a combination, resulting
in hospital admission and severe cases requiring mechanical
ventilation in the ICU (11). Such patients typically exhibit
an exaggerated immune response, or cytokine storm, that has
become a hallmark of severe SARS-CoV-2 infection. Suppressing
the pro-inflammatory nature of the disease is critical to
improving patient morbidity and mortality rates and, therefore,
developing and identifying viable therapeutic strategies is of
urgent scientific importance. Transplantation of mesenchymal
stem/stromal cells (MSCs) is one such potential therapy to

combat COVID-19 induced inflammation and regeneration of
damaged tissues.

The merits of MSCs are that they are multipotent stromal
cells that can differentiate into a variety of cell types, including
osteoblasts, chondrocytes, myocytes, and adipocytes that have
their own characteristic structures and functions of specific
tissues. They are typically found in the bone marrow, but
have also been characterized in the adipose tissue, dental
pulp, umbilical cord tissue, amniotic fluid, and heart (13).
Mesenchymal stromal cells are easily accessible from various
tissues, are free from ethical issues and have demonstrated no
adverse outcomes in clinical trials. They have high proliferation
rates, can be systemically administered, and possess key stem
cell properties, such as multipotency (14, 15), in addition
to being effective immunomodulators, collectively making
MSCs a promising therapy in improving COVID-19 morbidity
and mortality.

Old Age, Being Male and CVD
Co-morbidity—Significant Risk Factors for
Mortality
Severity and high mortality from COVID-19 has been linked to
old age, being male, cardiovascular disease (CVD), hypertension,
and cardiometabolic disease including diabetes and obesity. A
retrospective, multicentre cohort study by Zhou et al. (16)
examined 191 patients, of whom 137 were discharged and 54
died in hospital. Of these patients, 91 (48%) had a comorbidity,
with hypertension being the most common [58 (30%) patients],
followed by diabetes [36 (19%) patients] and coronary heart
disease [15 (8%) patients]. Multivariable regression analysis
showed increasing odds of in-hospital death associated with older
age [odds ratio (OR) 1.10, 95% CI 1.03–1.17, per year increase; p
= 0.0043], higher Sequential Organ Failure Assessment (SOFA)
score (5.65, 2.61–12.23; p < 0.0001), and D-dimer >1µg/mL
(18.42, 2.64–128.55; p = 0.0033) on admission. In univariable
analysis, odds of in-hospital death was higher in patients
with diabetes or coronary heart disease. Age, lymphopenia,
leucocytosis, and elevated ALT, lactate dehydrogenase, high-
sensitivity cardiac troponin I, creatine kinase, D-dimer, serum
ferritin, IL-6, prothrombin time, creatinine, and procalcitonin
were also associated with death (16).

In a retrospective case series involving 1,591 critically ill
COVID-19 patients admitted from February 20 to March 18,
2020 in Lombardy, Italy, who required treatment in the ICU, the
median (IQR) age was 63 (56–70) years and 1,304 (82%) were
male. Of the 1,043 patients with available data, 709 (68%) had
at least one comorbidity and 509 (49%) had hypertension. The
second most common comorbidities were CVD [223 patients,
21% (95% CI, 19–24)] and hypercholesterolemia [188 patients,
18% (95% CI, 16–20%)]. ICU mortality was higher in those
who were older (≥64 years). The prevalence of hypertension
was higher among patients who died in the ICU (63%, 195 of
309 patients) compared with those discharged from the ICU
(40%, 84 of 212 patients) [difference, 23% (95% CI, 15–32); P <

0.001] (17).
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Emerging evidence strongly implicates COVID-19 as a
vascular disease, with many COVID-19 positive patients
purportedly developing cardiovascular complications, such
as myocardial injury (18), cardiac arrhythmia (19) and
thromboembolism (20, 21). Interestingly, cardiovascular
complications have also been reported in patients with no
underlying pathology, for instance with acute viral myocarditis
(22, 23). Cardiovascular (CV) system involvement is associated
with higher mortality rates and is largely indicated by elevated
inflammatory biomarkers, including D-dimer, cardiac troponin
(cTn), ferritin, and interleukin (IL)-6 (24). For further insight,
readers are directed to our review on Vascular Manifestations of
COVID-19 (25) in this series.

Myocardial Damage: The Role of Cardiac
Troponin and Other Relevant Markers
A number of studies show that a high proportion of COVID-
19 patients exhibit elevated levels of cardiac damage biomarkers,
such as cTn, with reports of up to 38% of patients testing
positive for COVID-19 displaying high circulating levels of
cTn (26). In comparison to COVID-19 patients with low cTn,
those exhibiting high levels of cTn are hospitalized for longer
requiring mechanical ventilation and admission to ICU, are at
a significantly greater risk of developing ARDS and cardiac
arrhythmias, and ultimately have a higher risk of mortality
(27). In a study comparing clinical characteristics between
survivors of COVID-19, and those who succumbed to the disease,
researchers found that elevated levels of cTn were found in
77% of patients who subsequently died, compared to only 14%
of patients who had survived (28). In addition, Guo et al.
(29) showed that myocardial injury (elevated cTnT levels) was
associated with worse outcome. Patients with underlying CVD
are more likely to present with high cTn levels, with the poor
prognosis for those with elevated levels further compounded if
the patient had underlying CVD, compared to those without
underlying CVD (69.4 vs. 37.5% mortality rate, respectively)
(29). In the study by Zhou et al. (16) the highest OR for
mortality in COVID-19 patients (n = 191) was for elevated
cTn (>28 pg/mL, OR: 80.1) compared to other biomarkers,
including circulating lymphocyte count (OR: 0.02) and D-dimer
(OR: 20.04). It is also evident that throughout hospitalization,
levels of cTn rise, and importantly, survivors showed no rise
in this biomarker during the hospital stay, whereas patients
with COVID-19 who died from complications, showed a steady
upward rise in cTn until death (16). In another study, a significant
predictor of mortality due to COVID-19 was the peak cTn
during hospitalization, not the level measured upon admission
(26), suggestive that risk stratification should include serial
cTn measurements.

Besides cTn, other biomarkers, such as creatine kinase (CK),
electrocardiographic (ECG) changes, and imaging might also
reveal cardiac pathology in COVID-19 patients. Data acquired
from multi-centers showed plasma lactate dehydrogenase and
CK levels were correlated with COVID-19 severity and ICU
admissions, reaching 26.1 and 70.5%, respectively (30). CK

isoenzyme-MB (CK-MB), myohaemoglobin (MYO), and N-
terminal pro-brain natriuretic peptide (NT-proBNP) are elevated
above normal ranges in 3.7, 10.6, and 12.4% confirmed cases,
respectively (31). When stratified by disease severity, patients
with abnormal CK-MB, MYO, and NT-proBNP increased
to 6.7, 26.7, and 33.3% respectively in the critical cases,
underscoring underlying ischaemia and cardiac dysfunction.
This is further supported by ECG findings characteristic
of ischaemia, such as T-wave depression and inversion, ST
depression, and presence of Q waves (18). In a case report,
the presence of acute pulmonary embolism in COVID-19
was associated with right ventricular dilatation and dyskinesis
on echocardiography, indicating that some patients develop
ventricular hypertrophy (32).

Immune Response to COVID-19: Healthy
vs. Hyperactive
The immune response to COVID-19 can be split into a healthy
antiviral immune response or a defective/overactive immune
response. The latter has been linked to damage to the lungs
and other organs, resulting in onset of severe illness. Initially,
SARS-CoV-2 infection and destruction of lung cells switches
on antiviral defenses triggering a local immune response. This
includes recruitment of macrophages and monocytes to respond
to the infection, interferons and release of cytokines and
chemokines and primed adaptive T and B cell immune responses.
In most cases, this process is capable of resolving the infection.
However, in some cases, a dysfunctional immune response
occurs, resulting in severe lung and multi-system damage, and
possible failure (33).

In the healthy immune response, the innate antiviral defenses
fight against the virus and virus-specific T cells can later eliminate
the infected cells before the virus spreads. Neutralizing antibodies
in these individuals can block viral infection, and phagocytic cells
such as alveolar macrophages recognize neutralized viruses and
apoptotic cells and clear them by phagocytosis. Altogether, these
processes lead to clearance of the virus with minimal lung and
multi-system damage, resulting in recovery (33).

In a defective immune response, there is a hyperactivation of
the immune cells, with excessive infiltration of monocytes,
macrophages and T cells, in the lungs. This causes
overproduction of pro-inflammatory cytokines, the so-called
“cytokine storm” or “cytokine release syndrome,” which
eventually can lead to lung damage, pulmonary oedema and
pneumonia. The resulting cytokine storm leads to widespread
inflammation circulating to other organs, leading to multiple
organ damage (33). Elucidating the mechanisms underlying
the immune response to COVID-19 and the causes for the
hyperactivation of the immune response are at the forefront
of this exciting research area. Recently, Merad and Martin
(34) reviewed how activated monocyte-derived macrophages
leading to a dysregulated macrophage response contribute to
the COVID-19 cytokine storm by releasing massive amounts of
pro-inflammatory cytokines (34). Moreover, the biological and
clinical consequences of the so-called cytokine storm are still
largely unknown.
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CYTOKINE STORM IN COVID-19

The term cytokine storm was first employed in describing
the events modulating the onset of graft-vs.-host disease (35).
Cytokine storms characterize a wide spectrum of infectious and
non-infectious diseases. Since 2005, it was associated to the avian
H5N1 influenza virus infection (36) and then infections with
MERS and SARS, with an inflammatory milieu containing IL-1β,
IL-6, and TNF-α being associated with worse disease outcomes
(37). Now, severe COVID-19 disease caused by SARS-CoV-2
infection is also associated with a dysregulated and hyperactive
systemic inflammatory response; a cytokine storm (38).

It was first reported that several pro-inflammatory cytokines
and chemokines, including IL-2, IL-7, IL-10, CXCL10 (IP-10),
CXCL8, CCL2 (MCP1), TNFα, and IFNγ were higher in the
plasma of COVID-19 patients as compared to healthy controls.
More importantly, among infected patients, IL-2, IL-7, IL-10,
granulocyte colony- stimulating factor (G-CSF), macrophage
inflammatory protein 1α (MIP1α), CXCL10, CCL2, and TNFα
circulating concentrations (but not those of IFNγ) were found
to be significantly higher in patients requiring admission to ICU
and mechanical ventilation, compared to patients experiencing a
less severe clinical course (11).

Chen et al. (39) characterized the immunological features of
COVID-19 patients presenting with differing disease severity.
Eleven patients with severe disease displayed significantly higher
serum levels of IL-6, IL-10, and TNF-α and lower absolute
numbers of T lymphocytes, CD4+T cells, and CD8+T cells as
compared with 10 patients with moderate disease. Of note, severe
cases were characterized by a lower expression of IFN-γ by
CD4+T cells as compared with moderate cases (39). Likewise,
analysis from Liu et al. (40) demonstrated significant decreases in
the counts of T cells, especially CD8+ T cells, as well as increases
in IL-6, IL-10, IL-2, and IFN-γ levels in the peripheral blood in
the severe COVID-19 cases (n = 13) compared to those in the
mild cases (n = 27), suggesting that disease severity is associated
with significant lymphopenia and hyperinflammation.

Del Valle et al. (41) used a multiplex cytokine assay to measure
serum IL-6, IL-8, TNF-α, and IL-1β in hospitalized COVID-
19 patients (n = 1,484) upon admission to the Mount Sinai
Health System in New York, USA. They showed that serum
IL-6, IL-8, and TNFα levels at the time of hospitalization were
strong and independent predictors of patient outcomes, with
elevated inflammatory profile associated with reduced survival.
Importantly, when adjusting for disease severity score, common
laboratory inflammation markers, hypoxia and other vitals,
demographics, and a range of comorbidities, IL-6 and TNF-α
serum levels remained independent and significant predictors of
disease severity and death (41).

In an elegant study, Lucas et al. (42) have identified that
development of a maladaptive immune response profile was
associated with severe COVID-19 outcome, and early immune
signatures correlated with divergent disease trajectories. Through
serially analyzing immune responses in peripheral blood in 113
COVID-19 patients with moderate (non-ICU) and severe (ICU)
disease, they revealed an association between early, elevated
cytokines and worse disease outcomes. Indeed, they observed

a “core COVID-19 signature” shared by both moderate and
severe groups of patients defined by the following inflammatory
cytokines that positively correlated with each other; these
included: IL-1α, IL-1β, IL-17A, IL-12 p70, and IFN-α. In
severe patients, they observed an additional inflammatory cluster
defined by: thyroid peroxidase (TPO), IL-33, IL-16, IL-21, IL-
23, IFN-λ, eotaxin, and eotaxin 3. Interestingly, most of the
cytokines linked to cytokine release syndrome, such as IL-
1α, IL-1β, IL-6, IL-10, IL-18, and TNF-α, showed increased
positive associations in severe patients. After day 10, in patients
with moderate disease, these markers steadily declined. In
contrast, severe patients maintained elevated levels of these
core signature makers. Notably, additional correlations between
cytokines emerged in patients with severe disease following day
10. Therefore, there were sharp differences in the expression
of inflammatory markers along disease progression between
patients who exhibit moderate vs. severe COVID-19 symptoms.
Altogether, data showed a broad elevation of type-1, type-
2, and type-3 signatures in severe cases of COVID-19, with
distinct temporal dynamics and quantities between severe and
moderate patients. Unsupervised clustering analysis of plasma
and peripheral blood leukocyte data identified four immune
signatures, representing (A) tissue repair growth factors, (B)
type-2/3 cytokines, (C) mixed type-1/2/3 cytokines, and (D)
chemokines involved in leukocyte trafficking that correlated
with three distinct disease trajectories of patients. The immune
profile of patients who recovered with moderate disease was
enriched in tissue reparative growth factor signature (A), while
the profile for those with worsened disease trajectory had
elevated levels of all four signatures. Overall, results suggested
that a multi-faceted inflammatory response is associated with
late COVID-19 severity, which raises the possibility that early
immunological interventions that target inflammatory markers
predictive of worse disease outcome are preferred to blocking
late-appearing cytokines.

Supporting the work of Lucas et al. (42) a recently published
article has identified a core peripheral blood immune signature
across 63 hospital-treated patients in London, UK with COVID-
19. Specifically, among several changes in immune cells expressed
at unusual levels in the blood of patients, the work identified a
triad of IP-10 (CXCL10), IL-10, and IL-6 to correlate strongly
with disease severity. Indeed, patients with COVID-19 who
displayed measurably higher levels of IP-10 (CXCL10), IL-10,
and IL-6 when first admitted to hospital went on to become
more severely ill. The triad of cytokines was found to be
a rigorous predictor of disease severity than commonly-used
clinical indicators, including CRP, D-dimer, and ferritin (43).

As the COVID-19 cytokine storm is a multi-faceted
inflammatory response, therapies that target this as a whole and
those that enhance tissue repair (i.e., mesenchymal stem/stromal
cells; MSCs) should be considered. Indeed, Lucas et al. (42)
found IL-6 to be highly enriched in patients with severe
disease. In fact, all ICU patients in their study, including the
ones who succumbed to the disease, received Tocilizumab,
an IL-6R blocking antibody. Positive outcomes have been
reported with Tocilizumab treatment, including a reduction in
an inflammatory-monocyte population associated with worse
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outcomes (44). However, as patients still succumbed to COVID-
19, this highlights the need for combination therapy to
block other cytokines highly represented in severe COVID-19
cases, including inflammasome-dependent cytokines and type-2
cytokines (42).

THE EFFECTS OF THE COVID-19
CYTOKINE STORM

On the Lungs Leading to Acute Respiratory
Distress Syndrome (ARDS)
Acute respiratory distress syndrome (ARDS) is a form of
hypoxaemic respiratory failure that is characterized by severe
impairment of gas exchange and lungmechanics, with a high case
fatality rate. Acute respiratory distress syndrome can come about
through the severe widespread inflammatory injury present
throughout the lungs, leading to a loss of vascular barrier
integrity and likely promoting pulmonary oedema, thereby
causing inflammation of endothelial cells (endothelialitis). Acute
respiratory distress syndrome is a prominent feature in patients
with severe COVID-19 infection (45, 46) and is the leading cause
of mortality (47).

The precise pathophysiological mechanisms underlying
ARDS in COVID-19 patients are not fully understood.
However, alveolar macrophages are central to mediating the
inflammation associated with ARDS (48), with the initial
inflammatory stage involving alveolar macrophages interacting
with lymphocytes (49) and epithelial cells (50), thereby
augmenting the inflammatory response and accentuating tissue
damage (51). Following initial stimulation, neutrophils and
circulating macrophages are recruited to the lungs (activated
by the pro-inflammatory cytokines), thereby triggering further
inflammatory responses (52) equating to a positive feedback
loop. These cells may disrupt the air–blood barrier by causing
collateral tissue damage, particularly to airway epithelial cells and
vascular endothelial cells, which express the ACE2 entry receptor
for SARS-CoV-2; the damage of vascular endothelial cells may
account for thrombotic microangiopathies (53). Furthermore,
severe infection of the lung alveoli allows the SARS-CoV-2 virus
and pro-inflammatory cytokine overload to enter the systemic
circulation where it can infiltrate multiple organs, particularly
since cells in many of them co-express ACE2 and TMPRSS2
(7, 8, 54).

In addition to the marked lung damage observed in COVID-
19 infection, clinical cohort studies have revealed involvement
of the kidneys (11, 16, 19, 30, 55, 56), liver (11, 30, 57, 58),
gastrointestinal tract (11, 30, 59, 60), central nervous system
(61, 62), and CV system (16, 18, 19, 63).

Mitochondrial-Related Mechanisms
Mitochondria are essential for meeting the rise in energy demand
required to fuel the immune system response and also for
inducing immunomodulatory mechanisms, serving as a platform
for host defense against RNA viruses such as SARS-CoV-2 (64,
65). The effects of SARS-CoV-2 infection upon mitochondrial
respiratory capacity is a key consideration in the context of

the host cytokine response. Mitochondrial respiratory capacity
has been suggested to account for 10–30% of the variance
in circulating leukocyte immune reaction across individuals,
influencing the cytokine signature produced by leukocytes in
response to lipopolysaccharide (LPS) administration (66). In
particular, complex IV activity was positively correlated with
LPS-stimulated IL-6 release (66). This is of particular interest in
relation to SARS-CoV-2, whereby blood IL-6 has been identified
as a predictor of patient fatality (47).

Aside from respiration, mitochondria are essential in host
cell detection of RNA via pattern recognition receptors (PPRs),
including cytosolic sensors retinoic acid-inducible gene 1 (RIG-
1) and melanoma differentiation-associated protein 5 (MDA5)
(67). These utilize the mitochondrial signaling protein MAVS
(mitochondrial antiviral signaling protein), which recruits the
E3 ligases TNF receptor associated factor 3 (TRAF3) and
TRAF6, facilitating activation of interferon regulatory factors
(IRFs) and NF-κB to induce antiviral genes. In this manner,
MAVS activity coordinates the activation of a dominant antiviral
mechanism, the type 1 interferon (IFN) pathway (64). SARS-
CoV-2 open reading frame (Orf) 9b targets the translocase
of outer mitochondrial membrane protein 70 (TOMM70),
linking mitochondrial signaling to induction of the IFN pathway
(68). The Orf9b of SARS-CoV-2 also localizes to the outer
mitochondrial membrane, disrupting the MAVS signalosome
(69) and impairing the host IFN response (69, 70). Other
mitochondrial factors that may impact the IFN response include
mitochondrial stress, whereby release of mtDNA into the cytosol
is detected by the DNA sensor cGAS, which promotes STING-
IRF3 signaling, potentiating IFN pathway signaling (71).

Inflammasomes, the multiprotein complexes providing a
platform for the activation of pro-inflammatory caspase-
1 culminating in cytokine release, are also mitochondrial-
dependent. An example is NLRX1, a target of SARS-CoV-2
Orf9c (68). NLRX1 interacts with mitochondrial complex III,
stimulating reactive oxygen species (ROS) production (72). ROS
production from mitochondrial complexes I and III is known to
mediate both innate and adaptive viral immune responses (73),
impacting both MAVS and NF-κB signaling (72).

Pro-inflammatory cytokines are known to elicit metabolic
alterations, with NF-κB and interleukin signaling impacting
glucose control and glycolytic function. For instance,
development of insulin resistance has been linked to IL-1
and IL-6 signaling in the context of type 2 diabetes mellitus
(74). This is a key consideration in SARS-CoV-2, whereby poor
blood glucose control has been associated with higher mortality
in diabetic patients (75) and high glucose levels associated with
viral replication in monocytes, with enhanced glycolytic capacity
coinciding with raised IL-1β (76).

NF-κB mediated metabolic re-programming has been
demonstrated in acute viral myocarditis (VM) (77, 78), a
condition characterized by viral induced leukocyte infiltration
and cardiac dysfunction. Case studies of acute VM have been
reported in female COVID-19 patients (ages 21 and 43), resulting
in substantial disruption to cardiac function in the absence of
coronary artery disease (22, 23). Viral fulminant myocarditis, a
syndrome on the clinical spectrum of acute myocarditis, has also
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been associated with death in SARS-CoV-2 patients suffering
from cardiac injury (79).

In human and mouse models of VM, cardiac inflammation
indicated through cytokine mediated NF-κB activation was
linked to impaired expression of genes related to oxidative
metabolism. This included downregulation of genes encoding
mitochondrial regulatory proteins associated with biogenesis
(PGC-1α, PGC1-1β, Tfam, and NRF-1) alongside regulators
of β-oxidation (e.g., PPAR-α), tricarboxylic acid cycle and
electron transport chain (ETC) function. This coincided with
a fall in high energy phosphates and NAD levels and a
shift toward anaerobic glycolysis, indicated through increased
expression of glucose and lactate transporters and glycolytic
enzymes (77). Together, this indicates that the inflammatory
response associated with acute VM initiates reprogramming
of cardiomyocyte energy metabolism away from oxidative
metabolism and toward glycolysis. This culminated in an
energy-starved status of the heart, the extent to which likely
contributed to impaired cardiac function. NF-κB signaling has
also been linked to impaired insulin signaling by stimulating
phosphorylation of insulin receptor substrate-1, in turn inducing
insulin resistance and cardiac dysfunction associated with VM
(78). The metabolic implications of VM onset and resulting
impairment of myocardial function are thus vital considerations
in the pathophysiology of SARS-CoV-2 infection.

On the Cardiovascular System
A number of case reports have demonstrated cardiac
abnormalities in patients with COVID-19, includingmyocarditis,
myo-pericarditis, electrocardiographic complications,
cardiogenic shock, decompensated heart failure, and other
histological/imaging complications, such as reduced left
ventricular ejection fraction (LVEF) (80–85). Moreover, and as
described previously, cross-sectional studies have consistently
reported elevations in cardiac injury markers, such as cTn,
NT-proBNP, and creatine kinase myocardial band (CK-MB)
concentrations, with patients presenting with cardiac injury
being at a higher risk of mortality, even after being adjusted for
confounding variables such as age, pre-existing CVD, and ARDS
(18). These data give strong evidence for cardiac complications
associated with COVID-19, however, the mechanisms for these
complications may not be solely the result of a direct viral
infection of cardiac cells.

The CV system is also at high-risk as a result of indirect
mechanisms, such as the cytokine storm. The cytokine storm
is likely to induce cardiovascular damage through mechanisms
related to endothelial dysfunction, atherosclerotic plaque
instability/rupture, cardiomyocyte death, and myocarditis. The
mechanisms of endothelial dysfunction within the COVID-19
population are not limited to elevations in pro-inflammatory
cytokine concentrations and include direct viral infection
of endothelial cells, angiotensin II (Ang II) hyperactivity,
complement activation, and other elements of immune
dysregulation, such as neutrophil extracellular trap (NET)
formation. Indeed, evidence of SARS-CoV-2 viral structures
have been observed in endothelial cells in various tissue beds
(63), which may promote an imbalance between ACE2 and

Ang II. Liu et al. (86) support this notion by demonstrating
elevated plasma Ang II concentrations in patients with COVID-
19. For a more in depth review of direct viral infection of
endothelial cells, including Ang II hyperactivity, readers are
directed to our recent review on the vascular manifestations of
COVID-19 (25). Complement activation has been associated
with microthrombosis in a small number of patients with
COVID-19 (87) and NET formation has been correlated with
COVID-19-associated ARDS (88). Both complement activation
and NET formation are associated with pro-inflammatory
responses. The complement system detects viral pathogens, thus
contributing to the innate immune response to viral infections
(89), whilst NETs have the ability to induce IL-1β secretion
from macrophages and play a role in the development of
atherosclerosis, causing endothelial damage and dysfunction
(90, 91). Moreover, endothelial cells undergoing apoptosis
have been shown to activate the complement system (92),
which may further exacerbate cytokine secretion and promote
microthrombosis. Therefore, it should be acknowledged that
direct viral infection of endothelial cells, subsequent Ang II
hyperactivity and the pro-inflammatory effects of complement
activation and NET formation promote both direct and indirect
perturbations to the cardiovascular system, whilst exacerbating
the cytokine storm. Moving forward, the predominant focus
of this section is to discuss the potential effects of the cytokine
storm upon the cardiovascular system.

The cytokine storm is not only one of the predominant
pathophysiological mechanisms of fulminant myocarditis
(without evidence of viral infiltration) (93), which has been
reported in patients with COVID-19, but inflammatory
infiltration into endothelial cells has also been reported in
histological studies (63, 94). Inflammatory infiltration into
endothelial cells promotes endothelialitis, perturbing endothelial
cell membrane function, loosening inter-endothelial junctions,
and causing cell swelling (94, 95). Indeed, Varga et al. (63) showed
endothelial cell death and dysfunction in patients infected with
SARS-CoV-2, which facilitated the induction of endothelialitis in
several organs, including cardiac tissue, as a direct consequence
of viral involvement and of the host inflammatory response.

The presence of endothelialitis demonstrates the activation
of endothelial cells, promoting the expression of cell-surface
adhesion molecules and thus the binding of inflammatory
cells to the endothelium (96, 97). These pathophysiological
consequences promote vascular hyperpermeability. Disruption
of inter-endothelial junctions cause endothelial cells to be “pulled
apart,” thus resulting in inter-endothelial gaps (95, 98), denoting
cytoskeletal alterations to the endothelium. Moreover, this
cytokine storm-induced endothelial dysfunction pre-disposes the
CV system to a pro-coagulant state, promoting thromboembolic
events, which has been linked to higher disease severity,
and higher instances of mortality (99). Interestingly thrombin
exposure, coupled with an elevation in the influx of Ca2+

promotes elevations in endothelial cell permeability which can
be induced by an increase in TNF-α expression (100, 101).

Elevations in cytosolic Ca2+ influx into endothelial cells is
a pivotal step in the disruption to inter-endothelial junctions
and thus the progression to increased vascular permeability
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(101, 102). A determinant of this increased Ca2+ influx
is the upregulation of transient receptor potential channels,
which is induced via TNF-α (100), causing a destabilization
of microtubules (103). Evidence supports the notion of a
cytokine-induced hyperpermeability response of the vasculature,
with Tinsley et al. (104) demonstrating the role of cytokine
(TNF-α, IL-1β, and IL-6) induced-vascular hyperpermeability
through a protein kinase C (PKC) and myosin light chain
kinase (MLCK) dependent mechanism in cultured rat heart
microvascular endothelial cells. Moreover, the authors replicated
these findings in vivo using a coronary ischemia/reperfusion (I/R)
rodent model of heart failure, demonstrating TNF-α increases
endothelial permeability in a PKC andMLCK dependent manner
(104). Therefore, translating this to COVID-19 pathophysiology,
cytokine storm induced Ca2+ influx into endothelial cells may
be a contributing mechanism underpinning the disruption
to inter-endothelial junctions and the promotion of vascular
permeability. Furthermore, the cytokine-induced stimulation of
PKC and MLCK may promote direct damage to cardiac tissue,
which may pose significant deleterious effects upon patients with
pre-existing CVD, a common comorbidity in the more severe
COVID-19 population (105).

Histological studies in pulmonary vasculature have indicated
endothelialitis, with unexpected observations of intussuseptive
angiogenesis. In this study (94), the degree of intussuseptive
angiogenesis was associated with the duration of hospitalization.
Whilst hypoxia may be a contributing mechanism, the
authors concluded the predominant mechanism was likely the
presence of endothelialitis and thrombosis (94). Intussuseptive
angiogenesis is the formation of intravascular vessel formation,
through non-sprouting mechanisms, commonly observed as
“pillar” formation within the vasculature (106), which can
significantly alter the microcirculation, and can be triggered
by extraluminal processes, including inflammation (107).
Inflammatory-mediated intussuseptive angiogenesis has been
demonstrated previously in murine models of colitis, suggesting
this is an adaptive response to prolonged inflammation (108).
This provides further evidence of the perturbations to the
vasculature caused by the cytokine storm in COVID-19.
The promotion of intussuseptive angiogenesis as an adaptive
response to vascular damage, has also been shown to accelerate
fibrotic neovascularisation (109).

Inflammatory environments also promote the generation
of ROS which can result in damage and dysfunction of the
vasculature. ROS act as signaling molecules to defend against
oxidative stress by promoting the upregulation of antioxidant
mechanisms, however, high concentrations of ROS can activate
endothelial cells and inhibit normal endothelial functioning.
Cytokines, such as TNF-α, have been shown to interact
with the ETC and stimulate the release of mitochondrial-
derived ROS, such as hydrogen peroxide (110) and superoxide
(111). Moreover, in response to infections, inflammatory
cytokines, such as TNF-α and IL-1β, coming into contact with
endothelial cells induce NAD(P)H oxidase-derived ROS (112,
113). The generation of excessive ROS elevates superoxide anion
production, which can degrade nitric oxide (NO), lead to the
formation of other free radicals, such as peroxynitrite, and thus

result in endothelial cell dysfunction and apoptosis (96, 114, 115).
Therefore, it is likely that the cytokine storm experienced in
patients with COVID-19 will promote the elevation in ROS and
result in oxidative stress, which is a key mechanism of endothelial
dysfunction in hypertension (116) and CVD (117). Elevations in
ROS also act as secondary inflammatory signals, which has been
shown to induce the secretion of pro-inflammatory cytokines,
such as IL-1β, TNF-α, and IL-6 (118). Therefore, this creates
a vicious cycle of cytokine-induced oxidative stress and ROS-
induced pro-inflammatory cytokine signaling, secondary to the
COVID-19 hyper-activation of the immune response.

Inflammatory cytokines do not just alter endothelial structure
and function. Cytokines such as TNF-α, IL-1β, and IL-6
promote vascular smooth muscle cell (VSMC) proliferation
from the media to the intima of the vasculature, which results
in the secretion of extracellular matrix proteins within, and
thus expanding the intima in pathological conditions, such as
atherosclerosis (119). Moreover, in human coronary VSMCs,
IL-1β has been shown to stimulate an upregulation in Rho-
kinase, via a PKC-dependent mechanism, which may contribute
to medial thickening and the atherogenic environment (120).
Interestingly, this can also be stimulated by an upregulation
in angiotensin II, which has been noted within the COVID-
19 literature if infected cells experience a downregulation of
ACE2 expression (121), which will also contribute to the
pro-inflammatory environment experienced in patients with
COVID-19. Activation of RhoA can also be stimulated by
TNF-α which has been shown to promote endothelial cell
permeability in cultured human umbilical vein endothelial
cells (HUVECs) (122). These pathophysiological processes are
shared with thrombosis, which is a common manifestation in
patients with severe COVID-19 (99). Combined with damage
to endothelial cells contributing to the apparent “COVID-19
coagulopathy” (123), VSMC proliferation, stimulated by various
cytokines, may contribute to the high instance of coagulation
derangements and thromboembolic events observed in patients
with severe COVID-19.

Whilst the COVID-19 induced cytokine storm can pre-
dispose the CV system to damage and progression of pre-existing
cardiovascular comorbidities, perturbations to vascular cells
may also contribute to the overexpression of pro-inflammatory
cytokines. Both endothelial cells and VSMCs secrete pro-
inflammatory cytokines when either damaged or undergoing
apoptosis. Expression of cell-surface adhesion molecules and
certain cytokines, such as IL-8, on the surface of endothelial
cells induce a pro-inflammatory phenotype and the recruitment
of blood monocytes which induce the secretion of pro-
inflammatory cytokines, such as TNF-α and IL-1β (124).
Moreover, under atherogenic conditions, VSMCs have been
shown to also adopt a pro-inflammatory phenotype, promoting
the secretion of IL-6 and IL-8, along with cell-surface adhesion
molecules, such as vascular cell adhesion molecule 1 (124, 125).
Therefore, both endothelial cells and VSMCs, once damaged,
may switch to a pro-inflammatory phenotype and thus propagate
the expression of pro-inflammatory cytokines.

Whilst there is a plethora of evidence which suggests that the
cytokine storm experienced in COVID-19 patients may promote
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damage to the vasculature, sustained inflammation directly
contributes to progressive cardiomyocyte apoptosis. Elevated
TNF-α levels seen in a variety of clinical conditions including
COVID-19, drives cardiomyocytes to apoptosis (126, 127). TNF-
α can induce cardiomyocyte apoptosis directly, via the TNF
receptor, or indirectly, through stimulation of NO production or
ROS, which in turn is induced by pro-inflammatory cytokines
such as IL-1, IL-6, TNF-α, and IFN-7 (128). High levels of
cTn are reflective of cardiomyocyte death and injury, and as
stated earlier, are associated with COVID-19 disease severity and
mortality (16).

In the heart, the acute inflammatory response can expand
tissue damage and prolonged inflammation leads to accentuated
adverse remodeling. Indeed, pro-inflammatory cytokines and
upregulated monocytes/macrophages can inhibit cardiac repair,
which is dependent on timely suppression and resolution
of pro-inflammatory signaling. Activation of IL-1 signaling
induces cytokine expression, promotes matrix-degrading
properties, suppresses fibroblast proliferation and inhibits
transdifferentiation of fibroblasts into myofibroblasts, altogether
delaying activation of a reparative response (129). Moreover,
a severe or prolonged reparative response is associated with
pathological scarring and fibrosis (130).

The full extent of cardiovascular cell dysfunction and death,
induced by the cytokine storm in COVID-19, is yet to be
fully elucidated. This section provides evidence of the potential
effects and mechanisms of the COVID-19 cytokine storm on
the cardiovascular system. It is likely that cardiomyocyte and
vascular cell damage and dysfunction, as well as mitochondrial-
related mechanisms play a role in the progression of COVID-
19 and in the pathogenesis of cardiovascular injury in COVID-
19. The induction of ROS generation and the ensuing oxidative
stress, coupled with vascular cell secretion of pro-inflammatory
cytokines further propagates the inflammatory environment
and exaggerated immune response in patients with COVID-
19, promoting disease progression and multi-organ dysfunction.
Moreover, cardiac and vascular cell dysfunction pre-disposes
the CV system to a pro-inflammatory and pro-atherogenic state
and thus increases the risk of serious cardiac events. Therefore,
suppression of the cytokine storm, is key for improving patient
outcomes with COVID-19, whilst also protecting the CV
system. One such therapy is transplantation of mesenchymal
stem/stromal cells (MSCs).

MSCs AS A THERAPY FOR SEVERE
COVID-19 PATIENTS

Immunomodulatory Role of MSCs
An important function of MSCs is that they have powerful
immunomodulatory properties, possessing natural abilities to
detect changes in their environment such as inflammation.
Mesenchymal stromal cells can both directly and indirectly
stimulate immunomodulation by interacting with immune
cells and releasing various anti-inflammatory cytokines via
paracrine effects, respectively (131). Functional alterations to
dendritic cells, monocytes, macrophages, regulatory T-cells

(Tregs), and B-cells underpin MSCs’ immunomodulatory
capacity, whilst also through cell-to-cell interaction
mechanisms (13). Once systemically administered, a significant
portion of MSCs accumulate within the lungs, which can
promote anti-inflammatory effects, thus improving the
lung microenvironment and potentially restoring vascular
barrier integrity and reducing oedema; whilst also promoting
endogenous repair and regeneration mechanisms to reduce (or
prevent further) fibrosis of the lung (132, 133).

Animal models of ARDS lung injury due to influenza virus
have shown that infection by this and related viruses causes ion
channel transporter abnormalities which causes fluid secretion, a
major cause of the pulmonary oedema in the lungs of infected
individuals. In such animal models, MSCs prevent or reduce
the secretory effect of influenza virus on lung alveolar cell ion
channels, and when administered intravenously in aged animals
have resulted in increased oxygenation, improved respiration,
reduction in pro-inflammatory cytokines, and an increase in
survival (134).

Mesenchymal stromal cells are well-known to respond to the
inflammatory environment with multimodal activity resulting
in sustained anti-inflammatory effects; conversion of Th17
cells to anti-inflammatory FOXP3 Treg cells by MSC-secreted
transforming growth factor (TGF) β1 and the essential presence
of CCL18 producing type-2 anti-inflammatory macrophages
from differentiated pro-inflammatory monocytes (135). They are
known to dampen the innate immune response to insult (such
as acute lung injury, burn injuries) or infection via preventing
neutrophil infiltration into injured/infected sites (136–139) or via
shifting the phenotype of macrophages from an M1 to M2 anti-
inflammatory phenotype (140). Specifically the MSCs appear
to reduce inflammation via reducing macrophage secretion of
neutrophil chemoattractant proteins CXCL1, CXCL2 (137, 141)
as a result of activation of phosphorylation of p38 MAPK (141)
and greater IL-10 release (137), dampened production of IL-6
and TNF-α (137, 138), and suppression of reactive oxygen species
production by neutrophils (142, 143). Together this contributes
toward a shift from a pro- to an anti-inflammatory environment
and is an essential part of the immunomodulatory function
of MSCs as this helps prevent against autoimmunity (13), as
demonstrated in MSC-treated graft vs. host disease (144).

Mesenchymal stromal cells can also induce local and systemic
immunomodulatory responses independently of the cytokine
storm. For instance, MSCs can prevent the infiltration of
cells of the innate immune system, thereby indirectly reducing
the secretion of inflammatory cytokines. In a murine model,
BM-MSCs reduced CD45+ cells and neutrophil populations
in the mucosa via release of tumor necrosis factor-induced
protein 6 (TSG-6) (145). Both MSCs and TSG-6 induced
the expansion of regulatory macrophages, expressing IL-10
and inducible nitric oxide synthase (NOS), and increased the
population of FOXP3CD45+ cells. Interestingly, TSG-6 was
associated with MSC-mediated depletion of corneal, splenic,
and peripheral blood CD11b+ monocytes/macrophages in a
model of inflammatory corneal neovascularization (146). In
addition to TSG-6, MSCs can also release other bioactive
molecules that promote protective responses in innate immune
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cells, including kynurenic acid (147), spermine (148, 149), and
lactate (150). Adaptive immune cells, such as T and B cells,
are also direct targets of MSCs. Following transplantation,
MSCs form aggregates with B and T cells, stimulating the
production of FOXP3 and IL-10 (145). Mesenchymal stromal
cells directly inhibit the activation of cytotoxic CD8+ T-
cells via downregulation of CD25, CD38, and CD69 (151).
In B cells, MSCs downregulate chemotactic properties, with
no effect on costimulatory molecules or cytokine production
(152). Mesenchymal stromal cell-mediated indoleamine 2,3-
dioxygenase signaling promotes the survival and proliferation
of CD5+ Bregs (153). There are also data to suggest that
MSCs could act via extracellular vesicles and exosomes to
modulate innate and adaptive immunity (154, 155). The
immunoregulatory mechanisms of mesenchymal stem and
stromal cells in inflammatory disease are reviewed in (156).

Consequently, on the basis of these and other studies with
MSCs in animal models, clinical investigators have postulated
that human MSCs should be effective in the pathology of human
ARDS (157). Indeed in a report of allogeneic MSCs in ARDS
patients, a single low dose of cells (2 million cells/kg/BW)
achieved rapid reduction in inflammatory cytokines and efficacy
in influenza-related ARDS which was otherwise refractory to
conventional supportive therapy (158). For further insight on the
therapeutic potential of cell therapy to treat ARDS readers are
directed too (159, 160).

The systemic redistribution of MSCs have the ability to target
other organs that are damaged. As multi-organ damage is a
common manifestation in patients with severe COVID-19, this
makes MSCs an attractive therapy to combat not only lung
damage, but also damage observed in other organs, such as the
heart. Therefore, the use of MSCs to modulate the immune
response, avoiding, preventing or attenuating the cytokine storm
leading to multi-organ failure may be the key for the treatment of
COVID-19 infected patients.

Use of MSCs to Treat COVID-19
Table 1 summarizes the published clinical studies thus far using
MSCs as a therapy to treat COVID-19. Table 2 summarizes the
ongoing, registered clinical trials usingMSCs as a therapy to treat
COVID-19. For review articles on the rationale and treatment
of COVID-19-related ARDS using MSCs, readers are directed to
Moll et al. (165) and Can and Coskun (166).

The first clinical study undertaken in China, showed
that for seven patients with COVID-19-related pneumonia,
transplantation of 1 × 106 MSCs/Kg/BW allogeneic MSCs
was effective by restoring the balance of the immune system
resulting in significant resolution of signs and symptoms of
pulmonary disease (133). Before the transplantation, all patients
had COVID-19-related pneumonia with symptoms of high fever,
weakness, shortness of breath, and low oxygen saturation. Results
showed that all symptoms had disappeared by 2–4 days after
the transplantation. The oxygen saturations rose to ≥ 95% at
rest, without or with oxygen treatment. This was not the case
in the three placebo control patients. Among the MSC-treated
patients, one severe and two mild patients were able to make a
recovery and be discharged 10 days after treatment. The study

found improvement was particularly dramatic for an elderly
male patient in a severe critical condition (133). The improved
recovery time with MSC treatment would lead to decreased
hospitalization which would be vital for overwhelmed hospital
wards and ICUs.

The transplanted MSCs significantly elevated IL-10 and
reduced TNF-α concentrations in seven MSC transplanted
patients with COVID-19-pneumonia compared to the three
patients in the placebo control group receiving standard care.
In the severe (n = 4) and critically severe (n = 1) patients, a
significant elevation in Tregs and dendritic cells were observed
after MSC administration, compared with the mild and control
patients. Specifically, there was a switch from pro-inflammatory
cytokine producing CXCR3+CD4+ T cells, CXCR3+CD8+

T cells, and CXCR3+ NK cells to CD14+CD11c+CD11b
mid regulatory dendritic cell (DCreg) population, indicating
improvement in immunomodulatory function. Furthermore, in
the critically severe patient an over activation of T-cells and
natural killer (NK) cells were evident, however, after MSC
treatment, T-cells and NK cells were almost eradicated, with
the CD14+CD11c+CD11b mid DCregs restored to normal
levels (133). These findings demonstrate the ability of MSCs to
induce their immunomodulatory benefits in a set of patients with
COVID-19, restoring the balance of the immune response by
attenuating the cytokine storm.

These findings have been further supported within the
literature with a case study by Zhang et al. (162) demonstrating
a regression of COVID-19 symptoms between 2 and 7 days
post-Wharton’s Jelly derived human umbilical cord MSCs
administration, with a reduction in ground glass opacity
and pneumonia infiltration within the lungs 6 days post-
transplantation. Moreover, CD3+, CD4+, and CD8+ T-cells
were increased and CRP, IL-6, and TNF-α concentrations were
reduced. Another case report of a patient with severe COVID-
19 who experienced two cytokine storms, was treated with
a synergistic use of convalescent plasma and umbilical cord
MSCs. Treatment resulted in lymphocyte counts returning to
normal after the fourth day following convalescent plasma
administration and a reduction in inflammatory markers, with
a steady elevation in PaO2 following the administration of
umbilical cord MSCs (167).

One limitation to MSC therapies for treating COVID-
19 may be the expression of ACE2 and the predominant
serine protease responsible for priming the SARS-CoV-2
spike glycoprotein, TMPRSS2, which may promote SARS-
CoV-2 infection of transplanted cells and thus promote
further spread and progression of COVID-19. However, Leng
et al. (133) after performing 10x single cell RNA sequencing
analysis, demonstrated transplanted MSCs are ACE2-negative
and TMPRSS2-negative.

Taken together, via their immunomodulatory and reparative
role these studies provide support to the rationale for MSC
transplantation as a therapy to treat COVID-19. Moreover,
whilst these studies demonstrate evidence for their use
against lung damage, the suppression of pro-inflammatory
markers will provide protection against damage or further
damage to other organs. For example, with COVID-19 leading
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TABLE 1 | Summarisation of clinical studies and ongoing clinical trials assessing the therapeutic benefit of MSC transplantation in patients with COVID-19, including studies assessing the therapeutic potential of MSCs

in patients with acute respiratory distress syndrome (ARDS), without COVID-19.

Citation N Subjects MSC source and

dose

MSC timing Recipient site Results

Leng et al. (133) MSC transplant:

n = 7; CON: n = 3

COVID-19 pneumonia Clinical grade ACE2−

MSCs at 1 × 106

cells/kg

The time when symptoms

and/or signs were still getting

worse, even as the expectant

treatments were being

conducted

Systemic - ↑ IL-10 vs. CON

- ↓ TNF-α vs. CON

- ↔ IP-10

- Trend for ↑ VEGF vs. CON

- Inflammation, AAT, MYO and CK reduced in critically

severe patient with a reduction in ground-glass opacity

and pneumonia infiltration

Liang et al. (161) Case study Critical COVID-19 Allogenic hUCMSCs at

5 × 107 cells 3 times

Admitted 2 days after

symptoms onset and MSCs

were transplanted on the 9, 12,

and 15th days after admission.

In combination with antibiotics

and thymosin α1

Systemic No side effects were observed. After 2nd administration:

- ↓ Bilirubin, WBC and neutrophil count, CRP and

ALT/AST

- ↑ lymphocyte count

- ↑ CD3+, CD4+, and CD8+ T cells

- Trachea cannula removed

After 3rd administration:

- Pneumonia relieved

- Removed from ICU 2 days following

- Negative throat swab

Zhang et al.

(162)

Case study COVID-19 pneumonia -

History of diabetes

Wharton’s jelly-derived

hUCMSCs at 1 x 106

cells/kg

Admitted 5 days after

symptoms onset and MSCs

were transplanted on the 17th

day of admission

Systemic Post-transplant:

- COVID-19 symptoms disappeared 2 to 7 days

- ↓ Ground glass opacity and pneumonia infiltration day 6

- ↑ CD3+, CD4+ & CD8+ T cells

- ↓ CRP, IL-6 & TNF-α

Chen et al. (163) MSC transplant:

n = 17; CON: n = 44

H7N9-induced ARDS Allogenic menstrual-

blood-derived MSCs at

1 × 106 cells/kg

3 patients treated with 3

infusion at the early stage of

infection; 6 patients were

treated with 3 infusions at the

late stage of infection; 8

patients accepted 4 infusions

of at late stage of infection

Systemic At admission:

- No differences, except ↓ PCT vs. CON

At discharge:

- ↑ mortality rate of CON

- ↓ PCT, ALT, sCr, CK, PT, and D-dimer vs. CON

At follow-up (5 year; n = 4):

- ↑ Hb

- ↓ PT

Sengupta et al.

(164)

N = 23 COVID-19: cohort a

(mild COVID-19): n = 1;

cohort b (hypoxaemia

and COVID-19): n =

20; cohort c (intubated

COVID-19): n = 3

Bone-marrow derived

MSCs exosome

agent—ExoFlow-

−15mL

Not specified Systemic - 71% patients recovered and/or were discharged after

5.6 days post-infusion

- 13% remained critically ill

- 16% died

- 80% improved PaO2/FiO2 ratio within 3 days

- ↓ CRP, ferritin and D-dimer on day 5

-↑ CD3+, CD4+, and CD8+ T cells on day 5

CON, control; ACE2, Angiotensin converting enzyme 2; IL-10, Interleukin-10; TNF-α, Tumor necrosis factor α; IP-10, Interferon gamma-induced protein 10; VEGF, Vascular endothelial growth factor; AST, Aspartate amino transferase;

MYO, Myoglobin; CK, Creatine kinase; hUCMSC, human umbilical cord mesenchymal stem cells; WBC, white blood cell; CRP, C-reactive protein; ALT, Alanine aminotransferase; ICU, intensive care unit; ARDS, Acute respiratory distress

syndrome; PCT, Procalcitonin; sCr, serum creatinine; PT, Prothrombin time.
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TABLE 2 | List of registered, ongoing, clinical trials using mesenchymal stem/stromal cells (MSCs) as a therapy to treat COVID-19.

Clinical trials number Participants MSC source Outcomes

NCT04371393 (USA) Target: N = 300 MSCs (Remestemcel-L) at 2 × 106 cells/kg administered

twice during first week (second infusion 4 days following

first) plus standard care vs. placebo (Plasma-Lyte)

(second infusion 4 days following first) plus standard care

- All-cause mortality

- SAEs

- No. of days off mechanical ventilation

- Resolution/improvement of ARDS

- Length of stay

- Clinical improvement scale

- Hs-CRP, IL-6, IL-8, TNF-α

NCT03042143 (Northern

Ireland)—REALIST trial

Target: N = 75 Single infusion of human umbilical cord derived CD362

enriched MSCs at maximum tolerable dose from phase I

(dose escalation pilot study) plus standard care vs.

placebo (Plasma-Lyte) plus standard care

- Oxygenation index

- SAEs

- SOFA

- Respiratory compliance

- P/F ratio

- Driving pressure

- Extubation and reintubation

- Ventilation free days

- Length of ICU/hospital stay

- Mortality

NCT04444271 (Pakistan) Target: N = 20 Bone marrow derived MSCs at 2 × 106 cells/kg on day

1 and 7 plus standard care vs. saline injection plus

standard care

- Survival

- No. oxygen support days

- Time to negative nCoV test

- CT scan

- No. days to discharge

NCT04416139 (Mexico) Target: N = 10 Umbilical cord derived MSCs from De bank Laboratory

at 1 × 106 cells/kg (no control group—data compared to

controls treated in a previous trial)

- PaO2/FiO2 ratio

- HR and RR

- Body temperature

- Leukocyte, lymphocyte, and platelet counts

- PCT, fibrinogen, D-dimer, ferritin

- CRP, TNF-α, IL-1, IL-10, IL-6, IL-17

- VEGF

- T-cell analysis (CD4+ and CD8+)

- NK and dendritic cells

- SAEs

- CT scan

- nCoV-test

NCT04429763

(Colombia)—CELMA

Target: N = 30 Umbilical cord derived MSCs at 1 × 106 cells/kg plus

standard care vs. placebo (not stated) plus standard

care control

- NEWS scale

- Time to hospital discharge

- Respiratory function

- Inflammatory markers

- Hematological and renal assessments

NCT04315987 (Brazil) Target: N = 90 NestaCell MSCs at 2 × 107 cells/kg on days 1, 3, 5, and

7 plus standard care vs. placebo (not stated) on days 1,

3, 5, and 7 plus standard care

- Change in clinical condition

- Mortality

- SpO2

- PaO2/FiO2 ratio

- T-cell analysis (CD4+ and CD8+)

- SAEs

- Blood count and cardiac, hepatic, and renal profiles

NCT04366323 (Spain) Target: N = 26 Allogenic and expanded adipose tissue derived MSCs at

8 × 106 cells × 2 (no control group)

- Safety of administration (SAEs)

- Efficacy of administration

NCT04456361 (Mexico) Target: N = 9 Wharton’s jelly derived MSCs at 1 × 108 cells/kg (no

control group)

- SpO2

- PaO2/FiO2 ratio

- Ground glass opacity and pneumonia infiltration

- LDH, CRP, D-dimer, and Ferritin

NCT04366271 (Spain) Target: N = 106 Undifferentiated allogenic umbilical cord MSCs (dose not

stated) vs. standard care

- Mortality due to lung involvement

- All-cause mortality

- Days without mechanical ventilation

- Days without vasopressors

- Negative nCoV-test

- SAEs

(Continued)
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TABLE 2 | Continued

Clinical trials number Participants MSC source Outcomes

NCT04252118 (China) Target: N = 20 MSCs (source not stated) at 3 × 107 cells at day 0, 3,

and 6 vs. standard care

- CT scan

- SAEs

- Pneumonia evaluation

- Mortality

- T-cell analysis (CD4+ and CD8+)

- AAT, CRP, and CK

NCT04313322 (Jordan) Target: N = 5 Wharton’s jelly derived MSCs at 1 × 106 cells/kg for 3

doses, spaced 3 days apart (No control group)

- Alleviations of symptoms

- CT scan

- Negative nCoV-test

NCT04336254 (China) Target: N = 20 Allogenic human dental pulp MSCs at 3 × 107 cells at

day 1, 4, and 7 vs. saline control at day 1, 4, and 7

- TTCI

- CT scan

- Immune function markers

- Time for negative nCoV-test

- Blood count and classification

- SpO2

- RR

- Body temperature

- SAEs

- CRP

NCT04346368 (China) Target: N = 20 Bone marrow derived MSCs at 1 × 106 cells/kg at day 1

vs. standard care

- PaO2/FiO2 ratio

- SAEs

- Clinical outcome

- No. days in hospital

- CT scan

- Changes in viral load

- T-cell analysis (CD4+ and CD8+)

- Mortality

- CRP

NCT04288102 (China) Target: N = 100 Umbilical cord derived MSCs at 4 × 107 at day 0, 3, and

6 vs. saline control at day 0, 3, and 6

- Pneumonia evaluation

- Time to clinical improvement

- PaO2/FiO2 ratio

- Days on oxygen therapy

- SpO2

- 6-min walk test

- Lymphocyte counts

- Cytokine/chemokine assessment

- SAEs

- All-course mortality

NCT04273646 (China) Target: N = 48 Umbilical cord derived MSCs at 0.5 × 106 cells/kg at

day 1, 3, 5, and 7 plus standard care vs. saline control at

day 1, 3, 5, and 7 plus standard care

- Pneumonia evaluation

- SAEs

- Survival

- Organ failure assessment

- CRP and Procalcitonin

- Lymphocyte count

- T-cell analysis (CD3+, CD4+, and CD8+)

- CD4+/CD8+ ratio

NCT04339660 (China) Target: N = 30 Umbilical cord derived MSCs at 1 × 106 cells/kg vs.

saline control

- TNF-α, IL-1β, IL-6, TGF-β, IL-8, PCT, CRP

- SpO2

- Mortality

- CT scan

- Blood count recovery time

- Duration of respiratory symptoms

- Negative nCoV-test

NCT04382547 (Belarus) Target: N = 40 Allogenic pooled olfactory mucosa derived MSCs (dose

not stated) vs. standard care control

- nCoV-test

- SAEs

NCT04457609 (Indonesia) Target: N = 40 Umbilical cord derived MSCs at 1 × 106 cells/kg with

Oseltamivir and Azithromycin vs. standard care with

Oseltamivir and Azithromycin

- Clinical improvement markers

- General laboratory outcomes

- PCT, bilirubin, D-dimer, and fibrinogen

- Troponin and NT-proBNP

- LIF, IL-6, IL-10, ferritin, CXCR3

- T-cell analysis (CD4+, CD8+, and CD56+)
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TABLE 2 | Continued

Clinical trials number Participants MSC source Outcomes

- VEGF

- CT scan

NCT04352803 (USA) Target: N = 20 Autologous adipose derived MSCs at 0.5 × 106 cells/kg

vs. standard care control

- SAEs

- Progression and time to/on mechanical ventilation

- Length of hospital stay

- All-cause mortality

NCT04490486 (USA) Target: N = 21 Umbilical cord derived MSCs at 1 × 108 cells on day 0

and 3 vs. 1% human serum albumin in Plasmalyte A on

day 0 and 3

- SAEs

- Inflammatory markers

- COVID-19 viral load

- SOFA score

- Electrolyte levels

- LDH

- No. ICU discharges

- Vasoactive agent use

- Mortality

- Immune markers

- CT scan

NCT04522986 (Japan) Target: N = 6 Adipose derived MSCs at 1 × 108 cells once a week for

4 weeks (no control group)

- SAEs

NCT04461925 (Ukraine) Target: N = 30 Placenta derived MSCs at 1 × 106 cells/kg once every 3

days for 3 infusions vs. standard care control

- PaO2/FiO2 ratio

- Length of hospital stay

- Mortality

- CRP

- CT scan

- Duration of respiratory symptoms

- Blood count recovery time

NCT04362189 (USA) Target: N = 100 Allogenic adipose tissue derived MSCs (Hope

Biosciences) at 1 × 106 cells/dose at day 0, 3, 7, and 10

vs. saline control at day 0, 3, 7, and 10

- IL-6, CRP, TNF-α, and IL-10

- Oxygenation

- RTRA

- ECG assessment

- Routine blood assessments

- Cardiac, hepatic, and renal assessment

- Blood count

- Platelets, Prothrombin time, D-dimer, and INR

- Immune markers

- SAEs

- Chest X-ray

- CT scan

- Negative nCoV-test

NCT04371601 (China) Target: N = 60 Umbilical cord derived MSCs at 1 × 106 cells/kg once

every 4 days for 4 infusions vs. standard care control

- PaO2/FiO2 ratio

- TNF-α and IL-6

- Immune markers

- CRP and calcitonin

NCT04348461 (Spain) Target: N = 100 Allogenic expanded adipose tissue derived MSCs at 1.5

× 106 cells/kg vs. standard care control

- Efficacy of administration of MSCs

- SAEs

NCT04452097 (USA) Target: N = 9 Umbilical cord derived MSCs (3 groups):

- Low dose: 0.5 × 106 cells/kg

- Middle dose: 1 × 106 cells/kg

- High dose: 1.5 × 106 cells/kg

- SAEs

- TEAEs

- Selection of appropriate dose for Phase II trial

NCT04494386 (USA) Target: N = 60 Umbilical cord lining derived MSCs at 1 × 106 cells/dose

vs. saline control—either a single dose or 2 doses

separated by 48 h

- DLT

- SAEs

- Berlin definition of ARDS

- SpO2 and PaO2/FiO2 ratio

- No. of VFDs

- Blood count

- Routine blood assessments

- BUN and urinalysis

- AAT

NCT04345601 (USA) Target: N = 30 MSCs (source not specified) at 1 × 108 cells vs.

standard care control

- SAEs

- Change to clinical status
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TABLE 2 | Continued

Clinical trials number Participants MSC source Outcomes

NCT04377334 (Germany) Target: N = 40 Allogenic bone marrow derived MSCs (dose not stated)

vs. standard care control

- Lung injury score

- D-dimer

- Pro-resolving lipid mediators

- Phenotype of immune cells

- Cytokine and chemokine analysis

- Survival

- Extubation

- Lymphocyte subpopulation

- Complement molecules

- SARS-CoV-2 specific antibody

NCT04390139 (Spain) Target: N = 30 Wharton’s jelly derived MSCs at 1 × 106 cells/kg on day

1 and 3 vs. placebo (not stated) on day 1 and 3

- All-cause mortality

- SAEs

- Need for mechanical ventilation

- No. of VFDs

- PaO2/FiO2 ratio

- SOFA index

- APACHE II score

- Duration of hospitalization

- Immune response

- Feasibility of MSCs

- nCoV-test

- LDH, D-dimer, and ferritin

- Subpopulations of lymphocytes and immunoglobins

- In vitro response of receptor lymphocytes

NCT04392778 (Turkey) Target: N = 30 MSCs (source not stated) at 3 × 106 cells/kg on day 0,

3, and 6 to COVID-19 patients with a ventilator vs. saline

control on day 0, 3, and 6 to COVID-19 patients with a

ventilator vs. standard care control to COVID-19 patients

without a ventilator

- Clinical improvement

- CT scan

- Negative nCoV-test

- Blood tests

NCT04467047 (Brazil) Target: N = 10 MSCs (source not stated) at 1 × 106 cells/kg (safety and

feasibility study)

- Survival

- CRP

- Length of hospital stay

- PaO2/FiO2 ratio

- Liao’s score (2020)

- CT scan

- Negative nCoV-test

NCT04398303 (USA) Target: N = 70 Allogenic umbilical cord derived MSCs at 1 × 106

cells/kg vs. MSC conditioned media at 100ml vs.

placebo (MEM-α) at 100ml

- Mortality

- No. of VFDs

- No. of days on O2 therapy

- No. of ICU-free days

- Pulmonary function

- Berlin criteria score

NCT04437823 (USA) Target: N = 20 Umbilical cord derived MSCs at 0.5 × 106 cells/kg on

day 1, 3, and 5 vs. standard care control

- SAEs

- CT scan

- Negative nCoV-test

- SOFA score

- Mortality

- Clinical respiratory changes

NCT04269525 (China) Target: N = 16 Umbilical cord derived MSCs at 3.3 × 107 cells on day

1, 3, 5, and 7

- PaO2/FiO2 ratio

- Mortality

- Length of hospital stay

- nCoV PCR and antibody-test

- Lung imaging

- WBC and lymphocyte count

- PCT

- IL-2, IL-4, IL-4, IL-6, IL-10, TNF-α, γ-IFN, and CRP

- NK cells

- T-cell analysis (CD4+, CD8+)

(Continued)
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TABLE 2 | Continued

Clinical trials number Participants MSC source Outcomes

NCT04447833 (Sweden) Target: N = 9 Allogenic bone marrow derived MSCs at 1 × 106

cells/kg (n = 3) and 2 × 106 cells/kg (n = 6)

- SAEs

- All-cause mortality

- Leucocytes and thrombocytes

- CRP

- Prothrombin

- Creatinine

- AST and AAT

- NT-proBNP

- Blood pressure

- Body temperature

- Efficacy for MSC use

- Lung function

- 6-min walk test

- Quality of life assessment

- Blood biomarkers

- Sensitisation test

NCT04491240 (Russia) Target: N = 90 Inhalation of MSC exosomes at 0.5–2 × 1010

nanoparticles for COVID-19 patients (n = 30) and

SARS-CoV-2 pneumonia patients (n = 30) vs. inhalation

of solution free placebo (n = 30)—inhalation twice a day

for 10 days

- SAEs

- TTCI

- Blood gases

- SpO2

- Chest imaging

NCT04333368 (France) Target: N = 40 Umbilical cord Wharton’s jelly derived MSCs at 1 × 106

cells/kg at day 1, 3, and 5 vs. placebo (NaCl) control at

day 1, 3, and 5

- PaO2/FiO2 ratio

- Lung injury score

- Mortality

- No. of VFDs

- Use of sedatives

- Use of neuromuscular blocking agent

- ICU-acquired weakness

- SAEs

- Quality of life at 1 year

- Cytokine analysis

- Anti-HLA antibodies

NCT04466098 (USA) Target: N = 30 Thawed product containing MSCs (source not stated) at

300 × 106 cells 3 times separated by 48 h vs. placebo

(dextran and human serum albumin) control 3 times

separated by 48 h

- SAEs

- Inflammatory markers

- PaO2/FiO2 ratio

- Mean airway, peak and plateau pressure

- PEEP

- Mortality

- No. of ICU free days

- No. of VFDs

- Acute lung injury score

- No. of days off O2 therapy

NCT04445220 (USA) Target: N = 22 Allogenic human MSCs at 2.5 × 106 cells (low dose) and

7.5 × 106 cells (high dose) vs. standard care

control—patients with COVID-19 and acute kidney injury

- Safety and tolerability

- SAEs

NCT04276987 (China) Target: N = 30 Allogenic adipose tissue derived MSC exosomes inhaled

at 2 × 108 nano-vesicles on 5 consecutive days

- SAEs

- TTCI

- No. of patients weaning from mechanical ventilation

- Vasoactive agent use

- No. of days on mechanical ventilation

- Mortality

- SOFA score

- Lymphocyte count

- CRP, LDH, and D-dimer

- NT-proBNP

- IL-1β, IL-2R, IL-6, and IL-8

- Chest imaging

- Negative nCoV-test

(Continued)
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TABLE 2 | Continued

Clinical trials number Participants MSC source Outcomes

IRCT20140528017891N8

(Iran)

Target: N = 10 Umbilical cord derived MSCs at 0.5–1 million cells/kg at

1st, 3rd, and 6th day vs. saline injection at 1st, 3rd, and

6th day plus standard care

- Mortality

- Pneumonia severity index and CT scan

- SpO2 supply

- CRP and PCT

- Lymphocyte count

- T-cell analysis (CD3+, CD4+, and CD8+)

NCT04355728 (USA) Target: N = 24 Umbilical cord derived vs. standard care control - Adverse events

- 90 day survival post-infusion

- No. of VFDs

- Change in oxygenation index and plat-PEEP

- SOFA and SIT scores

- TnI, CRP, and D-dimer

- WBC and platelet count

- AA/EPA ratio

- 25-Hydroxyl Vitamin D

- Alloantibody levels

CHICTR2000030224

(China)

Target: N = NA MSCs (source unknown): critical and severe group

injected with MSCs vs. critical and severe control group

injected with saline

- SpO2

- CT scan

- Temperature

- Routine blood markers

- Inflammatory markers

- Hepatic and renal function

ChiCTR2000030173 (China) Target: N = NA Umbilical cord derived vs. standard care control - Pulmonary function

- nCoV pneumonic nucleic acid test

- Pulmonary CT and chest radiography

CHICTR2000030138

(China)

Target: N = NA Umbilical cord derived vs. standard care plus saline

injection control

- Clinical index

ChiCTR2000030088 (China) Target: N = NA Umbilical cord Wharton’s jelly derived MSCs at 1 × 106

cells/kg vs. standard care and saline injection control

- nCoV pneumonic nucleic acid test

- CT scan of ground glass shadow

CHICTR2000029990;

TARGET N = NA (China)

Target: N = NA MSCs (source unknown) vs. standard care and saline

injection control

- Respiratory system function (O2 saturation)

recovery time

ChiCTR2000029817 (NA) Target: N = NA Umbilical cord derived MSCs and NK cells:

- High dose group: NK cells and MSCs at > 5 × 109;

Once every 2 days, five times

- Conventional dose group: NK cells and MSCs at > 3

× 109; once every 2 days, three times

- Preventive dose group: NK cells and MSCs at > 3 ×

109; one infusion

- Time to disease recovery and time to negative nCoV

test

- Clearance rate and time of main symptoms

- Transfer to ICU time

- Routine blood tests

- Biochemical indicators

- Immune indices

CHICTR2000029816 (NA) Target: N = NA Umbilical cord derived MSCs (dose not stated) vs.

standard care control

- Time to disease recovery and time to negative nCoV

test

- Clearance rate and time of main symptoms

- Transfer to ICU time

- Routine blood tests

- Biochemical indicators

- Immune indices

ChiCTR2000029580 (China) Target: N = NA Ruxolitinib and MSCs (source and dose not stated) vs.

standard care control

- Safety

CHICTR2000029569

(China)

Target: N = NA Umbilical cord derived blood mononuclear cells

conditioned medium vs. standard care control

- PSI, CT, and X-Ray

- Arterial blood gas

- Assisted breathing time

- Mortality

- Disease evolution

- Hospitalization days

- Safety outcome index

EUCTR2020-001450-22-

ES

(Spain)

Target: N = NA Allogenic umbilical cord derived MSCs (dose not stated) - Mortality

- Mechanical ventilation incidence

- Need for vasopressors

- Safety profile of MSCs

- Neutrophils, monocytes and NK cells

(Continued)
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TABLE 2 | Continued

Clinical trials number Participants MSC source Outcomes

PCT, ferritin, D-dimer and hs-troponin

- PCR test

- B and T lymphocytes

- Interleukins, Th1, 2&17, NLRP3, and HMGB1

IRCT20200421047150N1

(Iran)

Target: N = NA Umbilical card Wharton’s jelly derived: three injections at

0.5–1 million cells/kg at 1st, 3rd, and 6th day. Control

receiving standard care plus saline injection at 1st, 3rd,

and 6th day

- Not stated

ACTRN12620000612910

(Australia)

Target: N = NA Mesenchymoangioblast derived MSCs (CYP-001) at 2 ×

106 cells/kg twice vs. ICU standard care control

- Not stated

NCT04361942 (Spain) Target: N = 24 Allogenic MSCs (source unknown) vs. placebo (not

stated)

- Withdrawal of invasive mechanical ventilation

- Mortality

- Patients achieving a clinical response

- Patients achieving a radiological response

EUCTR2020-001266-11-

ES

(Spain)

Target: N = 100 Allogenic adipose tissue MSCs - Efficacy and safety of administration of MSCs

- Survival

- Temperature

- Withdrawal of mechanical ventilation

- Patients transitioning to O2 therapy from mechanical

ventilation

- O2 therapy duration

- Days in ICU

- Duration of hospitalization

- PaO2/FiO2

- Chest radiology

- Routine blood markers

- Inflammatory markers

- Coagulation markers

- Immune markers

Source: https://clinicaltrials.gov/ct2/home and https://trialstreamer.robotreviewer.net/.

hs-CRP, high sensitivity C-reactive protein; IL-, Interleukin-; TNF-α, Tumor necrosis factor-α; SAE, Serious adverse event; HR, Heart rate; RR, Respiratory rate; PCT, Procalcitonin; VEGF,

Vascular endothelial growth factor; RTRA, Return to room air; INR, International normalized ratio of blood coagulation; TEAE, treatment emergent serious adverse events; DLT, Dose

limiting toxicity; VFD, Ventilator free days; BUN, Blood urea nitrogen; APACHE, Acute physiology and chronic health disease classification; AST, Aspartate aminotransferase; NEWS,

National early warning score; LDH, Lactate dehydrogenase; AAT, Alanine aminotransferase; CK, Creatine kinase; TTCI, Time to clinical improvement; LIF, Leukemia inhibiting factor;

PEEP, Positive end-expiratory pressure; SOFA, Sequential organ failure assessment; SIT, Small identification test; TnI, Troponin I; AA, Arachidonic acid; EPA, Eicosapentaenoic acid;

nCoV, novel coronavirus; Polymerase chain reaction; NK, Natural killer; Th, T helper; NLRP3, NLR Family Pyrin Domain Containing 3; HMGB1, High mobility group box 1.

to myocardial injury, MSC transplantation could offer a
cardioprotective role.

MSC TRANSPLANTATION COULD
ATTENUATE DAMAGE AND FACILITATE
REPAIR OF THE CARDIOVASCULAR
SYSTEM SEEN WITH COVID-19

In addition to the potential for MSCs to modulate the immune
response and subsequent tissue damage in COVID-19, there is
prospect for MSCs to treat the cardiac and cardiovascular effects
of the SARS-CoV-2 virus, which may be long-lasting (Figure 1).
As previously discussed, in a large proportion of patients there
is evidence of myocardial injury, as suggested by elevated cTnI
and cTnT levels (16, 19, 168, 169), and ventricular dysfunction
indicated by raised circulating NT-proBNP (29, 31). Elevated
cardiac biomarkers are associated with more severe prognosis
and mortality in COVID-19 patients (18, 26, 29, 169, 170),
suggesting the cardiac effects of the virus can drive worsening
prognosis for the patient. Moreover, there are a number of studies

detailing the severe cardiac effects of the virus, such as the
development of heart failure (HF) (28), as well as incidences of
acute coronary syndromes (ACS) (171, 172), ischaemic stroke
(173) and myocardial infarction (MI) (171, 172). Given the
significant deleterious effect of the virus on the myocardium,
treatment options to minimize or to alleviate the cardiovascular
side effects of the infection and disease are needed.

Treatment with MSCs may offer a clinical benefit to patients
due to their regenerative and reparative potential if there is
significant myocardial injury and myocardial cell death. There
have been a number of studies investigating the use of autologous
(174–180) or allogeneic MSCs (178, 181–184) for the treatment
of cardiomyopathies and post-MI. Although the use of MSCs
to treat cardiovascular dysfunction and damage in COVID-19
patients has yet to be fully elucidated, the studies over the past
decade provide good preliminary evidence for researchers and
clinicians alike to further investigate the use of this cellular
therapy in COVID-19 patient cohorts.

Several studies in pig, rat and mouse models of MI showed
significant reduction in infarct size or fibrosis (185–194), and
improvements in cardiac function (185–187, 189, 190, 195, 196).
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FIGURE 1 | MSC transplantation attenuates the damaging effects of the cytokine storm through immunomodulation and improving tissue repair and regeneration.

A meta-analysis of 52 pre-clinical animal studies of cell therapy
for ischaemic heart disease reported that MSC therapy is safe and
associated with significant ∼7.5% improvements in LVEF (197).
In order to elicit increased efficacy, cell combination therapy has
been investigated. In swine models of MI, human bone marrow-
derivedMSCs and cardiac-derived stromalMSC stem/progenitor
cells from autologous or allogeneic sources were co-injected into
the border zone of the infarct. Results showed that by combining
the cell types there was greater therapeutic efficacy, improving
cardiac repair/regeneration and LV functional recovery without
adverse immunologic reaction (198, 199).

These promising findings have been followed by a number of
human clinical trials. In a number of these human studies, the
infusion and transplantation of MSCs have been deemed safe for
treating MI patients (179, 200) as well as having been successful
in improving some cardiac functional measures post-MI, such
as LVEF (175, 177, 200–204), and improving global longitudinal
strain measures (201). Penn et al. (204) showed in a phase
I clinical trial in patients with first ST-elevation–myocardial
infarction (STEMI), delivery of MSCs (MultiStem) using a
coronary adventitial delivery system was well-tolerated and safe.
In patients who exhibited significant myocardial damage, the
delivery of ≥50 million MultiStem resulted in improved EF and

stroke volume 4 months later (204). However, some of these
studies, and others, found no difference between MSC treatment
and no treatment/placebo on infarct size or perfusion changes
in the months following the enrolment to the study (177, 205,
206). Additionally, several human studies fail to observe any
clinical benefit for patients (179, 184, 205, 207). Inconsistent
findings are likely due to the number and phenotype of MSCs
being transplanted, their source, as well as mode and location of
administration (myocardial, epicardial, or endocardial injection;
systemic transplantation).

Despite mixed findings on the efficacy for improving cardiac
function, MSCs can offer potential as regenerative cells for the
CV system, where through a paracrine mechanism they activate
endogenous repair mechanisms leading to blood vessel growth
via angiogenesis, improved cardiomyocyte survival, reduced
cardiomyocyte reactive hypertrophy, and fibrosis (Figure 1).
We have clonally derived (from a single cell) a population of
stromal cells with multipotent stem/progenitor cell properties
from the adult mammalian heart, including human (208–
210). These cells produce a repertoire of pro-survival and
cardiovascular regenerative growth factors. We administered
these cells intracoronary at differential doses (5 × 106, 5 ×

107, and 1 × 108) in three groups of white Yorkshire female
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pigs with MI, 30min after coronary reperfusion. Pig serum
was injected to six control pigs after MI. We found a high
degree of cell engraftment in the damaged pig myocardium. By
3 weeks after MI and cell transplantation, there was increased
new cardiomyocyte and capillary formation, which was not
evident in the control hearts (194). Moreover, cell treatment
preserved myocardial wall structure and attenuated remodeling
by reducing cardiomyocyte hypertrophy, apoptosis, and scar
formation (fibrosis) (211).

In mouse, rat and in vitro cell model studies, MSCs have
been found to be potently angiogenic (192, 212–221). As
outlined previously, MSCs most likely promote angiogenesis via
paracrine means, such as secretion of angiogenic factors; vascular
endothelial growth factor (VEGF), basic fibroblast growth factor
(bFGF), transforming growth factor beta (TGF-β), and platelet-
derived growth factor (PDGF) (222, 223), which are promoted
under hypoxic conditions (224). Proteomic analysis of secreted
exosomes, which carry lipids, proteins and genetic material to
target tissues, from MSCs reveal several target pathways (225).
These include inflammation and angiogenesis, of which, the
angiogenesis pathway revealed specific interaction with NF-κ-B
signaling. When these exosomes were cultured with HUVECs, a
significant increase in endothelial tube formation was detected in
a dose-dependent fashion (225). Zhang et al. (226) investigated
the potential forMSC-derived exosomes to promote angiogenesis
and cardiac repair post-MI in rats. Firstly, they observed
that exosomes isolated from MSCs promoted tube formation
of cardiac stem/progenitor cells in vitro. They subsequently
transplanted cardiac stem/progenitor cells internalized with these
exosomes into a rat model of MI, and observed an increased
capillary density, which was followed by an improvement in
LVEF, and reduction in fibrosis after 28 days post-implantation.
Interestingly, the source of MSCs can significantly alter their pro-
angiogenic potential. Du et al. (219) isolated MSCs from bone
marrow, adipose tissue, umbilical cord and placenta and assessed
their pro-angiogenic capacity using in vitro tube formation
assays, as well as endothelial cell proliferation and assessment
of angiogenic gene expression by RT-PCR. They found that
MSCs isolated from the bone marrow and the placenta promoted
angiogenesis in vitro to a greater extent than MSCs from adipose
tissue and umbilical cord. In addition, they found that MSCs
from these sources had a greater expression of VEGF mRNA and
protein (219).

As well as promoting angiogenesis, MSCs may promote
recovery from cardiac injury/insult by differentiating into
mature cardiomyocytes, or by promoting resident cardiomyocyte
proliferation. Mesenchymal stromal cells have a broad
differentiation capacity, and have been shown to be able to
differentiate into osteoblasts (227), neuronal cells (228) as well
as upregulate cardiomyocyte markers, such as cardiac myosin
heavy chain (229) and troponin T (229, 230). However, several
studies have failed to observe significant trans-differentiation of
MSCs into either endothelial cells or functional cardiomyocytes
(189, 231, 232). Otherwise, MSCs have been found to promote
cardiomyocyte DNA synthesis and proliferation, and signal
cardiomyocyte gene upregulation (including VEGF, cyclin
A2, and TGF-β2) (194, 233). Through their paracrine activity,

they also prevent cardiomyocyte cell apoptosis (188, 221, 234–
236) with several studies observing a reduced activation of
the caspase-3 pathway in cardiomyocytes exposed to either
MSC-derived exosomes (236) or conditioned media (237).

Other methods to maximize cellular function of cell therapies
include “priming” which involves promoting expression of
certain receptors, proteins and cytokines in the cells prior to
transplantation or infusion. Mesenchymal stromal cells primed
in vitro, prior to in vivo administration may offer opportunity
to improve the efficacy of MSC treatment. Several studies have
shown that by priming these cells in vitro, for example to highly
express GATA-4 (MSCGATA−4) (238), or CXCR4 (MSCCXCR4)
(233, 239) may improve the angiogenic paracrine activity of
these cells.Mesenchymal stromal cells which were overexpressing
GATA-4 contained more VEGF and IGF-1 protein, which,
when blocked with neutralizing antibodies, attenuated the pro-
angiogenic activity of MSCGATA−4 (238). Moreover, cardiac-
derived stem/progenitor cells that express high levels of GATA-
4 have shown to foster cardiomyocyte survival through IGF-
1 paracrine signaling (240). MSCCXCR4 cells themselves were
found to be highly angiogenic compared to un-primed MSCs,
with greater expression of VEGF, which may partly explain
the greater in vitro tube formation observed in a study by
Zhang et al. (239). CXCR4 over-expression may be beneficial in
promoting cell migration to ischaemic tissue due to the ligand
stromal-derived factor-1 (SDF-1) (241), which is released in
ischaemic tissue (242, 243). Thus, by selecting CXCR4+ MSCs,
or promoting CXCR4 expression in vitro, MSC migration to
target infarct or damaged areas may be improved, subsequently
allowing the cells to stimulate repair in the area required
more efficiently.

Heart tissue damage post-MI, although largely due to
ischaemic tissue injury and insult and associated cardiomyocyte
loss, is also due to inflammation associated in the hours and days
post-MI (244, 245). This inflammatory response is associated
with further cardiac tissue damage and injury, as indicated
by sustained and continual increases in cTnI and cTnT (246).
Indeed MSC exosomes can regulate T-cell proliferation (215)
as well as alter the balance between M1 and M2 macrophages
in the infarcted heart (191), and the number of neutrophils
and NK cells post-MI in the cardiac tissue (244) suggesting
strong anti-inflammatory properties of the MSCs. In fact, a
study by Luger et al. (244) found that MSC exosomes were
able to reduce the number of NK cells in cardiac tissue post-
MI, followed by a separate experiment whereby depleting NK
cells 24 h prior to MI in mice, reduced the resulting infarct
size. These findings infer that NK cells are involved in causing,
or significantly contributing to, the cardiac damage resulting
from an ischaemic challenge, and that MSCs could attenuate this
inflammation. Taken together, it appears that MSCs also promote
cardiac recovery via attenuating the ongoing inflammatory
response, which is also a likely pathway for COVID-19-associated
myocardial injury.

Although there is significant promise in the use of MSCs for
cellular therapy to treat cardiovascular conditions, their efficacy
for use in treating COVID-19-related cardiac dysfunction and
injury is yet to be determined.
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MSC TRANSPLANTATION IN COVID-19
PATIENTS COULD ALLEVIATE
PULMONARY FIBROSIS

Fibrotic disorders in the lung, such as idiopathic pulmonary
fibrosis (IPF), share similar comorbidities with COVID-19. Both
conditions are progressive in nature, often because of worsening
lung injury and fibrosis of alveolar walls. This underscores a
common anti-fibrotic strategy.

Clinical trials with anti-fibrotic agents have shown promise
in reversing progression of pulmonary fibrosis, as evidenced
with nintedanib (247) and pirfenidone (248), which were
approved by the FDA more than 6 years ago (249). This is
supported by findings from pre-clinical animal models. An
animal model of IPF with increased fibrosis and defective
clearance of fibrocytes and myofibroblasts, was improved upon
treatment with nintedanib (250). However, whether these agents
will have clinical efficacy in COVID-19 remains unknown.
Notably, commercial anti-fibrotic drugs, such as nintedanib and
pirfenidone, are only available for oral delivery. This limits
their use in COVID-19 patients, given that the population with
fibrotic lung damage are usually hospitalized and intubated.
Moreover, the hepatoxic side effects of both drugs and the
contraindication of pirfenidone in renal dysfunction further limit
their use, especially noting that SARS-CoV-2 is associated with
development of both liver and kidney dysfunctions (58, 251).
This highlights the need for better therapeutic strategies for lung
fibrosis. Novel treatment options, such as cell-based therapy for
replenishing lost functional capacity of resident stromal cells,
have great potential for patients with COVID-19.

Cell-based therapy has been keenly investigated in the pre-
clinical models using bleomycin-induced pulmonary fibrosis.
Bleomycin-induced lung injury is a well-characterized model of
human pulmonary fibrosis, with an initial phase of inflammatory
activation and consequent fibrosis. In mice, intravenous injection
of the primary human amniotic epithelial cells (hAECs) reduced
lung inflammation and expression of the pro-fibrotic ligand TGF-
β1 (252). Human amniotic epithelial cells transplantation also
reduced the Ashcroft score, a validated marker of severity of
lung fibrosis (253), likely due to increased degradation by matrix
metalloproteinase (MMP)-2 and reduced expressions of tissue
inhibitors of MMPs (TIMP)-1 and 2 (252). A pooled analysis
of pre-clinical evidence demonstrated significantly better results
on Ashcroft score and collagen contents for hAECs compared
to placebo (254). Much akin to hAECs, MSCs have been
shown to ameliorate pulmonary injury induced by bleomycin
in experimental models (255). This has been demonstrated for
bone marrow, umbilical cord, and amniotic fluid derived MSCs,
respectively. The therapeutic efficacy of MSCs is also reported in
othermodels of lung fibrosis. For example, adipose tissue-derived
MSCs significantly attenuated lung function and fibrosis in a
rodent model of silica-induced lung fibrosis (256). In summary,
these data show that MSC-based therapy is a promising tool
to address the pathophysiological consequences of COVID-
19 in the lung. However, clinical translation would require
more refined understanding of the anti-fibrotic mechanisms
of MSCs.

Cumulative data show that MSCs protect against fibrosis
via hepatocyte growth factor (HGF)-mediated mechanisms.
Hepatocyte growth factor was originally identified as a
mitogen for hepatocytes. It has now been shown to mediate
mitogenic, anti-inflammatory, anti-apoptotic, and regenerative
effects during tissue repair. In models of I/R lung injury,
transplanted HGF-overexpressed MSCs resulted in lessened
oxidative stress, inflammation, and attenuated lung injury
(257). Hepatocyte growth factor also prolonged the survival of
engrafted MSCs via increased expression of the anti-apoptotic
protein Bcl-2 and repression of caspase-3 activation. In the
context of fibrosis, there is evidence to suggest that HGF
modulates pro-fibrotic pathways. For instance, microvesicles
from human Wharton’s Jelly MSCs inhibited apoptosis, fibrosis
in pulmonary tissues, and activation of PI3K/AKT/mTOR
pathway (258). These effects were blocked by using HGF-mRNA-
deficient microvesicles or PI3K inhibitor. Hepatocyte growth
factor also inhibits alveolar epithelial-to-mesenchymal transition
and production of TGF-β1 independent of MSCs (259).

Other pathways have also been implicated in mediating
the anti-fibrotic role of MSCs, including the activation of
MMP-9 (260), programmed death (PD)-1/PD-L1 (261), and
anti-apoptotic Bcl-2 (256, 257). MMP-9 is said to promote
the degradation of collagen deposits, thereby facilitating the
repair process following lung injury. On the other hand,
MSC transplantation has been associated with repressed
TGF-β1/SMAD3 (255), Wnt/β-catenin signaling (262),
MyD88/TGF-β1 signaling (263), and N-methyl-d-aspartate
receptor activity (264). Inhibition of Wnt/β-catenin signaling
has a two-fold function. Firstly, it prevents downstream
activation of pro-fibrotic genes and development of fibrosis; and,
secondly, it rescues lung resident MSCs from differentiating to
myofibroblasts (265).

Whether similar benefits will be seen in COVID-19 patients
remains to be established. A single center, non-randomized, dose-
escalation phase 1b trial of eight patients withmoderate-to-severe
IPF treated with intravenous bone marrow-derived MSC showed
a good short-term safety profile (266). CT fibrosis score did
not change 6 months after administration compared to baseline;
however, there was no further worsening of fibrosis during
follow-up. Similar findings were noted in a larger (randomized)
trial of 20 IPF patients treated with high-dose bone marrow-
derived MSCs (267). Subsequently, a trial of 61 patients with
influenza A (H7N9)-induced ARDS showed significant reduction
in the inflammatory marker CRP following menstrual-blood-
derived MSC treatment, compared to placebo (163). While
treated patients showed linear fibrosis, ground-glass opacity,
and pleural thickening on chest CT at baseline, there was
improvement in all patients after 24 weeks and up to 1 year after
MSC treatment.

Our current understanding of the mechanisms of MSC-
mediated improvement in lung (fibrotic) injury is incomplete,
especially in the context of COVID-19. There are other important
questions that will need to be addressed, too. For instance,
would the MSCs need to be primed for improved efficacy?
Previous studies have shown that pre-conditioning of MSCs
with oncostatin M (268, 269), low-dose TGF-β1 (270), IL-6
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(269), or ischaemia (271) improves the survival and therapeutic
benefits. Obtaining the best MSCs for transplantation in terms of
optimum immunomodulatory capacity and availability should be
considered in COVID-19 studies. Primary MSCs, such as those
obtained from bone marrow, umbilical cord, or adipose tissue,
are limited by lack of available donors, many lack standardized
preparations, with variations in quality, limited regenerative
capacity, and finite lifespans. To overcome these limitations,
a recent study investigated a novel hESC-derived MSC-like
cell population, termed Immunity-and Matrix-Regulatory Cells
(IMRCs) (272). Produced to good manufacturing standards,
IMRCs demonstrated excellent safety and efficacy profiles in
in vivo models of mice and monkeys. Additionally, IMRCs
demonstrated superior immunomodulatory effects compared
to umbilical cord-derived MSCs and the anti-fibrotic agent,
pirfenidone (272).

CONCLUSION

Evidence now supports severe COVID-19 being associated with
a dysregulated and hyperactive inflammatory systemic response;
a cytokine storm. Older people (>60 years) and people with co-
morbidities are more likely to develop a dysfunctional immune
response, and resultant cytokine storm, that causes pathology and
fails to successfully eradicate the pathogen. The exact reasons
for this are unclear, although one reason may be a decline in
immune function with age and chronic sterile inflammation due

to the build-up of senescent cells and immunosenescence in aging
humans (273).

The manifestations of elevated pro-inflammatory, sustained
circulating factors due to the cytokine storm are not just
confined to the lungs, with significant damage to the CV system
and multi-organ damage and dysfunction. Interventions that
target single cytokines (i.e., Tocilizumab targeting IL-6) do not
seem efficacious in reducing mortality. Mesenchymal stromal
cells owing to their powerful immunomodulatory function can
holistically target and suppress the cytokine storm. At the same
time, MSC transplantation is safe and has proven effective at
activating endogenous repair mechanisms, leading to improved
cardiac function, tissue regeneration and decreased fibrosis.
Therefore, attenuating persistent organ dysfunction. Further
mechanistic studies are required to investigate if MSC therapy
can alleviate the cardiovascular consequences of COVID-19, and
thus reduce cardiovascular risk in these patients. Work should
also focus on determining the optimal dose, timing of injections
(multiple dosing at different stages of the disease), systemic
distribution of transplanted cells, type of MSCs used or use of
exosomes, and the anti-viral effects of MSC transplantation.
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