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Important differences in comorbidities and clinical characteristics exist between women

and men with heart failure (HF). In particular, differences in the kinetics of biological

circulating biomarkers—a critical component of cardiovascular care—are highly relevant.

Most circulating HF biomarkers are assessed daily by clinicians without taking sex

into account, despite the multiple gender-related differences observed in plasma

concentrations. Even in health, compared to men, women tend to exhibit higher

levels of natriuretic peptides and galectin-3 and lower levels of cardiac troponins

and the cardiac stress marker, soluble ST2. Many biological factors can provide a

reliable explanation for these differences, like body composition, fat distribution, or

menopausal status. Notwithstanding, these sex-specific differences in biomarker levels

do not reflect different pathobiological mechanisms in HF between women and men,

and they do not necessarily imply a need to use different diagnostic cut-off levels in

clinical practice. To date, the sex-specific prognostic value of HF biomarkers for risk

stratification is an unresolved issue that future research must elucidate. This review

outlines current evidence regarding gender-related differences in circulating biomarkers

widely used in HF, the pathophysiological mechanisms underlying these differences, and

their clinical relevance.
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INTRODUCTION

Heart failure (HF) is a major health care issue in both sexes; it is associated with significant
morbidity, mortality, and health care costs (1). Several differences between women and men
have been observed in HF, including the epidemiology, etiology, pathogenesis, risk factors, and
prognosis (2). The incidence of HF also differs between men and women, depending on the
study population analyzed (3, 4). For example, women had a lower risk of incident HF than
men, in middle-aged to older individuals, but women had a higher HF risk than men in the
oldest age groups (5). Men tended to be at higher risk of developing HF with reduced ejection
fraction (HFrEF), and conversely, women were more likely to develop HF with preserved ejection
fraction (HFpEF) (6). This distinction might be attributable to the predisposition of women
to develop coronary microvascular dysfunction/endothelial inflammation and the predisposition
in men to develop macrovascular coronary artery disease and myocardial infarction (7). These
sex-related differences in HF phenotypes and underlying pathophysiology are also reflected in HF
biomarker dissimilarities.
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In 2007, the National Academy of Clinical Chemistry and
the International Federation of Clinical Chemistry recommended
the development of sex-specific reference ranges for cardiac
biomarkers used routinely in clinical practice (8). Consequently,
over the years, sex-driven differences in both reference and
cut-off values have been described for several biomarkers in
cardiovascular disease (9). However, most of these cardiovascular
biomarkers are used day-to-day by clinicians without taking
sex into account. It is hypothesized that the lack of sex-specific
thresholds for cardiac biomarkers might contribute to under-
diagnosing HF in women, which could potentially result in worse
outcomes (10).

Improving HF care requires consideration of all gender-
related differences. Moreover, improving our understanding
of gender-specific differences in HF biomarkers might enrich
our understanding of physiological differences between men
and women with HF. Taking these points into consideration,
this review covers the four most important and frequent HF
biomarkers available in daily clinical practice, with a focus on
differences between women and men (Figure 1).

CARDIAC TROPONIN

Currently, assays are available for detecting cardiac troponin
(cTn) with high clinical sensitivity and high specificity for
myocardial tissue. Moreover, many assays are capable of early
cTn detection, when necrosis is minimal or even in the absence
of cell necrosis by different mechanisms (increased myocyte
turnover or increased cell wall permeability among others). Due
to these features, cTn has become the standard biomarker for
myocardial damage and the preferred biomarker for diagnosing
acute myocardial infarction. In addition, individuals in the HF
population frequently have increased concentrations of high-
sensitivity cTn (hs-cTn). In up to 93% of patients with acute
HF and up to 74% of patients with stable chronic HF, hs-cTn
concentrations are above the 99th percentile of the reference
value (11). However, several studies and critical reviews have
examined sex-related differences in cTn levels that might affect
diagnostic and prognostic performance.

Variations in cTn Concentrations
According to Gender
Marked variations in cTn concentrations have been detected
between women and men, with higher values commonly found
in men (12, 13). This difference has also been evident in patients
with HF (14, 15). Consequently, when interpreting cTn results,
sex-related peculiarities in the pathobiology of cardiac disease
must be considered. Men tend to have a greater cardiac mass
and a higher incidence of subclinical coronary artery disease
than women (16, 17). Women tend to show less severity in
atherosclerosis, left ventricular hypertrophy, and cardiomyocyte
apoptosis than men (18, 19). In addition, HFrEF (from ischemic
and non-ischemic etiologies) occurs more frequently inmen than
in women, and HFpEF is more prevalent among women than
among men (6, 20). The possibility of an indirect hormonal
influence should also be considered, in light of cardioprotective

effects of estrogens, which suppress cardiomyocyte apoptosis,
and the potentially harmful effects of testosterone, which
induces hypertrophy and apoptosis in cardiomyocytes (21–23).
Obesity was also independently associated with a positive, linear
increase in the likelihood of high hs-cTn levels, as shown in a
recent population-based study of subjects without cardiovascular
disease at baseline. In that study, individuals with severe obesity
and high hs-cTn levels had a >9-fold higher risk of incident HF
compared to individuals with normal weight and undetectable
hs-cTn levels (24). All these variations could contribute to sex-
related differences in serum cTn concentrations and had allowed
the thoroughly study of sex-tailored cut-off values of hs-cTn
in the setting fundamentally of ACS, where sex-specific cut-off
points might improve sensitivity for diagnosis of myocardial
infarction in women (25). Diagnostic performance of hs-cTn
for HF is however limited. In the general population, the
application of dichotomous cut-off values of hs-cTn, lower in
women than men: 4.7 vs. 7.0 pg/ml, respectively, for hs-cTnI
as studied by Zeller et al., allowed substantial reclassification
information for prediction of cardiovascular disease, including
HF, being considered an independent predictor of cardiovascular
events (26).

Prognostic Utility of cTn in HF
In the HF spectrum, the diagnostic utility of cTn is limited;
however, its prognostic value is highly relevant. Studies by Parikh
et al. (27) and by de Boer et al. (28) demonstrated that cTn levels
could predict incident HF in different community-based cohorts.
Recently, a meta-analysis that pooled data from 16 prospective
studies and included nearly 67,000 subjects demonstrated a
strong association between cTn and the development of incident
HF, and this association was found in both men and women (29).
Robust evidence from ameta-analysis based on individual patient
data from 10 studies and 11 cohorts (30) also suggested that cTn
could become an affordable biomarker for risk stratification in
patients with HF, due to the similarity of its prognostic value
between men and women. However, data are inconsistent as to
whether the prognostic value of cTn differs with sex. Current
evidence has indicated that the 99th percentile cutoff values were
higher in males than in females (26, 31). However, despite the
widespread use of cTn in clinical practice, all available assays lack
sex-specific reference values.

NATRIURETIC PEPTIDES

Natriuretic peptides are a group of neurohormones that play
a central role in the regulation of electrolytes and water
balance through their diuretic and natriuretic effects (32). In
humans, mainly three forms of natriuretic peptides are found:
A-type natriuretic peptide (ANP), B-type type natriuretic peptide
(BNP), and C-type natriuretic peptide (CNP). CNP is primarily
produced in vascular endothelial cells; ANP and BNP are mostly
found in the myocardium. Natriuretic peptides are released by
the myocardium in response to stretch and hypoxic stimuli (33).
The majority of clinical evidence on natriuretic peptides in the
setting of HF is related to BNP and the amino terminal of the
proBNP molecule (NT-proBNP). Therefore, this review focuses
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FIGURE 1 | Schematic of factors contributing to sex-related differences in HF biomarkers. HF, heart failure; Gal-3, Galectine 3; NT-proBNP, N-terminal pro-B-type

natriuretic peptide; cTn, cardiac troponin; sST2, soluble interleukin-like receptor-like-1.

on NT-proBNP, because it is the best choice for a diagnostic and
prognostic biomarker in HF, according to the 2016 European
Society of Cardiology HF clinical guidelines (34).

The most extensive evidence on the value of BNP-related
in vitro diagnostic tests was published in the early 2000s.
Comparative studies that measured concentrations of the
active BNP hormone vs. NT-proBNP generally demonstrated
diagnostic equivalency for differentiating HF from other causes
of shortness of breath. The proBNPmolecule contains 108 amino
acids. The first 76 amino acids are biologically inactive, and
amino acids 77–108 constitute the biologically active component
of the molecule, BNP.

Currently, NT-proBNP is a well-established, powerful
biomarker for the diagnosis and prognosis of HF (35–37). It is
also a useful biomarker for risk stratification in other several
cardiovascular disorders (38, 39). Strong clinical evidence
has revealed that several factors influence NT-proBNP levels.
Elevated concentrations were observed in patients with various
cardiovascular disorders and in patients with renal dysfunction
(40, 41). A previous study, which included 7,770 individuals
from the Framingham Heart Study and the Malmö Diet and
Cancer study, reported that obesity was associated with 6–20%
lower NT-proBNP levels, compared to normal-weight status,
and insulin resistance was associated with 10–30% lower levels
of NT-proBNP, compared to insulin sensitive status (42). Age
and sex are also important in modifying circulating levels of

natriuretic peptides. Most studies found that at baseline NT-
proBNP levels were lower in males than in females (Figure 2)
and, in both genders, increases were correlated with age (44).

Sex Differences in NT-proBNP Levels
Although sex-specific differences in NT-proBNP levels have
been documented, the precise mechanism that gives rise to
higher NT-proBNP levels in women than in men is not well-
established in healthy subjects. Several possible explanations
have been explored. One reasonable pathobiological explanation
involves the effects of sex hormones. Strong clinical evidence has
shown that testosterone could lower cardiac natriuretic peptide
levels, probably by upregulating neprilysin activity; this effect
might explain why NT-proBNP levels are lower in men than in
women (45, 46). Other studies showed that estrogen increased
cardiac natriuretic peptide gene expression and its release,
which might explain the elevated cardiac natriuretic peptides
levels in women compared to men. However, other reports
suggested that estrogen also increased neprilysin activity (43,
47). In postmenopausal women, hormone replacement therapy
administered for 3 months resulted in elevations in ANP and
BNP concentrations (48). Some research however hypothesized
that free testosterone could increase lean mass and may directly
decrease natriuretic peptide synthesis. This last statement goes
beyond the notion that estrogens are primarily responsible
for gender differences in natriuretic peptides considering
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FIGURE 2 | Distribution of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in both sexes. Reproduced with permission from Suthahar et al. (43).

that exogenous estrogen increased the sex hormone-binding
globulin with a subsequent lower free testosterone (49). Of
note, the profoundly different anthropometric characteristics
and fat distributions found in males and females might also
play a role in natriuretic hormone levels. Recent evidence
from a general population study found that the relationship
between NT-proBNP and obesity had a significant sex-associated
component. The inverse association between NT-proBNP and
obesity was more pronounced among females than among males.
Furthermore, among females, but not males, individuals with
abdominal (visceral) obesity had lower NT-proBNP levels than
individuals with peripheral (subcutaneous) obesity (50). Some
studies propose at a molecular level a higher clearance of BNP
in obesity due to increased expression of natriuretic peptide
receptor on adipose tissue, which binds BNP and leads to
its internalization and degradation (51) A reduced release of
natriuretic peptides from myocardial tissue in obese individuals
have also been pustuled as an alternative hypothesis (52)
Therefore, a combination of increased degradation and decreased
release may contribute to relative deficiency of natriuretic
peptides in obesity.

However, these sex-related dissimilarities observed in the
general population appeared to be less pronounced in HF
and other disease populations associated with upregulated NT-
proBNP levels. Some studies have reported the opposite findings,

noting that natriuretic peptide levels were similar or lower in
women compared to men (53, 54). However, this change in
tendency should be interpreted cautiously, because over the past
decade, one of the most robust findings across numerous HF
studies was that the gender distribution varied according to the
HF phenotype. Among individuals with HF, women significantly
outnumber men, and the gender ratio is ∼2:1 in HFpEF (6, 20).
Numerous reports have shown that natriuretic peptide levels
are much lower in patients with HFpEF than in patients with
HFrEF (35, 55, 56). Consequently, when studies analyze the
convoluted relationship between sex, ejection fraction, and BNP
levels in the setting of HF, the results show that women tend to
have higher BNP levels than men (57, 58). However, despite the
gender-related differences in the levels of natriuretic peptides,
the performance of these peptides for diagnosing HF and their
prognostic utility are similar in both sexes, and sex specific cut-off
points are not usually recommended. At this point, it should also
be noted that there is a lack of coincidences between molecular
mechanisms that affect HF progression and gender particularities
in the context of biomarker levels’ variability (Figure 3).

Prediction of HF Incidence
NT-proBNP levels have shown clinical relevance in predicting
the incidence of HF in the general population. High levels were
associated with a high risk of HF (59–61), which suggested
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FIGURE 3 | Representation of a lack of coincidences between mechanisms that affect heart failure progression and gender particularities in the context of biomarker

levels’ variability. HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; NP, natriuretic peptide; Gal-3, Galectine 3;

sST2, soluble interleukin-like receptor-like-1.

that elevated baseline levels might reflect subclinical cardiac
dysfunction that could subsequently manifest as overt HF.
Recent studies have explored sex-specific differences in using
NT-proBNP to evaluate cardiac functional competence. Evidence
from two community-based studies (44, 61) showed that the
optimal cut-off point for detecting moderate to severe left
ventricular disfunction was higher in women than in men.
The discriminatory ability of the biomarker was similar in
both sexes, but the strength of the association might be
different between men and women. Indeed, a recent meta-
analysis of prospective studies (62) found that NT-proBNP
was more strongly associated with incident HF in men than
in women. In the near future, the use of natriuretic peptides
to assess risk in asymptomatic adults is expected to become
translated from clinical studies to routine clinical practice.

SOLUBLE INTERLEUKIN-1
RECEPTOR-LIKE 1 (ST2)

ST2 is a member of the interleukin-1 receptor family. ST2
exists in both membrane-bound (ST2L) and soluble (sST2)
forms. Interleukin-33 (IL-33) is the functional ligand for
ST2L, and in the heart, the IL-33/ST2L interaction mitigates
cellular responses to mechanical stress. This function is
thought to be mediated by the inhibition of apoptosis
and cell death (63). Loss of IL-33/ST2L signaling results
in unchecked remodeling in the ventricular myocardium,

which leads to myocyte hypertrophy, fibrosis, and a decline
in left ventricular function (64). In contrast, sST2 acts
as a “decoy” receptor for IL-33; thus, sST2 inhibits the
cardioprotective effects mediated by the IL-33/ST2L interaction,
which indirectly promotes myocardial damage (65). With
the development of a highly sensitive ELISA method for
measuring sST2 (66), in the last decade, clinical evidence has
highlighted the biological and clinical importance of plasma
sST2 concentrations. Currently, sST2 is considered a strong,
independent prognostic biomarker in patients with myocardial
infarction and HF (67, 68).

Clinical data has suggested that sex has a potentially important
effect on sST2 concentrations. Women exhibited lower sST2
levels than age-matched men (69). In a large population-based
study of ambulatory individuals, women had lower sST2 levels
thanmen, but among older women, an age-associated rise in sST2
concentrations was observed. However, even among older adults,
men had higher sST2 levels than women (69). These differences,
which seem to be evident beginning in late adolescence (70),
were present both in patients with cardiovascular disease and
in healthy subjects. Currently, the mechanism underlying these
differences has not been elucidated. The hypothesis that sex
hormones might be responsible for differences in sST2 levels
has not been adequately proven, and current evidence remains
controversial. Some studies have supported this hypothesis by
showing that elevated testosterone levels were linked to elevated
ST2 concentrations, and conversely, exogenous estrogen therapy
was linked to lower sST2 levels. In contrast, another study did not
find any significant correlation between sex hormones and sST2
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levels (69, 71). Obesity is also an important factor to consider
in this setting, because sex hormones are produced by adipose
tissue, and gender-related differences have been shown in the
association between obesity and metabolic diseases. A recent
study by Zhao et al. revealed, in an animal model, that obesity
induced sST2 expression and secretion in adipocytes (72). A deep
physiological understanding of the reasons and clinical relevance
of gender-specific differences in sST2 concentrations requires
future research.

Due to the prognostic value of ST2 (73–75) and its ability
to predict incident HF (76), it has become part of the risk
stratification strategy in HF clinical practice guidelines (77).
A cut-off point of 35 ng/ml ST2 has been universally adopted
as a good indicator of prognosis in both sexes; thus, to
date, sex-specific cut-off points have not been needed for
risk predictions.

GALECTIN-3

Galectin-3 (Gal-3), a unique member of the chimera-type
galectins, is involved in a large number of disease processes. It
is widely expressed in human tissues, including epithelial,
endothelial, and immune cells (78). Gal-3 plays a role
in both acute and chronic inflammation, and its effects
on cell function include the activation of fibroblasts and
macrophages, which lead to fibrosis in various organs,
including the heart (79). As a biomarker, Gal-3 has been
associated with cardiac function (80); several studies have
demonstrated significantly higher Gal-3 levels in patients with
HF, particularly those with HFpEF, compared to controls
(80). Nevertheless, this biomarker is not predominantly
produced in the heart; non-cardiac sources appear to
be responsible for high Gal-3 levels in patients with
HF (81).

Recent data from population-based studies (82–84) have
indicated that plasma Gal-3 levels were slightly higher in women
than in men. The physiological explanation for this gender-
specific difference is not fully understood, but differences in
fat mass might play a role, considering that, for the same
body mass index, women typically have 10% more body
fat than men (85). Indeed, prior studies have observed an
association between total body fat andGal-3 levels (86). Although
the sex-specific prognostic value of Gal-3 in HF remains
unknown, baseline Gal-3 concentrations were associated with
adverse outcomes during follow-up in patients with acute and
chronic HF (87–89). However, the prognostic value of Gal-
3 in the setting of chronic HF remains controversial; other
biomarkers, such as NT-proBNP or sST2, have frequently
exhibited superior predictive value (90). Moreover, other studies
have shown that the predictive value of Gal-3 in HF was
less pronounced when the analysis was adjusted for renal
function (87).

In the Framingham Heart Study, an analysis of more than
3,000 participants showed that elevated Gal-3 concentrations
were associated with increases in the risk of new-onset HF

(HR 1.28 per 1 standard deviation increase in the log-Gal-
3 concentration). This association was clearly attenuated after
adjusting for kidney function (82). This “renal implication”
highlights the paramount relevance of cardio-renal interactions
in the setting of HF, and it suggests that HF might involve a
common profibrotic process in the heart and kidneys.

LESS COMMON BIOMARKERS IN
CLINICAL PRACTICE

In the last decade there has been an intensified interest in
additional biomarkers as an objective alternative for diagnosis,
prognosis or personalized treatment in HF. Among them
is the growth differentiation factor-15 (GDF-15), a member
of the transforming growth factor-?? cytokine superfamily
with anti-apoptotic, anti-hypertrophic, and anti-inflammatory
properties. GDF-15 is weakly expressed in tissues under
normal conditions. Although its pathobiology is not fully
understood, it is strongly induced by macrophages in response
to inflammation and tissue injury. It appears to be only
moderately expressed in the heart (81). Despite GDF-15 have
been identified as an inflammatory biomarker with prognostic
value in several conditions, particularly in cardiovascular diseases
(91, 92), with strong association with incident HF (93),
sex differences in plasma levels of this biomarker have not
been clearly established (94, 95). It has been showed that
testosterone together with estradiol significantly decreased GDF-
15 levels through an androgren receptor/estrogen receptor-
mediated pathway (96). Osteopontin, a glycoprotein expressed
in various cell types, including cardiomyocytes and fibroblasts
has also gained interest as a prognostic marker in HF. It
had been found to be significantly elevated in patients with
systolic HF (97). Its cardiac expression promotes myocardial
fibrosis and increases left ventricular stiffness (98). It appears
that plasma osteopontin levels are higher in men than in
women as evidence in the study by Arnlöv et al. (99),
however there are lacking evidence in the literature of
sex differences in osteopontin expression, and this requires
further investigation.

CONCLUSIONS AND PERSPECTIVES

Most circulating HF biomarkers are used daily by clinicians
without taking sex into account. Nevertheless, multiple
gender-related differences have been observed in the plasma
concentrations of several biomarkers. In the healthy population,
women tend to exhibit higher levels of natriuretic peptides
and Gal-3 and lower levels of cTn and sST2, compared to
men. Plausible biological explanations for these sex-related
differences have been postulated, like differences in body
composition, fat distribution, or sex hormones. Nonetheless,
several clinical studies have shown that these differences were
attenuated in patients with HF, despite the fact that distinct
gender distributions have been extensively described for different
HF phenotypes. Moreover, these sex-related differences do
not necessarily translate into a need to use different cut-off
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points for men and women, either for HF diagnosis or HF
prognosis, in clinical practice. Future research should explore
the clinical value of considering possible sex-related differences
in specific HF biomarkers, in both diagnostic and prognostic
settings, with the aim of improving HF management and
patient care.
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