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α-Klotho (Klotho) exists in two different forms, a membrane-bound and soluble form,

which are highly expressed in the kidney. Both forms play an important role in various

physiological and pathophysiological processes. Recently, it has been identified that

soluble Klotho arises exclusively from shedding or proteolytic cleavage. In this review, we

will highlight the mechanisms underlying the shedding of Klotho and the functional effects

of soluble Klotho, especially in CKD and the associated cardiovascular complications.

Klotho can be cleaved by a process called shedding, releasing the ectodomain of

the transmembrane protein. A disintegrin and metalloproteases ADAM10 and ADAM17

have been demonstrated to be mainly responsible for this shedding, resulting in

either full-length fragments or sub-fragments called KL1 and KL2. Reduced levels of

soluble Klotho have been associated with kidney disease, especially chronic kidney

disease (CKD). In line with a protective effect of soluble Klotho in vascular function

and calcification, CKD and the reduced levels of soluble Klotho herein are associated

with cardiovascular complications. Interestingly, although it has been demonstrated that

soluble Klotho has a multitude of effects its direct impact on vascular cells and the exact

underlying mechanisms remain largely unknown and should therefore be a major focus

of further research. Moreover, functional implications of the cleavage process resulting in

KL1 and KL2 fragments remain to be elucidated.

Keywords: Klotho, a disintegrin and metalloprotease, ectodomain shedding, chronic kidney disease, vascular

disease

INTRODUCTION

α-Klotho (Klotho) is a type I transmembrane protein which is highly conserved among human,
mouse, and rat (up to 94% homological sequence) (1) and primarily expressed in the kidney, in both
proximal and distal tubuli, though some expression has been shown in choroid plexus, parathyroid
gland and sinoatrial node (2). Membrane-bound Klotho plays an important role in a wide range of
physiological and pathophysiological processes [as recently reviewed in (3)]. For example, Klotho
has not only been demonstrated to play an important role in renal function (4) and controls the
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brain-immune system interface (5). The membrane-bound
Klotho protein forms a complex with the fibroblast growth
factor receptors (FGFR), which is crucial for the binding of
FGF23 (6). FGF23 exerts several endocrine functions, like
regulating phosphate, calcium, and vitamin D homeostasis
(7). Dysregulation of this FGF23-Klotho axis is not only
associated with chronic kidney disease (8), but also with
vascular and skeletal anomalies which are mainly caused by an
altered phosphate turnover [as reviewed in (9)]. This abnormal
phosphate regulation is the mechanism by which deficiency of
FGF23 and Klotho is associated with accelerated aging (6, 10),
which can be rescued by low phosphate diet feeding to restore
the phosphate balance (11).

Besides this membrane-bound form, Klotho is also released in
soluble form. This soluble Klotho is detectable in cerebrospinal
fluid, after being shed from the choroid plexus, and in urine
and blood, after being mainly shed from the kidney (12, 13).
Soluble Klotho has not only a local impact on renal function
but also systemic effects on the cardiovascular system (see
chapter 3). Initially this soluble form was believed to arise from
both proteolytic cleavage, a process called shedding, as well as
secretion of an alternatively spliced Klotho variant. This spliced
variant has a 50 bp insertion containing an in-frame stop codon,
resulting in a truncated Klotho protein (14). Interestingly, this
spliced, truncated version of Klotho has not been detected in vivo
thus far (3, 13, 15). Recently, Mencke et al. described that this
alternatively spliced variant is subjected to nonsense-mediated
mRNAdecay and therefore not secreted (15). Soluble Klotho thus
solely arises from the shedding process, which will be further
elaborated on in the next section.

KLOTHO SHEDDING

Various type I transmembrane protein, like Klotho, can be
cleaved by a process called shedding, which releases the
ectodomain of the transmembrane protein (16). In this manner,
shedding is a post-translational modification that controls the
levels and function of hundreds of membrane proteins. Alpha
secretases [e.g., “a disintegrin and metalloprotease” (ADAM)]
as well as beta-secretases [e.g., “beta-site APP cleaving enzyme”
(BACE)] have been described as the main sheddases, although in
recent years a broader range of proteases has been identified to
play a role in protein shedding (16).

Regarding Klotho, both ADAM10 and ADAM17 were shown
to be responsible for its shedding. Chen et al. demonstrated
that overexpression of either ADAM10 or ADAM17 in
Klotho-transfected COS-7 cells increased release of soluble
Klotho, while this shedding could be abolished by using
the metalloprotease inhibitor TAPI-1 (17). Similarly, the
metalloprotease inhibitor TNF484 or the ADAM10-selective
inhibitor GI254023X inhibited endogenous Klotho shedding in
HEK cells (18). Interestingly, besides the 130-kDa full-length
ectodomain Klotho product, another smaller Klotho product
of ∼70-kDa could also be detected in the Klotho-expressing
COS-7 cells (17). Based on the predicted primary structure it
is known that the extracellular domain of Klotho consists of

two tandem internal repeats, KL1 and KL2 (Figure 1), which
only share 21% amino acid identity (19). As the antibodies
used for Klotho detection specifically recognize the KL1 domain
(20), the smaller product should correspond to the cleaved KL1
domain, which was also confirmed using mass spectrometry by
other groups (17, 18). The full-length shed extracellular Klotho
domain was shown to be much more abundant in the cell media
than the cleaved KL1, and the cleavages that produce these
forms have been termed α- and β-cut, respectively (17). For
the β-cut, it could be demonstrated that membrane anchoring
is essential as transfection of COS-7 cells with a truncated
version of Klotho, lacking the transmembrane domain, did not
generate detectable KL1 products in the medium or cell lysate
(17). On the other hand, it seems that this anchoring is not
necessary for the α-cut, releasing full-length Klotho in the cell
media (17). Interestingly, treatment of the Klotho-expressing
cells with a broad metalloprotease inhibitor Timp-3 significantly
reduced the amount of KL1 not only in the medium but also
in the cell lysate samples, indicating that the β-cut also takes
place intracellularly (17).

To determine the exact Klotho cleavage sites of the proteinases
ADAM10 and ADAM17, highly conserved regions of 34 known
substrates for ADAM10 and ADAM17 (21) were analyzed and
two potential recognition sites in the proximity of the Klotho
transmembrane domain could be identified (22). Transfection
of COS-7 cells with Klotho constructs in which these sites were
mutated demonstrated that deletion of amino acids at positions
958 and 959 at the juxtamembrane site decreased soluble Klotho
levels by 50–60% (22). Furthermore, deletion of the region
between amino acids 954–962 almost completely abolished the
presence of the 130-kDa product in the medium and the
70-kDa product in both medium and cell lysate, suggesting
that not only membrane anchoring (17) but also intact α-cut
sequence is required for the β-cut to occur. Overexpression of
ADAM10 or ADAM17 did not result in increased shedding of
the mutated Klotho, while it did in case of the intact protein,
primarily when co-transfected with ADAM17 (22). In contrast
to previous observations (17), however, co-transfection of the
cells with ADAM10 did not increase Klotho shedding (22).
Hence, it seemed that shedding by ADAM17 is prevailing over
that by ADAM10 in COS-7 cells. Nonetheless, overexpression
of ADAM10 in Klotho-expressing HEK293 cells did increase the
amount of soluble Klotho in the medium, as shown by Bloch et
al. (23). Therefore, the exact involvement of ADAM10 in Klotho
shedding compared to ADAM17 remains to be further evaluated.
The fact that ADAM10 is predominantly responsible for the
constitutive shedding of many of its substrates, while ADAM17
is implicated in induced shedding events (24), might explain the
discrepancies regarding Klotho shedding in the different studies
and cell-types.

Using a similar approach, by analyzing the ADAMs’ substrate
compilation from Caescu et al. (21), the precise region of the
β-cut could be identified as well (25). This was confirmed in
COS-7 cells by transfecting the cells with Klotho mutated at the
predicted β-cut site, which completely abolished KL1 fragments
in the cell lysates and media (25). Moreover, the full-length
Klotho product was also significantly decreased indicating that
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FIGURE 1 | Schematic overview of Klotho structure and cleavage. Membrane-bound Klotho consists of four main domains, being the signal sequence (SS), KL1,

KL2, and the transmembrane domain (TM). Several sheddases can cut this membrane-bound Klotho forming full-length soluble Klotho (α-cut) or KL1 and KL2 soluble

Klotho (both α- and β-cut). Illustrated sequences reflect the suggested cleavage sites at which these cuts occur. Figure is created with BioRender.com.

successful Klotho cleavage at either of the cuts is dependent on
intact sequences at both sites, and that both α- and β-cut can
occur simultaneously (25). However, it is difficult to determine
whether the reduced cleavage of Klotho is caused by amutation of
the recognition sequence itself or due to potential conformational
changes induced by the mutation that would render the cleavage
site inaccessible for the proteinases. In either case, it also remains
to be determined whether both ADAM10 and ADAM17 are
responsible for both cleavages equally or if one of them is
dominating in certain conditions.

Besides ADAM10 and ADAM17, Klotho was also shown to
be shed by a β-secretase β-APP cleaving enzyme 1 (BACE1), as
BACE1-specific siRNAs treatment of Klotho-expressing HEK293
cells resulted in a significantly decreased soluble full-length
Klotho protein in the media (23). In line with this observation,
overexpression of BACE1 in these cells increased the amount
of shed Klotho (23). In addition, the remaining transmembrane
Klotho domain is further processed by γ-secretase, since the
small 5-kDa product corresponding to the Klotho stub was only
visible when the cells were treated with γ-secretase inhibitors
(23). Unfortunately, the exact cleavage site of BACE1 has not
yet been elucidated and remains an interesting focus of future
research. Nevertheless, these results are in line with previous
findings that several type-I transmembrane proteins can be
processed by α- and β-, as well as γ-secretases (16). Shedding
by different secretases results in distinct fragments with specific
properties. Such divergent effects could, for example, already
be shown for amyloid precursor protein [APP; reviewed in
(26)]. Shedding of APP by an α-secretase, mainly by ADAM10,
generates a soluble APP fragment that has neuroprotective
properties (27). In sharp contrast, shedding of APP by the
β-secretase BACE1 is amyloidogenic and results in the formation

of amyloid β which is a major component of amyloid plaques in
Alzheimer’s disease (28). Due to the similarities in Klotho and
APP structure and processing, it would be highly interesting to
investigate the individual roles of ADAMs and BACE1 in soluble
Klotho formation and determine the presence of any functional
differences between the products of the different cleavages.

FUNCTIONAL ROLE OF SOLUBLE
KLOTHO IN DISEASE

Soluble Klotho as a Biomarker for Renal
Disease
As the kidney is the main source of soluble Klotho, it is
not surprising that soluble levels of Klotho drastically drop in
patients with CKD. Soluble Klotho levels have been observed
to decrease in both blood and urine upon CKD progression
(29, 30). Strikingly, this drop already occurs very early in
disease development, in CKD stage 2 and often even already in
CKD stage 1 (31). Associated with the reduced soluble Klotho
levels, FGF23 and mineral parameters increase during CKD
development (32, 33). Although the decreased soluble levels have
been attributed to decreased expression of membrane Klotho
(32), it may also arise from reduced shedding capacity, however
this fact remains to be determined. In line with an important
local role for soluble Klotho in the kidney, higher soluble Klotho
levels are also independently associated with a lower risk of
decline in renal function (34). Several studies have investigated
whether soluble Klotho could be a potential biomarker for CKD
or at least for impaired kidney function (8). However, so far, the
outcomes are rather contradictory and therefore not conclusive,
especially since mostly small cohorts were investigated. Another
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limitation for this research field is the fact that soluble Klotho is
difficult to reliablymeasure in patientmaterial (8), as for example,
Klotho levels seem to be correlated with age (35). Furthermore,
it is not possible to distinguish between full length soluble
Klotho and the KL1 or KL2 fragments, although it remains
to be elucidated whether these different products exert distinct
functions. Therefore, further studies and larger cohorts need to
be screened before drawing conclusions about the potential use
of soluble Klotho as biomarker.

Clinical Relevance of Klotho for Renal
Disease in Experimental Mouse Models
Klotho was originally discovered by Kuro-o et al. in mutant
mice that exhibited severe manifestations of premature aging and
significantly shortened life expectancy (19). Full Klotho knockout
mice (Klotho−/−) do not display any abnormalities until week 3–
4 of age, however further development is arrested at this stage
and mice generally die at the age of 8–9 weeks. Klotho−/−

mice also exhibit cardiac dysfunction, sterility, skin atrophy,
Monckeberg type arteriosclerosis, ectopic calcifications as well
as a decline in renal function (36, 37). Full Klotho knockout
mice are too fragile and rarely survive surgery (38), which

makes them a difficult model to work with. Notwithstanding,
heterozygous Klotho-deficient mice (Klotho+/−) display a less
striking phenotype and their life expectancy is comparable to
wild type mice. At a later age, however, Klotho+/− mice develop
impaired kidney function with glomerulosclerosis, interstitial
fibrosis and increased albuminuria (39, 40). These mice were

shown to be more prone to develop a pathological response
to injury, such as unilateral ureteral obstruction (UUO) or

bilateral ischemia-reperfusion injury (IRI), which significantly

exacerbated kidney fibrosis in the Klotho+/− mice compared to

wild type mice (41, 42). On the other hand, mice ubiquitously
overexpressing Klotho seem to be protected against renal
function deterioration in case of acute kidney injury (AKI)
as well as in a glomerulonephritis model (42–44). Moreover,
using adeno-associated virus (AAV)-mediated gene transfer of
Klotho it could be observed that delivery of Klotho has beneficial
effects in not only AKI, but also in CKD models (45, 46).
Additionally, administration of recombinant soluble Klotho
showed comparable effects as it reduced renal fibrosis in AKI
and UUOmodels, suggesting these effects are primarily driven by
soluble Klotho (29, 47–49). Besides local renal functions, soluble
Klotho has also been shown to have systemic impact on the

TABLE 1 | Klotho mouse models for renal and cardiovascular diseases.

Mouse model Reported outcome References

Klotho in renal disease Aged Klotho+/− mice Impaired kidney function with glomerulosclerosis, interstitial

fibrosis and increased albuminuria

(39, 40)

UUO in Klotho+/− mice Exacerbated kidney fibrosis (41)

UUO in Klotho tg mice

UUO in Klotho+/− mice

Reduced tubulointerstitial fibrosis

Enhanced tubulointerstitial fibrosis

(44)

Recombinant Klotho treatment in UUO Alleviation of UUO-induced EndoMT, reduced fibrosis, and

improved kidney function

(48)

Bilateral IRI in Klotho+/− mice

IRI in Klotho tg mice

Recombinant Klotho treatment after AKI in

mice or rats

Faster progression to CKD

Improved preservation of kidney function after AKI

Accelerated recovery and reduced renal fibrosis

(29, 42)

Adenoviral delivery of Klotho in rats with IRI Reduced renal damage (46)

ICR-derived glomerulonephritis in Klotho

transgenic mice

Improved renal function and survival (43)

Klotho in cardiovascular

complications

Klotho+/− mice or tg mice with uni-Nx

with IRI in contralateral kidney

Reduced or improved renal function and vascular

calcification, respectively

(37)

Klotho−/− mice with diabetic nephropathy

AAV-mediated delivery of soluble Klotho

Hyperphosphatemia and enhanced vascular calcification

Rescued phosphate levels and prevention of calcification

(45)

Hind limb ischemia in Klotho−/− and

Klotho+/− mice

Impaired angiogenesis and vasculogenesis (50)

Klotho−/− and Klotho+/− mice Impaired vasodilation/vasorelaxation, rescued by parabiosis

with wt mice

(51)

Klotho+/− mice Cardiac dysfunction, hypertrophy and fibrosis (52)

Klotho administration in mice with uni-Nx

with IRI in contralateral kidney

Attenuated CKD-associated cardiac remodeling (49)

AKI, acute kidney injury; CKD, chronic kidney disease; EndoMT, endothelial-to-mesenchymal transition; IRI, ischemia-reperfusion injury; Nx, nephrectomy; tg, transgenic; UUO, unilateral

ureteral obstruction; wt, wild type.
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cardiovascular system like for example on vascular calcification
as described below. A short overview of mouse models used
for studying the effects of Klotho on renal and cardiovascular
system is given in Table 1. These models highlight the crucial
role of Klotho protein in maintaining normal functioning of
the kidneys, cardiovascular system, as well as the organism as a
whole. However, it remains challenging to differentiate the effects
of the membrane bound/soluble full length or soluble Klotho
fragments based solely on the phenotype of the Klotho mouse
models. More intricate analyses might be required.

Klotho in Cardiovascular Complications of
Renal Disease
Vascular calcification appears early in the course of CKD
and becomes more prevalent as kidney function decreases
and thereby causes a high risk of cardiovascular mortality in
patients with CKD (4, 53). Obviously, considering its major
role in regulating mineral (Ca/phosphate) homeostasis, Klotho
deficiency causes high circulating phosphate levels and thereby
strongly enhances vascular calcification in mice with CKD (37).
Recently, it could be shown that delivery of AAV expressing
soluble Klotho into Klotho deficient mice reduces phosphate
levels and, in line with this, vascular calcification (45). Moreover,

Klotho deficiency in CKD enhances renal tubule and vascular
cell senescence which impairs angiogenesis and vasculogenesis
(50). Together, these results clearly demonstrate that Klotho plays
a protective role in vascular calcification and CKD, although
cell-specific effects remain rather elusive. These protective effects
of Klotho are probably mostly indirect in nature as they are
related to its ability to regulate the effects of several growth
factors, such as FGF23, and ion-channels, as discussed before.
However, soluble Klotho also suppresses the activity of the
WNT/β-catenin pathway in stem and progenitor cells in a direct
manner, which has been shown to be important not only for
vascular calcification, but also aging (54). Interestingly, WNT/β-
catenin, in turn, inhibits renal Klotho expression. Via this loop
Klotho and WNT signaling interact and play an important role
in CKD and associated complications (55).

Furthermore, elevated levels of soluble Klotho in plasma are
independently associated with a lower risk of cardiovascular
disease (56). This can at least partly be explained by the observed
vasculoprotective effects of soluble Klotho on the endothelium,
as production of nitric oxide and vasodilation are impaired in
heterozygous Klotho deficient rodent (51). Additionally, soluble
Klotho has been identified as an anti-inflammatory modulator,
since a bidirectional negative relationship between Klotho and

FIGURE 2 | Local and systemic effects of soluble Klotho. Klotho is mainly expressed in the kidney where it interacts with FGF23 to regulate phosphate levels. By

changing phosphate levels, Klotho for example has an effect on vascular calcification and possibly also on the heart. Additionally, Klotho is shed by shedding enzymes

(e.g., ADAM10/ADAM17) generating soluble Klotho, either full-length or subfragment KL1 and KL2. Soluble Klotho has local effects in the kidney where it contributes

to kidney function and in relation to this also CKD. Full-length soluble Klotho has been shown to have systemic effects on the vascular system by inducing

anti-inflammatory effects and NO-induced vasodilatation. The exact effects of KL1 and KL2 on the vascular system remain to be determined. Furthermore, further

research is needed to elucidate the exact systemic effects of full-length soluble Klotho as well as KL1 and KL2 on the heart. Figure is created with BioRender.com.
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NF-κB could be identified in which Klotho impairs translocation
and hence activation of NF-κB in cultured endothelial cells
(57). Thereby Klotho also suppresses expression of the adhesion
molecules intercellular adhesion molecule 1 (ICAM-1) and
vascular cell adhesion molecule 1 (VCAM-1) in endothelial
cells (57). Klotho also reduces the expression of lectin-like
oxidized low-density lipoprotein receptor-1 (LOX-1), a major
receptor for oxidized LDL, in cultured endothelial cells (58).
However, the direct impact on vascular cells and the exact
mechanism of action remains poorly understood, especially as
receptors that mediate the effects remain largely unknown and
the effects of soluble Klotho seem to be at least partially FGFR23
independent (59). Not surprisingly, as all of the described
mechanisms play a crucial role in atherosclerosis development,
it could be shown that lower levels of serum soluble Klotho
were associated with increased carotid artery intima-media
thickness and could thereby be considered an early predictor
of atherosclerosis (56, 60). Although the ectopic expression
of Klotho is still under debate, recent studies demonstrate its
expression in cardiomyocytes and highlight the impact of Klotho
on cardiac diseases, likemyocardial infarction and left ventricular
hypertrophy [as reviewed in (61, 62)]. In line with this, subjects at
high risk for atherosclerotic/cardiovascular events have a reduced
expression of Klotho in cardiomyocytes (63), associated with
increased oxidative stress, inflammation and fibrosis, although
the direct impact of Klotho on cardiomyocytes has not been
examined in this study.

DISCUSSION AND FUTURE DIRECTIONS

Over the course of more than two decades after the serendipitous
identification of the Klotho protein (19), research has focused
on elucidating the exact function of this protein in health and
disease. It has already been described that Klotho plays a role
in a multitude of processes and this list will only grow further
over time. At the moment, the role of Klotho in aging, kidney
disease, more particularly CKD, and the vasculature is quite well
described. Yet, the direct vs. indirect functions of soluble Klotho
on vascular cells, receptor(s) involved, and the exact underlying
mechanisms of action remain largely unknown or contradictory
and should therefore be a focus of future research.

Recently, it was demonstrated that all the soluble Klotho arises
from shedding of membrane-bound Klotho as the alternatively
spliced variant is subject to nonsense-mediated mRNA decay
and degraded (15). While ADAM10, ADAM17 as well as BACE
have been implicated in klotho shedding, other proteases may
be involved as well. Shedding of Klotho can result in different

fragments, being either a full-length fragment or smaller sub-
fragments called KL1 and KL2. However, until now most studies
did not clearly distinguish between these different fragments
or mainly used full-length soluble Klotho. Therefore, further
studies are needed to elucidate which fragments are produced
by the different shedding enzymes and determine the specific
functional implication of the cleavage process resulting in KL1
and KL2 fragments.

In order to fully comprehend the function of soluble Klotho
and to enable potential therapeutic targeting it is highly
important that future research focuses on the elucidation of the
exact underlying mechanisms. Only recently the crystal structure
of Klotho has been described elucidating the exact structure of
Klotho protein (64). This might give an important impulse to
the research field. Recently, a potential mechanism of action
of soluble Klotho has been suggested, as it could be identified
that soluble Klotho binds to membrane lipid rafts which alters
the lipid organization in the cell membrane (65, 66). However,
further functional studies are needed to elucidate the importance
of this interaction.

In conclusion, soluble Klotho plays an important role in health
and disease (Figure 2) and is thereby a promising therapeutic
target. However, further research is first needed to improve our
understanding of the exact effects and especially the regulation of
Klotho shedding.
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