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Meta-analyses have indicated that individuals with type 1 or type 2 diabetes are at

increased risk of suffering a severe form of COVID-19 and have a higher mortality rate

than the non-diabetic population. Patients with diabetes have chronic, low-level systemic

inflammation, which results in global cellular dysfunction underlying the wide variety

of symptoms associated with the disease, including an increased risk of respiratory

infection. While the increased severity of COVID-19 amongst patients with diabetes

is not yet fully understood, the common features associated with both diseases are

dysregulated immune and inflammatory responses. An additional key player in COVID-19

is the enzyme, angiotensin-converting enzyme 2 (ACE2), which is essential for adhesion

and uptake of virus into cells prior to replication. Changes to the expression of ACE2

in diabetes have been documented, but they vary across different organs and the

importance of such changes on COVID-19 severity are still under investigation. This

review will examine and summarise existing data on how immune and inflammatory

processes interplay with the pathogenesis of COVID-19, with a particular focus on the

impacts that diabetes, endothelial dysfunction and the expression dynamics of ACE2

have on the disease severity.

Keywords: COVID-19, SARS– CoV– 2, diabetes, endothelium, oxidative stress, angiotensin converting enzyme-2,

inflammation, immune response

INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the
focus of an unprecedented, dramatically augmented rate of scientific research since its emergence
at the end of 2019. The direct and indirect health impacts of this disease have been felt by
people all over the world: over 80 million people have been infected with the SARS-CoV-2
virus and the death toll has exceeded 1.75 million globally. Lockdown measures designed to
curtail and contain outbreaks have led to rarely experienced increases in unemployment and
many healthcare systems are being overwhelmed by severe coronavirus disease 2019 (COVID-19;
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the disease caused by the SARS-CoV-2 virus), lowering the rates
of admission and treatment of many other health conditions.
One of the most interesting and least well-understood aspects of
the disease is the wide spectrum of disease severity experienced
in those infected—from asymptomatic to fatal on account of
respiratory or multi-organ failure. In addition, the long-term
legacy of COVID-19 is, by definition, not yet fully appreciated,
although worrying signs are emerging to suggest that some
individuals who have survived the acute infection stage of the
disease might be prone to a wide range of long-lasting health
conditions (1).

A number of meta-analyses have been conducted in an effort
to understand those factors that might affect the severity of
COVID-19 (2–6). The outcome of these studies have identified
a number of key factors that associate with critical/fatal events,
most notably: gender (male, compound odds ratio (OR):
1.76), black, Asian or mixed ethnicity, BAME (OR: 1.9); age
(OR: 6.06), smoking (OR: 2.04), cardiovascular disease (OR:
5.19), respiratory disease (OR: 5.15), malignancy (OR: 1.6) (2),
hypertension (OR: 3.36) (7), severe mental illness (OR: 2.27)
(8), and obesity (OR: 5.70) (9). Diabetes has been identified as
a comorbidity associated with COVID-19 severity, with meta-
analyses indicating that pre-existing diabetes is associated with
a greater risk of severe COVID-19 and death (Table 1) with
OR from 1.9 to 2.68 (4, 27, 32, 40, 55, 59, 64). Studies of
COVID-19 patients in England found that the hazard risk for
mortality was greater for patients with type 1 diabetes mellitus
(T1DM: OR 2.23) than those with type 2 diabetes mellitus
(T2DM: OR 1.61) (65). These findings were reinforced by a
later study, which found similar mortality risks for T1DM (OR:
3.51) and T2DM (OR: 1.80) (66). In the former study, amongst
patients with T2DM, hazard ratios were highest in those with
poorest glycaemic control, but there was found to be an unusual
U-shaped relationship with BMI and COVID-19 mortality in
both types of diabetes. Association of this disease with severe
COVID-19 symptoms and mortality is of particular concern on
account of the spiralling prevalence of diabetes, with current
estimates suggesting that >400 million people are living with
diabetes worldwide and roughly half are undiagnosed (67). The
rise in diabetes has been linked to rapidly escalating levels of
obesity, particularly in highly populated regions of the world
with known genetic pre-disposition to T2DM (e.g., South-East
Asia). Until the COVID-19 pandemic, the autoimmune form of
diabetes, T1DM, was considered to be relatively stable at ∼1% of
the population, but emerging evidence suggests that COVID-19
might be responsible for a recent rise in prevalence of T1DM (68).

Given the novelty of COVID-19, our understanding of
the reasons for the association between severity of COVID-
19 symptoms and pre-existing diabetes is poorly developed
and highly complex on account of the inter-relationship of
T2DM in particular with many other risk factors for severe
COVID-19 symptoms (age, ethnicity, obesity, cardiovascular
disease and hypertension). The aim of this review is to bring
together the early evidence emerging from COVID-19 studies
with that from previous, related epidemics (e.g., SARS) in an
effort to understand the mechanisms by which diabetes might
prime individuals to suffer more severe symptoms than their

healthy counterparts. In addition, the review will examine the
evidence suggesting that COVID-19 might induce a diabetes-like
syndrome in some patients and identify potential mechanisms
behind this.

COVID-19

SARS-CoV-2 is transmitted primarily via respiratory droplets,
with an average of 4–5 days before symptom onset (24, 69–71)
and peak viral load within 5–6 days of symptom onset. COVID-
19 symptoms include fever, cough, anosmia, ageusia, fatigue,
myalgia, headache, sore throat, diarrhoea and dyspnoea (shortage
of breath) (41–43, 72).

Severe COVID-19 cases progress to acute respiratory distress
syndrome (ARDS) ∼8–9 days after symptom onset (41,
42) and is characterised by pneumonia, pulmonary oedema,
oxygen saturation (SpO2) <93%, respiratory failure requiring
invasive ventilation, admission to the intensive care unit
(ICU), coagulopathy, lymphopaenia, cytokine storm, viraemia,
and multi-organ damage (6, 24, 42, 43, 72–74). Severe
COVID-19 requires confirmation by physical and laboratory-
based examinations, including SpO2, D-dimer assessment
of fibrinolysis, inflammatory markers, leucocyte counts and
computerised tomography (CT) scans (24, 75). Pulmonary
oedema occurs due to excess fluid seeping out of the blood
vessels in the lungs, affecting the exchange of gas (oxygen and
carbon dioxide), leading to decreased SpO2, respiratory failure
and ICU admission. Coagulopathy, including microvascular
thrombosis and disseminated intravascular coagulopathy (DIC)
(76, 77) and lymphopaenia could be a predictor of mortality
in severe COVID-19 (78). Lung scarring and fibrosis, a
hyper-inflammatory marker that suggests tissue damage due
to overactive, dysregulated inflammation, occurs in survivors
of severe disease. In a longitudinal study of 90 patients,
CT scans showed lung abnormalities soon after the onset of
symptoms. Ground-glass opacity was the most common sign,
with an increase in a mixed pattern phenotype observed 12–
17 days following the onset of symptoms (79). Another clinical
report revealed that 58.3% of severe cases had bilateral patchy
opacities compared to 30.4% of non-severe cases, suggesting the
presence of a radiographic marker in severe COVID-19 (24).
Lung autopsies of deceased COVID-19 patients demonstrated
that neutrophil extracellular traps (NETs) were likely to be
involved in inflammation-associated lung damage, thrombosis
and fibrosis (80). Lung autopsies also showed type-2 pneumocyte
hyperplasia in all cases examined (81), potentially suggesting a
compensation for the loss of angiotensin converting enzyme 2
(ACE2) expressing cells in the lung. Severe infections have been
associated with a sustained high viral load in the upper airways
(82, 83) and patients who have died from severe COVID-19
showed SARS-CoV-2 virions can be detected in almost all tissues,
including the brain (84, 85).

A substantial proportion of people infected with SARS-CoV-
2 are asymptomatic. However, an accurate rate of asymptomatic
infection of SARS-CoV-2 is difficult to ascertain due to the
limitations of testing policies. Large-scale longitudinal testing
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TABLE 1 | Meta-analyses of the mortality risk associated with pre-existing diabetes in COVID-19 patients.

First author Overall OR, RR, or RC of mortality

in patients with diabetes and

COVID-19 [95% CI]

Number of studies

included in meta-analysis

Manuscripts included in the

meta-analysis

References

Mantovani et al. OR: 2.68 [2.09–3.44] 15 (6, 10–23) (4)

de Almeida-Pititto et al. OR: 2.50 [1.74–3.59] 10 (6, 10, 12, 13, 17, 19, 22, 24–26) (27)

Kumar et al. OR: 1.90 [1.37–2.64] 9 (10, 13, 21, 25, 26, 28–31) (32)

Huang et al. RR: 2.12 [1.41–3.11] 10 (10, 13, 31, 33–39) (40)

Miller et al. RC: 1.5% [0.2–2.8] 14 (10, 39, 41–54)* (55)

Hussain et al. RR: 1.61 [1.16–2.25] 11 (10, 15, 16, 21, 25, 26, 31, 39, 56–58) (59)

Ssentongo et al. RR: 1.48 [1.02–2.15] 16 (6, 10, 13, 19, 21–23, 25, 26, 31, 36,

51, 60–63)

(64)

These studies did not distinguish the type of diabetes being assessed, so the reported odds ratios (OR), risk ratios (RR), and regression coefficients (RC) are for the risk associated with

any diagnosis of diabetes.

*These 16 studies were included in the total meta-analyses reported in this manuscript. Of these, 14 were included in the meta-analysis of diabetes associated mortality in COVID-19,

however, these were not explicitly identified.

of populations is required to provide a more precise picture
of the number and demographics of asymptomatic carriers;
computational modelling has predicted the number of infections
to be 3 to 20 times higher than the number of confirmed cases
(86). Asymptomatic infections could be due to the efficacy of
the host immune responses, low viral load, cross-reactivity of
existing immune effectors, or prior infection with/pre-existing
immunity to other related human coronaviruses, conferring
cross-immunity against SARS-CoV-2 (87–89) and resulting in a
longer period of detection of viral RNA in the upper respiratory
tracts of symptomatic patients (89).

To date, studies in COVID-19 hotspots have revealed that
<20% of infections are classed as “severe,” while the remaining
80% are asymptomatic, mild, or moderate (24, 90). While
there has been little evidence that demographic factors and co-
morbidities impact on the risk of SARS-CoV-2 infection, it is
clear they influence the severity of symptoms of COVID-19. That
there is such a wide range of symptoms was initially perplexing;
however, the associations with age, ethnicity and co-morbidities
have provided vital clues as to why some individuals develop
specific severe symptoms or succumb to their infection.

SARS-CoV-2
SARS-CoV-2 is a positive-sense, single-stranded RNA virus in
the Nidovirales order and Betacoronavirinae genus (Wuhan-
Hu-1 isolate reference genome NCBI ID: 86693; transcript
ID: NC_045512.2; Figure 1) (92, 93). It is one of several
coronaviruses that infect the human respiratory system,
including SARS-CoV-1 (causing severe acute respiratory
syndrome, SARS) (92, 94), MERS-CoV (causing Middle East
respiratory syndrome, MERS) (92, 95), HCoV-229E, HCoV-
HKU1, HCoV-NL63, and HCoV-OC43 (92). The virion encodes
proteins required for viral replication (Figure 1), including
the RNA-dependent RNA polymerase (RdRp) and structural
proteins, including spike (S), membrane (M), nucleocapsid (N)
and envelope (E) (96), which are likely to function similarly to
those described in related coronaviruses.

The S Protein and Cellular Entry via ACE2
The S protein of SARS-CoV-2 is a homotrimer and, like that of
SARS-CoV-1, is a class I fusion protein [13] that recognises the
host cell receptor, ACE2 as a key step in the viral internalisation
process (Figure 2). ACE2 (Xp22.2) is a zinc metalloprotease
with homology to both ACE and collectrin (CLTRN) (99,
100). X-ray crystallography has confirmed that the SARS-CoV-
2 binding interface is similar to that of the SARS-CoV-1 S protein
(97) and in vitro experiments have shown that SARS-CoV-2
internalisation requires ACE2 (101, 102).

Upon binding to ACE2, the conformation of the S protein
changes to initiate the membrane fusion of virus particles and
host cell, required for internalisation of the viral genome. The
S1 subunit of the protein contains the receptor binding domain
(RBD), which interfaces with the N-terminus of ACE2 on target
host cells. The S2 subunit contains two distinct regions of heptad
repeats, as well as a fusion domain, all of which are essential for
viral entry into host cells (103). Following viral binding to ACE2,
the heptad repeats of S2 associate to each other, forming a six-
helical bundle (6HB) complex (104–106). In SARS-CoV-1, the
formation of 6HB exposes the fusion domain of the S2 subunit,
which is hydrophobic and embeds into the host cell membrane,
initiating fusion (105).

The S protein exists in either “standing up” or “lying down”
conformations prior to receptor binding. When standing up, the
RBD of the S protein is more exposed, allowing for higher affinity
binding to ACE2, but also presenting a highly immunogenic
target (107–109). There is a 4 amino acid insertion seen in

the SARS-CoV-2 S protein that is not present in SARS-CoV-
1, which creates a furin cleavage site at the junction between

the S1 and S2 subunits (103). In vitro, pre-treatment with furin
enhances viral entry into ACE2 expressing cell lines, which
is hypothesised to cause a transition from lying down to the
standing up conformation (109).

The entry of SARS-CoV-2 into cells via ACE2 also relies on

transmembrane serine protease 2 (TMPRSS2), which primes the
S protein through proteolytic cleavage, altering its conformation

in a manner that facilitates membrane fusion (109).
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FIGURE 1 | SARS-CoV-2 genomic and virion structures. (A) Genome schematic of SARS-CoV-2. The asterisk marks the overlapping reading frames of ORF1a and

ORF1b, which encode a variety of non-structural proteins, including helicases, proteases, and an RNA-dependent RNA polymerase. The S protein is encoded by nt.

21,563-25,384; the E protein is encoded by nt. 26,245-26472; the M protein is encoded by nt. 26,523-27,191; and the N protein is encoded by nt. 28,274-29,533.

Accessory proteins not shown. Adapted from Alanagreh et al. (91). (B) Schematic representation of the SARS-CoV-2 virion structure. This figure is not to scale, and

relative abundances of the proteins shown are arbitrary.

FIGURE 2 | SARS-CoV-2S interfacing with ACE2. Various orientations of an

X-ray crystallography-derived cartoon representation of the Spike protein S1

subunit of SARS-CoV-2 (cyan) bound to an extracellular portion of ACE2

(residues 1-597; pink). (B) Is a 90◦ anticlockwise rotation, along the z-axis, of

(A), while (C) is angled to highlight the shape of the binding interface between

ACE2 and SARS-CoV-2S, ∼90◦ clockwise along the z-axis, and ∼45◦

counter-clockwise along the x-axis, relative to A. Figure was created using

*Mol. PDB ID: 6M0J, Crystal Structure of SARS-CoV-2 spike receptor-binding

domain bound with ACE2 (97, 98).

NORMAL PHYSIOLOGICAL ROLE OF ACE2

The main physiological role of ACE2 centres on its
metalloprotease activity, processing multiple proteins
involved in the renin-angiotensin-aldosterone-system (RAAS;
Figure 3). Specifically, ACE2 converts the vasoconstrictor agents
angiotensin-I into angiotensin-(1–9) and angiotensin-II into
angiotensin-(1–7), both products being vasodilatory (110, 111).

The action of ACE2 therefore shifts balance of vascular control
in favour of vasodilation (112). A receptor for angiotensin-II,
AT1R, is also present on macrophages, dendritic cells, T-cells,
mesangial cells and vascular smooth muscle cells, meaning that
ACE2 processing of angiotensin-II also influences function of
these cells (113). Therefore, in addition to its role in SARS-CoV-2
cellular entry, ACE2 has normal physiological functions that
directly link to COVID-19 features in the lung, including
inflammation, oxidative stress and fibrosis (113).

In addition to its role in the RAAS, ACE2 inactivates the

vasodilator, bradykinin. It is important to note that there is
complex interplay between RAAS and the bradykinin system,

with multiple feedback loops and intersections. The importance

of bradykinin in the COVID-19 story has gained credence
recently on account of an unbiased in silico approach to

understanding the underlying reason for differential severity

in COVID-19 symptoms (114). Bradykinin ligates specific

G-protein-coupled receptors to mediate vasodilatation via
endothelial nitric oxide (NO) and prostacyclin (PGI2), which

drive vascular permeability and local oedema. Leaky capillaries

in the lungs of COVID-19 patients would not only compromise

breathing on account of oedema, but would also increase

trafficking of inflammatory cells between the blood and lung
tissue, together with the inflammatory mediators they convey.

Following the identification of ACE2 as the target of the S

protein of SARS-CoV-1 [reviewed by (115)], ACE2 was shown
to be expressed by lung alveolar epithelial cells, small intestine
enterocytes, vascular endothelial cells and arterial smooth muscle
cells derived from the brain, lungs, kidneys, large intestine and
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FIGURE 3 | RAAS schematic. Simplified schematic focusing on the activity of

ACE and ACE2 and the resulting receptor activation. The vasoconstrictive

activity of this pathway is mediated by AT1R activation, which also causes

increased oxidative stress; MasR and AT2R activation leads to vasodilation

and a reduction in oxidative stress. Receptors are in boxes; enzymes that

processes signalling peptides are in ovals.

small intestine, using immunohistochemistry (116). ACE2 is also
highly expressed by nasal epithelial cells (83), which is pertinent
in the pathogenesis of cellular infection in the upper airways.
Single-cell RNA sequencing has shown ACE2 mRNA expression
in a range of cells: type II alveolar cells, myocardial cells, kidney
proximal tubule cells, urothelial bladder cells, ileal epithelial
cells and oesophageal epithelial cells, though this study did not
examine protein levels (117).

SOLUBLE ACE2

ACE2 also exists in a soluble form (sACE2) in vivo, generated
by the activity of TMPRSS2 and of a disintegrin and
metalloproteinase domain 17 enzyme (ADAM-17; also known
as tumour necrosis factor-alpha converting enzyme, TACE).
These enzymes cleave ACE2 at p.R697 and p.K716 [Figure 4;
(119, 120)]. Increased sACE2 activity has been proposed as
a possible biomarker, predictive of poor patient outcome and
heart failure following myocardial infarction or heart transplant
(121). Whilst it has not yet been demonstrated that sACE2 is
able to convert vasoconstrictor angiotensins to their vasodilator
counterparts in vivo, assays using fluorogenic substrates show
that sACE2 can hydrolyse angiotensin-I and angiotensin-II
analogues (122). In addition, the initial characterisation of ACE2
that utilised a truncated, soluble version of the protein, indicated
the production of angiotensin-(1–9) and angiotensin-(1–7), by
mass spectrometry (123).

It has been suggested that cleavage of membrane-bound
ACE2 to generate sACE2 may serve as a feedback mechanism
in the RAAS. Evidence for this was presented in a mouse
study, where continuous subcutaneous angiotensin-II release,
via osmotic minipump, decreased myocardial membrane-bound

ACE2 protein levels and increased the levels of sACE2 activity in
plasma (122). This finding was reinforced in vitro in the human
hepatocellular carcinoma cell line (HuH-7), with angiotensin-II
exposure resulting in increased levels of ACE2 activity and sACE2
in supernatant (122).

The soluble portion of ACE2 comprises nearly the entirety of
the protein’s extracellular domain and could therefore plausibly
act as a ligand for the SARS-CoV-2 S proteins. However, the
conformation of the truncated protein has not been confirmed.
While no evidence has been presented for how frequently an
interaction between virions and endogenous sACE2 happens
in COVID-19 patients, a case study showed that intravenous
infusion of human recombinant soluble ACE2 (hrsACE2)
could successfully treat severe COVID-19 (124); the putative
mechanism behind this treatment may involve preventing SARS-
CoV-2 from entering ACE2-expressing cells for replication
and thereby-reducing angiotensin-II levels in the circulation.
Moreover, the use of sACE2 as “bait” to sequester SARS-CoV-2
to potentially slow/halt the spread of infection in patients with
viraemia is currently being investigated (122, 125).

OVERVIEW OF IMMUNE RESPONSE TO
SARS-COV-2 INFECTION

SARS-CoV-2 initially infects cells of the upper airways. During
the initial incubation phase, SARS-CoV-2 replicates in infected
cells without detectably triggering the innate immune response,
leading to initially high viral loads (126). During the robust
phase of SARS-CoV-2 cellular infection, or uptake of virions
by antigen-presenting cells (APC), toll-like receptors (TLR),
including TLR3, TLR7, and TLR8 (127) are stimulated,
producing a rapid innate immune response (128–130). This
includes initiation of a signalling cascade that promotes the
production of innate interferons (IFN-α, IFN-β, IFN-λ) via
interferon regulatory factors (such as IRF1 and IRF7) (131)
and pro-inflammatory mediators via NF-κB (132). Stimulator of
interferon genes (STING) also performs a key role in the innate
immune system’s defence against viral infection [reviewed by
(133, 134)]. The signalling of STING via NF-κB and IRF3 was
initially shown to be stimulated by the presence of non-CpG
intracellular DNA but there is evidence for its activity in response
to viral RNA as well [reviewed by (135)]. Excessive STING
activity induces pyroptosis in monocytes and macrophages, as
well as elevated tissue factor (CD142) levels (136), both of
which occur in severe COVID-19 patients (73, 137, 138). The
overexpression of angiotensin-II activates the STING pathway
in murine myocardial cells (139), which may indicate a route
by which STING is overstimulated in COVID-19 patients
with cardiovascular disease and T2DM. These rapid responses
stimulate different effects, depending on the cell type in which
they occur [reviewed in (140)].

Cross-reactive T-cell responses directed against either the
SARS-CoV-2 spike or membrane proteins were present in
healthy individuals who donated blood before the pandemic; in
∼50% of CD8+ T-cells and∼30% of CD4+ T-cells (88, 141, 142).
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FIGURE 4 | ACE2 protein schematic. An annotated schematic of the primary structure of ACE2. Arg273 is essential for substrate binding, by facilitating the formation

of a salt-bridge. His345 and His505 assist with stabilising the substrates transition state during catalysis (118). The cleavage sites for the in vivo production of sACE2

are Arg697 and Lys716.

The majority of individuals who have had confirmed SARS-
CoV-2 infection had a robust T-cell (88, 141, 142) and B-cell
response, with detection of IgA, IgM, and IgG antibodies against
the virus, which lasted at least 6 weeks (143–145). However, a
long-lasting B-cell response was less common in those with mild
COVID-19 (146). The adaptive immune response is initiated
by intermediatory cells activated by innate effectors, such as
dendritic cells that display antigen to CD8+, CD4+ helper T-cells
(proinflammatory Th1 and Th17 cells and suppressive Th2 cells)
and CD4+ Treg. B-cell responses can be either Th cell dependent
or independent. Cytokines secreted during T-cell dependent
activation encourage B-cell proliferation and isotype switching to
maintain germinal centre size and longevity. Notable differences
in these responses have been observed in patients with mild
compared to severe COVID-19 [review by (147)].

Immune Response Differences in Mild vs.
Severe COVID-19
A range of immune markers are markedly dysregulated in
patients with severe complications from COVID-19 compared to
those with mild/moderate infection, which provides clues as to
the reason some people have a severe response to SARS-CoV-2
infection (Table 2) (10, 42, 126, 148–155).

In patients with severe COVID-19, there is robust production
of pro-inflammatory cytokines and chemokines, with a limited
production of IFN-α, IFN-β, and IFN-λ (Table 2), suggesting an
effective activation of NF-κB but not of IRF7 (126), proposed
to result in an imbalance between the pro-inflammatory vs.
pro-repair functions of airway macrophages (150). One of the
features of severe COVID-19 that has been extensively described
is a “cytokine storm,” which can lead to high risk of vascular
hyperpermeability, multiorgan failure, and death [reviewed in
(159–161)]. IL-6 is a key biomarker for COVID-19-related
cytokine storms (162) and has shown an inverse correlation with
impaired immunity (159, 163); T-cell numbers were negatively
correlated to the concentrations of serum IL-6, IL-10, and
TNF-α (164). Severe COVID-19 is consequently associated
with impairment of T-cells, manifesting as lymphopenia and
functional exhaustion of CD4+ (Th and Treg) and CD8+ T-
cells; it is likely that the preceding innate immune dysregulation
influences these observations (155, 163–165).

The B-cell response is also likely dysregulated, although
reports are inconsistent, confounded by methodological issues
surrounding the detection of antigen-specific immunoglobulins

(166, 167) and whether systemic (circulatory) or local
(particularly mucosal) responses were assessed (168). For
example, enhanced secretory mucosal IgA responses, detected
in the circulation in severe COVID-19, were hypothesised to
confer damaging effects via induction of inflammatory cytokines
(169–171); although IgA levels in saliva from COVID-19
patients showed only a moderate correlation with COVID-19
severity (172) and other studies found no difference with disease
severity (155). Circulating IgG levels were higher in patients
with severe COVID-19, which has been hypothesised to promote
macrophage hyper-inflammatory responses (173); although the
effect of viral load on the secretion of antibodies has not been
ruled out.

Immune Dysregulation in Diabetes
There are chronic, persistent immune dysregulation features
present in T1DM and T2DM, which are associated with
disease-related pathology. In both T1DM and T2DM, there are
notable changes in cytokine expression and phagocytic activity,
such as suppressed chemokine responses, higher levels of pro-
inflammatory mediators and lower rates of phagocytosis by
neutrophils and macrophages necessary for uptake of infectious
antigen (174–179).

The β-islet destruction that is a feature of T1DM is a
consequence of the action of CD4+ and CD8+ T-cells with
specificity for islet autoantigens (180), and local macrophages
secreting pro-inflammatory cytokines (181); autoreactive
antibodies are a secondary consequence to this. Individuals
with T1DM do not have differences in the number of Treg cells
compared to healthy individuals (180), but do have defects in
Treg activation, which persist throughout their lifetime (182).
Furthermore, the function of existing Treg is dysregulated,
whereby their suppressive capabilities are reduced, leading to a
sustained increase in pro-inflammatory cytokines (180).

In T2DM, the major immune feature is an imbalance
in the Th17 and Treg cells, which reflects a loss in T-cell
homeostasis and is a major contributor to inflammation and
tissue specific immunity (183). Th17 cells have unique glycolysis
and lipogenesis metabolic profiles that drives differentiation and
cytokine production (184). The significant alterations in lipolysis
and lipogenesis in patients with T2DM impacts Th17 function
and suggests that despite the normalisation of blood glucose
levels in T2DM, this might not be sufficient to reverse obesity-
associated T-cell inflammation (185).
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TABLE 2 | Immune mediators dysregulated in severe COVID-19.

Immune mediator Cells producing mediator Alteration in the circulation of

severe COVID-19 patients

References

IFN-α, IFN-β, IFN-λ,

IFN-γ

T-cells, B-cells, Plasmacytoid dendritic cells, NK-cells,

macrophages, endothelial cells, fibroblasts

Increased (42, 148–150)

Lower (126, 151)

CCL2 (MCP-1) Monocytes, macrophages, dendritic cells, fibroblasts Increased (42, 126, 151,

152)

CCL5 (RANTES) TH1 cells, CD8+ T-cells, macrophages mucosal epithelial cells, NK

cells

Increased (152)

CCL7 (MCP-3) Dendritic cells, monocytes, macrophages Increased (152, 153)

IP-10 (CXCL10) Alveolar epithelial cells, monocytes, fibroblasts Increased (42, 153, 154)

MIP-1a Macrophages and monocytes Increased (42, 152, 154)

G-CSF Endothelial cells, fibroblasts, monocytes Increased (42, 148, 152,

153)

TNF-α Macrophages, monocytes; FSChi monocytes Increased (42, 151, 152,

155–157)

IL-1β Endothelial cells, macrophages Increased (152, 153)

Low/normal (151, 156)

IL-1RA Macrophages, TH1 cells, NK cells Increased (126, 152)

IL-2 CD8+ T-cells, CD4+ T-cells, smooth muscle cells Increased (42, 148, 152)

IL-2R Macrophages, monocytes, neutrophils, fibroblasts, Sertoli cells,

microglia

Increased (153, 155)

IL-6 CD8+ T-cells, TH1 cells; FSChi monocytes Increased (126, 148,

151, 153–

157)

IL-7 Dendritic cells, epithelial cells, microglia, hepatocytes,

keratinocytes, stromal cells

Increased (42, 148, 152)

IL-8 Endothelial cells Increased (148, 152,

155, 156)

IL-10 FSChi monocytes Increased (42, 148, 151,

152, 155,

157)

IL-17 TH17 T-cells, endothelial cells Increased (152, 158)

WHAT FEATURES IN DIABETES MIGHT
EXACERBATE OR PROLONG COVID-19
SYMPTOMS?

Impact of Hyperglycaemia
The association of diabetes with severe symptoms in COVID-19

is linked to glucose control, with little apparent dissociation

of the effect between patients with T1DM and T2DM (65).
Hyperglycaemia impairs host defences, including granulocyte

and macrophage function and lymphopaenia, as further

discussed below. People with diabetes are at increased risk
of a wide range of infections, with death from infections
substantially higher than in matched controls, particularly
amongst patients with T1DM [OR 7.72; (186)]. HbA1C is a
marker of glycaemic control that is closely associated with risk of
infection, hospitalisation, and mortality (187). While these data
provide interesting insights in terms of susceptibility to infection,
severity, and mortality, they provide little information regarding
the mechanism underpinning the association. An interesting
additional observation, however, is that fasting blood glucose
(i.e., acute, transient measure of glucose regulation) at hospital

admission has been found to be an independent predictor of
COVID-19 mortality in patients without pre-existing diabetes
(188), which lends weight to the hypothesis that blood glucose
itself is a key mediator of severe symptoms in COVID-19.

Dysregulation of RAAS in COVID-19:
Intersection With Diabetes-Mediated RAAS
Dysfunction?
Perhaps the most controversial area in the COVID-19 story to
date is the potential role of vasoconstrictor/pro-inflammatory
angiotensin-II balance with vasodilator/anti-inflammatory
angiotensin-(1–7) and -(1–9) in the pathophysiology of the
disease and the development of severe and complex symptoms
(Figure 3). Early reports during the pandemic suggested that
angiotensin-II was found to be increased (3-fold) in patients
with COVID-19 (189), although this finding has yet to be
replicated (190). The initial advice around ACE inhibitors was
mixed (191, 192) and in the face of this controversy, the early
advice was not to prescribe ACE inhibitors or AT1R antagonists,
but equally not to withdraw them from patients prescribed
these drugs for pre-existing conditions (193–195). The latest
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study relating to ACE inhibitors suggest some benefit in terms
of COVID-19 disease as a whole, if not reduced risk of ICU
care (196) without increased risk of death (197, 198); however,
there was also a complex interaction effect with ethnicity in that
benefits were less apparent or absent in Black African groups
in particular.

The primary reason for the conflicting suggestions and
outcomes is the complex counter-regulatory mechanism that
applies in this system. While loss of ACE2 to SARS-CoV-
2 seems inevitable, expression of this enzyme is often found
to be substantially up-regulated on account of a counter-
regulatory mechanism mediated by ACE/angiotensin-II (199).
Simultaneously, there appears to be down-regulation of ACE
(200). In addition, an in silico study using worldwide databases
suggested that there was a significant reduction in ACE2
expression in patients with diabetes (201). The ultimate impact
of SARS-CoV-2 on RAAS mediators is likely to fluctuate
with time and to be highly dependent on viral load. Because
of the differential importance of ACE2 in metabolism of
the various mediators, the response profiles will be distinct.
Figure 5 provides a hypothetical response profile for some for
the key mediators impacted by SARS-CoV-2, illustrating the
importance of the time-course of the various responses on the
pathophysiological outcome at any given time. In the event that
a course of events similar to that illustrated is experienced, it is
clear that both the amplitude of the impact (dictated by viral load)
and the time-course and effectiveness of the various counter-
regulatory events will have a substantial bearing on the nature
and extent of the symptoms experienced. Superimposition of
pre-existing ACE inhibition or AT1R antagonism on proceedings
adds another layer of complexity, perhaps explaining the variety
of outcomes and opinions relating to this particular topic.
What is clear is that “one size fits all” does not apply in
this regard.

There is consensus that dysregulation of the RAAS is a feature
of diabetes and represents a valid target for drug intervention,
particularly with respect to renal complications associated with
the disease [e.g., nephropathy; reviewed here: (202)]. The precise
nature of the dysregulation, however, is much less clear, with
claims and counter-claims as to the relative expression of ACE
and ACE2 in diabetes; certainly evidence from animal models
appears to point to down-regulation of ACE2 in the kidney (203).
Perhaps the most relevant evidence, however, is derived from a
genome wide association study (GWAS) on markers associated
with increased pulmonary ACE2 expression (204). This study
notably identified association with polymorphisms previously
linked to T2DM; although the association did not withstand
correction for multiple testing (at a false discovery rate of<0.05),
so should be viewed with caution. The association was weaker
for T1DM (204). Taking all these data together, it is conceivable
that ACE2 expression is differentially affected in different tissues
within an individual with diabetes and that the pattern of effect
on ACE2 varies from person to person. This concept is supported
by a study from an animal model in which the expression and
activity of ACE and ACE2 were measured in various tissues from
a non-obese, diabetic mouse model; the pattern of expression of
ACE and ACE2 varied dramatically across serum and various

tissues, including lung, where ACE2 expression was increased,
but to a lesser extent than ACE, resulting in an overall decrease
in ACE2:ACE in this tissue. The reverse was true in serum
(205). This variance is critical in understanding the impact of
COVID-19 at tissue/organ level with respect to susceptibility
to COVID-19: higher ACE2 expression in the lungs of patients
with diabetes might correspond to increased susceptibility to
binding and subsequent replication of SARS-CoV-2, which in
turn could drive a further up-regulation of ACE2, resulting in
bradykinin and angiotensin 1–9-mediated pulmonary oedema
[hypothesised here: (206)]. Decreased renal ACE2 in the same
individual might, however, offer some protection from viral
infection associated with viraemia. Figure 6 is a hypothetical
illustration of the complex interactions that might accrue in
diabetes on account of modulation of ACE/ACE2 expression by
COVID-19 and diabetes.

KEY FACTORS IN THE INTERPLAY
BETWEEN COVID-19 AND DIABETES

While the RAAS has been the focus ofmuch attention in COVID-
19 on account of the key role of the ACE2 receptor, there
are a number of other critical elements associated with viral
infection and host response that may be influenced by, but are
not entirely dependent upon, changes in RAAS activity. Each
of these elements are also affected by both types of diabetes,
with the potential to increase susceptibility to severe symptoms
in COVID-19.

Do the Dysregulated Immune Features
Associated With Diabetes Lead to a Severe
COVID-19 Response?
As previously described, T1DM and T2DM are associated with
distinct, chronic immune profiles. Pre-pandemic, it was already
established that patients with diabetes had a greater risk of lower
respiratory tract infections (207) and more severe outcomes
to respiratory infections [e.g., MERS (208), influenza (209),
and bacterial (207)]. There are notable confounders to the
poor outcomes to respiratory viruses (including COVID-19)
associated with diabetes, particularly increased age and male sex,
which are also factors previously linked to poor immune response
to other respiratory viruses (210–213), risk of T2DM (214) and
poorer outcomes to COVID-19 (215). Lower respiratory tract
infections occur when the immune response in the upper airways
fails to contain the viral spread, which is a key feature of severe
COVID-19. Therefore, it is plausible the immune dysregulation
in T1DM and T2DM is a contributor to the less favourable
outcomes with SARS-CoV-2 infection. Of course, it is an over-
simplification to limit diabetes to T1DM and T2DM: there
are significant patient subsets within these populations, at least
some of which display significant differences in B-lymphocyte
populations (216). It is not yet known whether susceptibility
to severe COVID-19 symptoms align with certain diabetes sub-
populations on account of their B-cell function or whether these
subtleties are overwhelmed by other contributory factors like age,
glycaemic control, ethnic origin or BMI.
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FIGURE 5 | Potential temporal impact of COVID-19 on the RAAS. Hypothetical impact of SARS-CoV-2 on local expression of ACE/ACE-2 enzymes and the possible

outcome in terms of angiotensin-II, angiotensin 1–7, angiotensin 1–9 and bradykinin (BK) concentrations, as well as the vascular impact.

Patients with T1DM have a dysregulated Treg response
and patients with T2DM have an aberrantly active Th17
response, both of which lead to a sustained increase in pro-
inflammatory cytokines (180, 182, 183, 185). The increased pro-
inflammatory cytokine profile already present in T1DM and
T2DM could therefore skew the immune response to SARS-CoV-
2 infection toward an inflammatory response, increasing the
likelihood of severe COVID-19, with associated cytokine storm,
tissue damage, and respiratory failure. Given the propensity
for SARS-CoV-2 to require a higher viral load to trigger
detection by the immune system even in healthy individuals,
the capacity to raise an acute immune response might be
further compromised in patients with diabetes, resulting in
a viral load that rapidly overwhelms the immune response
capacity. Patients hospitalised with diabetes and COVID-19 who
had a more controlled blood glucose concentration had lower
incidences of lymphopaenia (30.5 vs. 49.6%) and neutrophilia
(10.7 vs. 19.4%) than patients with a high (>7.5 mmol/L)
blood glucose concentration, indicating that good glycaemic
control is also important in maintaining a balanced immune
system (11, 215).

Several reports demonstrate that persistent inflammation
is associated with a compensatory anti-inflammatory
response that could prevent excessive tissue damage by
increasing immunosuppressive activity (217–219). The
anti-inflammatory responses include the induction of myeloid-
biassed haematopoietic stem cell differentiation, increased
expansion of Treg cells and increased expression of anti-
inflammatory cytokines such as IL-10 and TGF-β (219).
The activation of immunosuppressive cells suppresses the
functions of both innate and adaptive immunities. Accordingly,
T2DM-related immunosuppression may facilitate SARS-CoV-2
replication in ACE2-expressing cells and the development
of damage-associated molecular patterns (DAMP)-promoted
cytokine storms in these patients.

In summary, from the gathered evidence of altered immune
mediators in patients with T1DM and T2DM without SARS-
CoV-2 infection (174–180, 182, 183, 185) and more severe
outcomes during respiratory infections, including SARS-CoV-2,
(6, 10, 41–43, 72, 73, 155, 186, 187, 207–213), it is highly likely
that at least part of the poor outcome in patients with diabetes to
COVID-19 is due to dysregulated, abnormal immune responses.
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FIGURE 6 | Interaction between diabetes and COVID-19 with respect to the RAAS. Illustration of the complex interactions associated with diabetes and COVID-19.

The green box illustrates the appropriate response to SARS-CoV-2, resulting in only mild symptoms. The alternative pathways illustrate some of the dysregulation that

might be primed by diabetes, resulting in acute (pulmonary hypoperfusion and oedema) and chronic (fibrosis) outcomes.

Do Critical Changes in the Immune
Response and ACE2 Expression With Age
Predispose to Severe COVID-19?
People over 60 years of age have a weaker immune response

to respiratory infection compared to younger individuals (210–

213) and coordinated immune responses specifically to SARS-

CoV-2 are disrupted in individuals aged over 65 years old

(220), indicating a reason why elderly people have high risk
of developing severe COVID-19 after infection with SARS-

CoV-2 virus (221). Individuals with impaired immune function

cannot effectively clear SARS-CoV-2 from the upper respiratory

tract and as a result, the virus can quickly disseminate to
the lung with rapid replication in ACE2-expressing cells.
Older patients with COVID-19 can reduce their viral titres,
only to rapidly descend into a state of shock due to
hyperactivation of the immune system, known as a cytokine
storm. One mechanism by which this might occur is via
virus-injured cells releasing the DAMPs that can promote
hyperinflammation (222, 223).

Another key aspect associated with age that might influence
severity of COVID-19 symptoms is ACE2 receptor expression.
It is known that ACE2 receptor expression in epithelial and
endothelial cells in rat lungs fall substantially in older individuals

and is lower overall in male compared to female animals. This
concept is interrogated in a recent viewpoint article, which
postulates that a reduced ACE2 expression profile at onset of
COVID-19 results in an exaggerated inflammatory response on
account of the acute additional loss of ACE2 receptors in the face
of the virus (224).

Do the Metabolic Features of T2DM,
Obesity and Cardiovascular Disease Play a
Role in Development of Severe COVID-19?
While the mechanism behind severe COVID-19 is unknown,
individuals with conditions associated with metabolic disorders
such as obesity, diabetes and cardiovascular disease have a
higher risk of developing the cytokine storm and coagulopathy
that play crucial roles in progression to a critical clinical
condition (225, 226). The risk of in-hospital deaths with
COVID-19 was significantly higher in patients with diabetes
than those without diabetes, with hazard ratio of 2.36 (227).
Becausemetabolic disorders are associated withNET dysfunction
(222, 228, 229), an increase in activated neutrophils and
NET formation may contribute to severe COVID-19 in
patients with T2DM and obesity. Increased neutrophil-to-
lymphocyte ratios have been identified as an early indicator of
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FIGURE 7 | Alveolar and capillary pathophysiology relevant to COVID-19 and diabetes compared to the healthy scenario. This figure highlights some of the key cells

that become activated in COVID-19 (middle segment) and diabetes (right segment) that have the potential to drive dysfunction in endothelial (diabetes and COVID-19)

and alveolar epithelial (COVID-19 only) cells. The pathophysiological consequences are highlighted in the red boxes.

SARS-CoV-2 infection, predicting severe COVID-19, cytokine
storm and poor clinical outcomes (41, 230). A recent study
revealed that NETs triggered by SARS-CoV-2 were likely
to depend on ACE2, virus replication, serine protease, and
protein arginine deiminase 4 (231). Furthermore, it has
been reported that patients with T2DM had an elevated
NET release after infection, not only with SARS-CoV-2
(232), but also with other invading microbes (233). This
suggests that hyperglycaemia may be a key contributor
to the formation of NETs in COVID-19 patients with
diabetes, since high glucose levels would increase microvascular
permeability and oedema, and facilitate the transendothelial
migration of capillary neutrophils to alveolar air spaces
(225) (Figure 7). It is not yet unclear, however, whether it
is the hyperglycaemia per se, or other features associated
with T2DM, that induces this response. Pulmonary NETs
may also promote the oxidation of SARS-CoV-2 due to the
generation of reactive oxygen species by NAD(P)H oxidases
during NET formation (228). Oxidised viruses could activate
TLR4 that is highly expressed in inflammatory immune cells,
and subsequently enhance the TLR4-mediated inflammatory
response and cytokine storm (234).

Endothelial Dysfunction, Diabetes, and
COVID-19
Given the route of entry of the SARS-CoV-2 virus into the
body via the lungs, together with the primary symptoms that
can accrue in terms of pulmonary oedema, inflammation and
pneumonia, it is clear that the first-line cellular contact for
the virus constitutes alveolar type 1 and type 2 epithelial cells
that line the respiratory tract from nose to alveoli, together
with the resident macrophages in the lungs, which help to
raise the alarm for other inflammatory and immune cells to
drive a defensive reaction (Figure 7). However, early in the
pandemic, it was noted that cardiovascular complications were
also widely experienced in severe cases of COVID-19, with
symptoms associated with thrombosis and coagulation most
prominent, increasing the risk of deep vein thrombosis, heart
attack, stroke and peripheral ischaemia, often presenting in the
form of “COVID toe” (235–237).

The endothelium was quickly identified as central to the
vascular effects associated with COVID-19, not only because of
the intimate proximity of alveolar epithelial and endothelial cells
to facilitate efficient gas exchange, but also because endothelial
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cells express ACE2 and are highly regulated by many of the
mediators that are modulated by changes in ACE2 presence
or activity. An early case study involving post-mortem tissue
suggested that SARS-CoV-2 can be found in endothelial cells,
not only in the lungs (238) but also in other organs, and that
inflammation and occlusion of small blood vessels was also
evident in these patients (239).

Endothelial dysfunction is a feature of diabetes, driven by
a range of mediating processes, including oxidative stress and
inflammation (Figure 7). Indeed, endothelial dysfunction is
considered to be the prime cause of accelerated atherogenesis
in diabetes, leading to many of the secondary conditions,
including coronary artery disease, ischaemic stroke, peripheral
vascular disease (contributing to neuropathy and foot ulcers)
and nephropathy (240). Hyperglycaemia-induced oxidative
stress is a likely mechanism underpinning much of the
endothelial dysfunction associated with diabetes (241), but
elevated inflammation, resulting in enhanced expression of
adhesion molecules [VCAM-1, ICAM-1, P-selectin (242–245)],
is also considered to be key. Given that the endothelium
in patients with diabetes is already compromised via these
processes, it is perhaps inevitable that the impact of further
endothelial dysfunction driven by COVID-19 might be more
profound in this patient group, particularly if compounded by
the effects of old age. What is not yet clear is the relative
importance of changes in endothelial function in the lung to
drive systemic inflammation, either through ensuing viraemia,
extensive inflammation, or both.

Possible Drivers of Endothelial Dysfunction
in COVID-19
Endothelial cells are uniquely positioned at the interface between
circulating blood and underlying tissues. The key role of
the endothelium as the local modulator of vascular tone in
response to a wide range of local physical, chemical and
inflammatory mediators, necessitates a vast array of sensors and
receptors which combine to generate an integrated, outgoing
range of signals that in turn influence vascular smooth
muscle contraction, proliferation, permeability, angiogenesis,
thrombosis and inflammation (246, 247). Prime amongst these
mediators is NO (248), but PGI2 is another important protective
agent (249, 250), acting in opposition to the contracting factors
that include angiotensin-II (251), thromboxane A2 (TXA2)
(252) and endothelin-1 (ET-1) (253). These mediators have
influence over other processes that could be important in either
moderating or driving severe symptoms associated with COVID-
19, both directly related to cardiovascular function and indirectly
associated with acute and chronic respiratory symptoms. Some
of the key mediators will be considered in turn, with a particular
focus on possible interplay between diabetes and COVID-19.

Nitric Oxide
NO is a key indicator of endothelial function and its wide-
ranging actions ensure that it is critical in determining vascular
health. NO is synthesised de novo on demand and its free
radical characteristics ensure that its effects are confined to the
locality of its generation and are short-lived [reviewed by (254)].

The level of stimulation is determined by an integrated Ca2+

signal derived from multiple inputs, including sheer stress (255),
hypoxia (256), and several endothelium-dependent vasodilators
[e.g., bradykinin, angiotensin-(1–7), reviewed in (257)]. The
reaction with superoxide (.O−

2 ), is particularly important because
it not only inactivates NO, but also generates a highly oxidising,
cytotoxic product in the form of peroxynitrite (ONOO−)
[reviewed by (258)].

A healthy endothelium promotes vasodilatation, vascular
permeability and controlled angiogenesis, while at the same
time inhibiting vascular smooth muscle cell proliferation, platelet
adhesion and aggregation, and inflammatory cell adhesion (240).
The cardiovascular impact of diabetes is at least partly due to
loss of NO on account of both reduced synthesis and increased
inactivation by superoxide (259, 260). The role of NO in COVID-
19-induced changes in vascular function that could contribute
to severe symptoms in the acute phase of COVID-19 are
currently unknown. Certainly, reduced capacity for pulmonary
dilatation, together with increased adhesion and infiltration of
inflammatory cells and the additional risk of microthrombi
precipitated by reduced NO, would all contribute to poor
lung function and exacerbated inflammation. However, reduced
NO production would also lead to reduced risk of vascular
endothelial growth factor (VEGF)-induced hyperpermeability
and angiogenesis, which is counter to the clinical findings (42,
238). Likewise, VEGF is increased in diabetes (261), although the
profile of expression varies between T1DM and T2DM (262).

It is worth noting, however, that the contribution of eNOS to
overall NO can be relatively small under pathological conditions,
with high concentrations generated from the inducible isoform
of the enzyme (iNOS) in activated macrophages and activated
neutrophils (263), both of which are associated with COVID-19
(42). NO generated from inflammatory cells can act to destroy
invading pathogens and indeed, iNOS-derived NO is considered
critical in driving vascular collapse in animal models of sepsis,
although the role in complications associated with sepsis in
humans is less clear-cut (264). Until we fully understand the
impact of COVID-19 on NO, it is difficult to determine whether
inhibition of iNOS to reduce NO or delivery of inhaled NO (265)
to alleviate symptoms driven by loss of eNOS-derived NO is
advantageous. Clearly, if endothelium-associated microvascular
dysfunction is critical in COVID-19, pre-existing diabetes will
constitute a risk factor.

Vascular Endothelial Growth Factor
Though VEGF-A is predominantly associated with angiogenesis,
it also plays a significant role in the regulation of endothelial
function [reviewed in: (266)] through, for example, the regulation
of vascular permeability, or facilitating diapedesis of leukocytes
(267). Expression of VEGF is controlled by hypoxia-induced
expression of the transcription factor, HIF-1 (268), and it is
not implausible to presume that both localised and systemic
hypoxia caused by COVID-19 would lead to the overexpression
or dysregulation of VEGF. The consequences of this would
likely be an increase in vascular permeability and leakage,
leading to increased oedema, as well as increased infiltration
of leukocytes into surrounding tissues, further exacerbating the
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severe inflammatory symptoms of the infection. Angiogenesis is
another symptom that has been found in patients who have died
from COVID-19 (238) that is almost certain to involve VEGF.

Oxidative Stress and Inflammation
The dual effect of loss of vasoprotective NO and the generation
of cytotoxic, oxidising ONOO− is considered to be important
in the initiation and progression of atherogenesis (240, 269),
not least in patients with diabetes (241). NO, together with
PGI2 is not only a vital local mediator of vasodilatation, but
also of inhibition of platelet aggregation. Diminution of this
antithrombotic effect is exacerbated by increased oxidative stress
in platelets of individuals with diabetes, which further inactivates
NO in the target platelets themselves. Furthermore, evidence
is accumulating to suggest that an imbalance in pro- (tissue
plasminogen activator; t-PA) and anti- (plasminogen activator
inhibitor-1; PAI-1) fibrinolytic factors in favour of PAI-1 in
diabetes (270), could depress the fibrinolytic process that helps
reverse coagulation associated with thrombus. Oxidative stress
is also understood to be a driver of inflammation in endothelial
cells, mediated by the expression of adhesion molecules on
the surface, such as VCAM-1, ICAM-1 (240) and P-selectin
[reviewed by (271–273)].

Lipid Mediators of Inflammation
Eicosanoids are powerful lipid mediators of inflammation that
are implicated in COVID-19. The role of eicosanoids in COVID-
19 patients with diabetes is complex, as an imbalance in lipid
mediator production is a feature of diabetes, contributing to
the pathogenesis of the disease and associated complications
[reviewed by (274, 275)]. Eicosanoids are lipid mediators
synthesised by cyclo-oxygenase (COX), lipoxygenase (LOX) and
P450 enzymes. While their impact in COVID-19 is currently
poorly understood, SARS-CoV-1 can bind directly to the COX-2
promotor, increasing the expression of this inducible iso-enzyme,
which is central to synthesis of prostanoids (276). In addition,
the endoplasmic reticulum stress response, which can promote
a cytokine storm, activates inositol-requiring enzyme 1[α] to
upregulate COX-2 and prostaglandin E synthase, triggering the
production of PGE2 amongst other prostaglandins (277). These
findings suggest that an “eicosanoid storm” [reviewed by (278)]
could contribute to the intense inflammatory response that
accompanies severe COVID-19.

Anti-inflammatory Drugs in COVID-19
There have been contradictory reports regarding the use of non-
steroidal anti-inflammatory drugs (NSAIDs) to treat patients
with COVID-19. NSAIDs include selective and non-selective
inhibitors of the COX enzymes that catalyse the first committed
step in synthesis of prostanoids, which contribute to pain and
fever [reviewed in: (279)]. COX-1 is constitutive and central to
synthesis TxA2 (amongst other prostanoidmediators) in platelets
and endothelial cells, resulting in platelet aggregation and
vasoconstriction. Aspirin is a weakly COX-1 selective inhibitor
which is routinely used in primary prevention of myocardial
infarction, except in patients with diabetes, where there is
controversy over its benefits (280–284), perhaps suggesting

eicosanoid imbalance in this patient group. By contrast, inducible
COX-2 primarily synthesises PGI2, especially in microvascular
endothelial cells, which opposes the actions of TxA2, resulting
in inhibition of platelet aggregation and vasodilation (285,
286). The balance between PGI2 and TXA2 is critical for
cardiovascular homeostasis (287, 288) and upsetting the balance
can be detrimental. In addition, NSAIDs have differential and
multifactorial effects on growth factor–induced angiogenesis
and vascular permeability (289, 290) through inhibition of
prostaglandins, particularly PGE2, which regulates vascular
permeability (291) via the induction of VEGF and basic fibroblast
growth factor (292). The anti-inflammatory effects of NSAIDs
are broad: alongside the inhibition of prostaglandin synthesis,
NSAIDs inhibit cytokine production, including IL-12 (293),
IFN-γ (294), and IL-4 (295), thereby preventing Th1 and Th2-
mediated responses. The use of NSAID may oppose the anti-
inflammatory and pro-resolving roles of COX and ultimately lead
to counter-intuitive prolongation of inflammation.

Advice early in the pandemic was to favour paracetamol over
ibuprofen for COVID-19-related pain relief (296), due in part, to
the observation that ibuprofen upregulates ACE2 in diabetic rats
(297). However, this finding was not replicated in human clinical
studies (298, 299) and this advice has since been withdrawn (300).

The corticosteroid, dexamethasone, promotes the production
of pro-resolving mediators (301) and is now recommended for
the treatment of the most severe symptoms in COVID-19 on
account of reduced 28-day mortality amongst the treatment
group of patients receiving invasive mechanical intervention or
oxygen (302). However, the same trial found that there was a
modest detrimental effect in patients not receiving respiratory
support, again highlighting the importance of appropriate
balance in the inflammatory response to COVID-19. In patients
with diabetes, corticosteroids can have an impact on glycaemic
control and other metabolic parameters and their use should be
under careful clinical review (303).

Thrombosis and Coagulopathy
An early clinical symptom identified in severe cases of COVID-
19 was coagulopathy, with anywhere between 16–49% of patients
admitted to ICU suffering thrombotic complications (304). The
root cause(s) of thrombotic complications are not yet fully
understood, but inflammatory cytokines have been implicated,
along with endothelial dysfunction and stasis on account of
immobility; this is not unique amongst severe infections. Post-
mortem data from early casualties of COVID-19 indicated
diffuse thrombosis throughout the lung microvasculature (305).
Interestingly, while D-dimer levels are frequently raised in
COVID-19 related coagulopathy, other coagulation cascade
markers are not apparently consumed, as is seen with
disseminated intravascular coagulation, perhaps pointing away
from coagulation as the root cause and implicating platelet
activation or dysfunctional fibrinolysis instead (306). Both of
these possible causes would lead back to endothelial dysfunction
as a crucial player in determining thrombotic potential, both
through loss of anti-thrombotic NO and PGI2, and through a
potential imbalance between endothelium-derived, fibrinolytic t-
PA, and its countermeasure, PAI-1, in favour of the latter. With
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diabetes in mind as a potential primer for thrombosis in COVID-
19, not only is diabetes associated with increased circulating
inflammatory cytokines, but also with endothelial dysfunction,
platelets in a hyperactive state, and an imbalance of t-PA and PAI-
1 – all exacerbated by oxidative stress (307). The drive toward
coagulopathy in COVID-19 is also likely to be boosted through
enhanced generation of NETS, a feature that is common to
diabetes (308) and infection (309).

Prophylactic and therapeutic uses of anticoagulant treatments
are being investigated for COVID-19 patients (310). A
retrospective study of 449 COVID-19 patients in China
found no significant effect of heparin on 28-day mortality.
However, there was a significant effect when only patients with
a sepsis-induced coagulopathy score of >4 were analysed (311).
Direct oral anticoagulants (DOACs) are also being investigated
as potential COVID-19 treatments. There is evidence, from
a study in ApoE−/− mice, that DOACs may help to alleviate
the endothelial dysfunction associated with diabetes (312), a
potential confounding factor of COVID-19 coagulopathy in
patients with diabetes. However, combining DOAC and antiviral
treatments can lead to a sharp increase in plasma DOAC
concentrations, which may increase the risk of haemorrhage in
patients (313).

COVID-19 Driven Diabetes-Like Syndrome
In children, the manifestation of β-islet autoimmunity is known
to correlate with recent respiratory illness (314), including
SARS-CoV-1 infection (315). In the case of SARS-CoV-2, there
have been reports of COVID-19 patients exhibiting T1DM-like
symptoms, despite no history of diabetes prior to hospitalisation.
The first case study described a patient who presented with
diabetes-like symptoms 1 month after they had been diagnosed
with COVID-19, despite being normoglycaemic during their
initial hospitalisation (316). Autoantibody production against β-
islets was assessed, with the patient testing positive for glutamic
acid decarboxylase-65 and negative for tyrosine phosphatase
IA2 antibodies and zinc transporter 8 antibodies. As there
was evidence of autoimmunity driving the development of
diabetes, the patient was classified as having T1DM (316).
Following this initial report, an increase in new-onset T1DM
cases amongst children admitted to hospital with COVID-19 has
been reported (68).

The induction of diabetes-like symptoms by SARS-CoV-1
infection was found in 39/520 SARS patients, who had no history
of diabetes; only 2 patients were classified as having diabetes at
3 years post-hospitalisation (315). Diabetes was only assessed by
glucose tolerance tests, with no measurement of autoantibodies;
these type(s) of diabetes therefore cannot be classified. This study
concluded that SARS-CoV-1 entered β-islets via ACE2 and the
resultant damage caused an acute diabetes-like syndrome (315).
Indeed, ACE2 is expressed throughout the pancreas, including in
endocrine tissues and SARS-CoV-2 can infect both adult human
pancreatic β cells and human pluripotent stem cell-derived
pancreatic β cells (317).

Furthermore, a study in rats showed that an increase in
angiotensin-II levels can result in an acute reduction in β-islet
blood flow (318). This leads to the hypothesis that diabetes-like

symptoms are caused by SARS-CoV-2 infection drive decreased
ACE2 activity, which increases angiotensin-II and decreases β-
islet function.

Therefore, the presence of diabetes-like symptoms in some
patients after COVID-19 could be due to (i) induction of
autoantibodies; (ii) direct infection of β-islets by SARS-CoV-2; or
(iii) temporary β-islet function loss due to increased angiotensin-
II. This is an evolving area of research and larger studies of “long-
COVID,” the long-term effects of COVID-19, are now underway.
We hypothesise a potential underlying mechanism of some of
the long-COVID symptoms, particularly those of fatigue and
general malaise, might be underlined by the dysregulation of
metabolism and hyperglycaemia associated with a SARS-CoV-2
induced diabetes-like syndrome. There is some early evidence
emerging to suggest that glucose control suffers perpetuated
dysregulation at least in the acute phase after hospitalisation in
hyperglycaemic patients with severe COVID-19 symptoms (319),
although whether this is cause or effect is still to be deduced.

CONCLUSIONS

COVID-19 is a disease with a wide array of possible outcomes,
ranging from the benign right through to death. It soon became
clear that age and pre-existing disease were two major risk
factors for severe symptoms, and that diabetes was one of
several disease profiles that was implicated as a risk factor.
On the face of it, the potential links between diabetes and
severe COVID-19 symptoms seem obscure, given that COVID-
19 drives respiratory collapse, whereas diabetes is related to
outcomes that are mediated by cardiovascular dysfunction,
leading to retinopathy, neuropathy, peripheral vascular disease,
stroke and myocardial infarction. Dig deeper, however, and
parallels appear, not least with respect to dysfunction in
various interconnecting systems and processes that could come
together to drive a more severe package of symptoms in
response to SARS-CoV-2 infection. Without doubt, subtle
changes in the immune system and RAAS, together with
inflammation, oxidative stress and endothelial dysfunction
in diabetes have the potential to exaggerate the response
triggered by SARS-CoV-2, ultimately driving one or more of
the cellular processes that result in pulmonary thrombosis,
increased vascular permeability and/or cytokine storm, resulting
in respiratory failure.

Clearly, the story is a highly complex one: it must
be remembered that the diabetes population is highly
heterogeneous, with extremely diverse disease aetiology
and severity, just as COVID-19 shows extreme diversity.
Nevertheless, it is apparent that at least a sub-population
of those with diabetes are less equipped to affect a quiet
and efficient resolution of COVID-19, resulting instead in
a monumental counter-regulatory failure with potentially
fatal consequences. Additionally, evidence indicates that
some individuals with COVID-19 develop a diabetes-like
syndrome and it will be important to understand the
mechanism by which this may occur. Current plausible
explanations range through RAAS dysregulation, temporary
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β-islet destruction and induction of β-islet autoantibodies.
More data on testing for β-islet autoantibodies and
tracking the long-COVID symptoms are needed to
begin to identify the underlying mechanisms behind
these observations.

There is still a great deal to learn about COVID-19 before
firm conclusions can be drawn as to the importance of the
various potential players in determining the severity of the
disease. The promise shown by the powerful anti-inflammatory
agent, dexamethasone, which inhibits a multitude of pro-
inflammatory pathways as a prophylactic agent or treatment for
such symptoms, presents strong evidence for a central role for
inflammation in symptom severity (302), but offers little insight
to help predict what specific elements of the highly complex
inflammatory system predispose to a poor outcome.
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