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The multifactorial nature of cardiology makes it challenging to separate noisy signals from

confounders and real markers or drivers of disease. Panomics, the combination of various

omic methods, provides the deepest insights into the underlying biological mechanisms

to develop tools for personalized medicine under a systems biology approach. Questions

remain about current findings and anticipated developments of omics. Here, we search

for omic databases, investigate the types of data they provide, and give some examples

of panomic applications in health care. We identified 104 omic databases, of which

72 met the inclusion criteria: genomic and clinical measurements on a subset of the

database population plus one or more omic datasets. Of those, 65 were methylomic, 59

transcriptomic, 41 proteomic, 42 metabolomic, and 22 microbiomic databases. Larger

database sample sizes and longer follow-up are often better suited for panomic analyses

due to statistical power calculations. They are often more complete, which is important

when dealing with large biological variability. Thus, the UK BioBank rises as the most

comprehensive panomic resource, at present, but certain study designs may benefit

from other databases.
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INTRODUCTION

The biomedical data revolution has begun. The complexity of the cardiovascular system requires
huge amounts of data points to provide an effective basis for analysis (1). Modern advances in
computational technology and provision of cheaper molecular investigation have allowed fields
utilizing giant datasets with the suffix “-omic” (Figure 1) to integrate with research and medicine
(2). Panomics is the cross integration of omic measurements taken systematically across samples
and can be used for deeper systems biology analyses to determine the origins, relationships, and
effects of biological processes (3). Often longitudinal in design, they have broad applicability and
potential for use in pharmaceutical research (4). There is growing commercial interest in panomics
as, for instance, adding detailed genomic data to an electronic health record increases its value from
$130 up to $6,500, setting the value of current UK National Health Service data at $12.5 billion per
year (5). Most health data are generated by the academic and public sector, but the health analytics
sector 2023 forecast of $22.7 billion (6) is incentivizing private companies. The Global Genomics
Group (Table 1), a specialist omic health analytics company, raised millions in funding rounds to
generate a commercial omic database.

Cardiovascular risk scoring models consider clinical parameters, such as age, sex, past
medical, and drug history. They efficiently assess cardiovascular disease risk in patients who may
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FIGURE 1 | PubMed results trends: “omics” keyword increasing in use.

benefit from prophylactic or active treatment (7). These models
brought modest reductions in cardiovascular morbidity rates (8),
but utilizing omic data can improve them (9) with features, such
as polygenetic risk scores (10).

Omic databases are particularly useful when investigating
factors affected by large biological variation, but exponentially
larger samples sizes are needed when multiple forms of omic
data are used (11). After data generation, descriptive statistics
summarize the data with averages and frequencies. Predictive
analytics using artificial intelligence read omic data as a training
model to make future predictions for individuals. Prescriptive
analytics are most commonly used in medical studies that cluster
traits in a population, such as a symptom, to a pattern, such as the
differential splicing of a gene (12, 13). The data types often found
in omic databases are summarized in Figure 2.

We reviewed which databases existed for panomic analyses,
the data types available, and how best they can be utilized.
Skepticism remains about their utility, partly because some
direct-to-consumer analyses passed the fees of panomic data
generation to consumers. Sometimes, this outweighed the gain of
personalized insights on health optimization information, such
as dietary and exercise recommendations, that were known at the
time (14).

METHODS

Population-based databases associated with omic data were
found using the following omic keywords: “GWAS,” “Genomic,”
“Phenomic,” “Clinomic,” “Proteomic,” “Metabolomic,”
“Methylomic,” and “Transcriptomic” on PubMed/Medline
and internet searches for existing database websites and gene
mutation directories. Individual publications were traced
backwards, and authors were contacted for missing data from
the Table 1. Databases were included if they contained genomic

data plus one or more of the above omic datasets on participants
and full clinical information. Study methods were checked for
omic data collection techniques, such as mass spectroscopy,
Illumina sequencing chips, and data logging wearables. Selected
key publications were summarized.

The data mining exercise identified 104, of which 72 met
the selection criteria by having sufficient omic and clinical
data on study participants. Out of the 72 studies, only one
was commercial. The 15 with the largest sample size and fully
complete are selected for Table 1.

A “Y” in Table 1 states that omic data were found with enough
evidence. An “N” states that evidence for that data type was not
found; some reasons are discussed below.

RESULTS

Overall, 73 omic databases matching the inclusion criteria
were identified. Sixty-five databases included methylomic
data, 59 included transcriptomics, 41 included proteomics,
42 included metabolomics, 45 included phenomics, and 20
included microbiomics.

Genomics
Genetics concerns the genome at the base pair level looking
at the basic structure of the cellular DNA. Often, genetic
studies focus on greatest diversity mediated by single-nucleotide
polymorphism (SNP), which is a single base pair alteration
resulting from mutative mechanisms. The severity depends on
the site and downstream translation of the mutation.

Understanding SNP pathogenicity may help identify targets
for personalized medicine. A recent randomized controlled
trial investigated replacing clopidogrel, a common antiplatelet
activated by cytochrome 2C19, with ticagrelor or prasugrel
in carriers of defective cytochrome 2C19 alleles (15, 16).
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FIGURE 2 | A summary of all the omic data types, the tools used to record them, and the molecular processes they inform. The techniques on top are often invasive

and require tissue samples, but those on the bottom are extrinsic and can be measured non-invasively. DNA, deoxyribonucleic acid; CG, cytosine guanine methylation

site; RNA, ribonucleic acid; MRI, magnetic resonance imaging; BMI, body mass index; GC-MS, gas chromatography–mass spectroscopy.

Genomic studies uncovered loss of function PCSK9 mutations
driving increased low-density lipoprotein cholesterol (LDL-C)
receptor recycling. Three subsequent clinical trials of PCSK9
monoclonal antibody inhibitors showed reduced major adverse
cardiovascular events and 60% reductions in plasma LDL-C (17).

Whole-genome sequencing allows computational algorithms
to compare all genetic alterations across large samples to
isolate patterns related to qualitative traits. Currently, three
techniques are popular for genomic analyses. Microarrays are
bead chips with well-defined protocols for sample hybridization,
which explore many sites in the genome for predetermined
sequences. Specialized chips are available, such as genotyping
microarrays that screen for known congenital abnormalities (18,
19). The limitations of microarrays can be circumvented by
high-throughput sequencing, when sequence reads are produced
concurrently in parallel. Illumina sequencing cuts DNA into
snippets typically shorter than 600 base pairs and generates short
reads, which are assembled against a reference genome giving
the full sequence (19). Larger DNA alterations, such as structural
variants and repetitive regions cause an ambiguous short-read
assembly, and an estimated 15–20% of genetic material including
the chromosomal telomeres are missed; hence, long reads are
becoming more popular in the comprehensive research testing
setting (20). Nanopore, a single-molecule real-time sequencer,
allows a single genetic sequence to pass through a pore reading
up to ∼2,000,000 base pairs. Compared with PacBio’s long read
method, it offers significantly longer read lengths, higher read

accuracy, and lower cost. Each Nanopore detector reads a single
strand at a time, making it the least high-throughput method
(21, 22).

Various commercial direct-to-consumer genomic tests,
summarized in Table 2, are marketed to the public as tools
for inferring family ancestries, providing insights into health
and well-being, genetic counseling and family planning, drug
response analysis, dietary and fitness optimization, and paternity
testing, among other uses. A common model they use is a
one-time test kit purchase wherein the consumers are given
their analyses, but consumers need further membership plans
to receive updates from future genomic discoveries on their
DNA. The emergence of direct-to-consumer testing kits has been
controversial (31) because genomes associated with medical data
hold intrinsic fiscal value of up to $6,500 (5), but companies
typically charge consumers for sample processing fees. For
example, 23andme (Table 2) asks customers if they wish for their
data to be used in drug development for which 80% consent
to; thus, their data were used to begin drug development on a
bispecific monoclonal antibody that blocks IL-36 (32). Questions
as to whether the consumer or company owns the data, whether
it is ethical for the consumer to waive ownership of their data
including their right to any fiscal returns for future innovations,
how access to genomic data should be managed, and finally
how much education consumers should receive before trading
their genetic data have not yet been answered. It is possible
that the use of private encryption keys, similar to those used in
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TABLE 1 | The 15 largest databases found using methodology stated in the Methods section.

Database name Recruitment

year

Sample

size

Longitudinal Genome Methylome Transcriptome Metabolome Proteome Phenome Microbiome Intended

Speciality

Link

Registre Gironí del Cor (REGICOR) 1978 700,000 Y Y Y Y Y Y Y N General https://www.revespcardiol.org/es-

regicor-35-years-of-excellence-

articulo-S1885585713002739?

redirect=true

UK BioBank 2006 500,000 Y Y Y Y Y Y Y Y General https://www.ukbiobank.ac.uk/

Netherlands Twin Registry 2004 240,000 Y Y Y Y Y Y Y Y General http://www.tweelingenregister.org

LifeLines 2006 167,729 Y Y Y Y Y Y Y Y General http://www.lifelines.nl

Nord-Trøndelag Health Study (The

HUNT Study)

1984 120,000 Y Y Y Y Y Y N N General https://www.ntnu.edu/hunt/hunt-

samples

FINRISK 1972 101,451 Y Y Y Y Y Y Y Y General https://thl.fi/en/web/thlfi-en/

research-and-expertwork/

population-studies/the-national-

finrisk-study

UK Household Longitudinal Study 2009 100,000 Y Y Y Y N N Y N Societal https://www.understandingsociety.

ac.uk/

The Tromsø Study 1974 93,287 Y Y N N N Y N N General https://en.uit.no/om/enhet/artikkel?

p_document_id=80172&p_

dimension_id=88111

100,000 Genomes Project 2012 70,000 Y Y Y Y Y Y Y Y Rare

Disease

https://www.genomicsengland.co.

uk/about-genomics-england/the-

100000-genomes-project/

Estonian Biobank of the Estonian

Genome Center, University of Tartu

1999 52,000 Y Y Y Y Y Y Y N General http://www.biobank.ee

INTERVAL 2012 50,000 N Y Y N N Y N N Blood

Donation

https://www.nature.com/articles/

s41586-018-0175-2

National Health and Nutrition

Examination Survey (NHANES)

1960 31,126 Y Y N N Y Y Y N Nutrition https://www.cdc.gov/nchs/nhanes/

index.htm

EPIC-Norfolk Study 1993 30,000 Y Y Y Y Y Y Y N Oncology http://www.mrc-epid.cam.ac.uk/

research/studies/epic-norfolk/

Rotterdam Study (Charge) 1990 19,000 Y Y Y Y Y Y Y Y General http://www.epib.nl/research/ergo.

htm

Cooperative Health Research in the

Region of Augsburg, Southern

Germany (KORA)

1984 18,000 Y Y Y Y Y Y Y N General http://epi.helmholtz-muenchen.de/

kora-gen/index_e.php

Multiethnic Cohort (MEC) Study 199 3 215,000 Y Y Y Y Y N Y Y Oncology https://www.uhcancercenter.org/

mec

The Singapore Multi-Ethnic Cohort

(MEC) study

2004 14,465 Y Y Y Y Y N Y Y General https://pubmed.ncbi.nlm.nih.gov/

29452397/

NIHR Cambridge BioResource 2005 17,300 Y Y Y Y N N Y N General https://www.sciencedirect.com/

science/article/pii/

S0092867416314465

Atherosclerosis Risk in Communities

Study (ARIC) (CHARGE)

1987 15,792 Y Y Y Y Y Y Y N Cardio http://www.cscc.unc.edu/aric/

Framingham (CHARGE) 1948 15,447 Y Y Y Y Y Y Y Y Cardio https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4159698/

UK Adult Twin Registry (TwinsUK) 1992 14,274 Y Y Y Y Y Y Y Y General

Paediatric

http://www.twinsuk.co.uk/

(Continued)
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TABLE 1 | Continued

Database name Recruitment

year

Sample

size

Longitudinal Genome Methylome Transcriptome Metabolome Proteome Phenome Microbiome Intended

Speciality

Link

Avon Longitudinal Study of Parents

and Children (ALSPAC)

1991 13,988 Y Y Y Y Y Y Y Y Paediatric https://academic.oup.com/ije/

article/42/1/97/694445

Fenland Study 2015 12,435 Y Y Y Y Y N Y N Endocrine http://www.mrc-epid.cam.ac.uk/

Research/Studies/Fenland/index.

html

Northern Finland Birth Cohort 1966 1966 12,058 Y Y Y N N Y Y Y General https://jmg.bmj.com/content/56/9/

607

Pain-OMICS 2013 12,000 Y Y Y Y Y N N N Pain https://cordis.europa.eu/project/

rcn/110070/factsheet/en

A Large-Scale Schizophrenia

Association Study in Sweden

2005 11,850 Y Y Y Y N N N N Psychiatry https://www.nature.com/articles/ng.

2742

Metabolic Syndrome in Men

(METSIM)

2005 10,197 Y Y Y Y Y N Y Y General https://academic.oup.com/hmg/

article/27/10/1830/4939377#

118176243

Global Genomics Group (G3)

GLOBAL Study

2012 10,000 Y Y Y Y Y Y Y N General https://www.g3therapeutics.com/

COPDGene 2008 10,000 Y Y Y Y Y Y N N COPD http://www.copdgene.org/

Oxford BioBank 1999 8,000 Y Y Y Y N N Y N General https://www.oxfordbiobank.org.uk/

Ontario Familial Colon Cancer

Registry (OFCCR)

1998 7,377 Y Y Y N N N N N Oncology https://www.zanecohencentre.com/

gi-cancers/ofccr

Multi-Ethnic Study of

Atherosclerosis (MESA)

2000 6,814 Y Y Y Y Y Y Y N Cardio https://www.mesa-nhlbi.org/

Publications.aspx

National Institute on Aging (NIA)

SardiNIA Study

2001 6,148 Y Y Y Y N Y N Y Geriatric http://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?

study_id=phs000338.v1.p1

Corogene 2006 5,809 Y Y Y Y N N Y N Cardio http://ije.oxfordjournals.org/content/

early/2011/06/02/ije.dyr090.extract

Age, Gene/Environment

Susceptibility-Reykjavik Study

(AGES)

2002 5,764 Y Y Y Y Y Y Y N Geriatric http://www.hjarta.is/english/ages

Cardiovascular Risk in Young Finns

Study

1980 4,320 Y Y Y Y Y Y Y N Cardio http://youngfinnsstudy.utu.fi/index.

html

Study of Health in Pomerania (SHIP) 1997 4,308 Y Y Y Y Y Y N Y General https://pubmed.ncbi.nlm.nih.gov/

22736157/

Environment And Genetics in Lung

cancer Etiology (EAGLE)

2002 4,000 Y Y Y N N N N N Oncology https://eagle.cancer.gov/

background.html

Accessible Resource For Integrated

Genomics (ARIES)

2012 3,948 Y Y Y Y N N Y N General http://www.ariesepigenomics.org.

uk/

IMT-Progression as Predictors of

Vascular Events in a High-Risk

European Population (IMPROVE)

2004 3,711 Y Y N Y N Y N N Cardio https://link.springer.com/article/10.

1007%2Fs00125-014-3215-y#

Sec2

Subpopulations and Intermediate

Outcome Measures in COPD

(SPIROMICS)

2010 2,981 Y Y N N N Y N N COPD https://www.spiromics.org/

spiromics/

Athero-Express Biobank Studies 2002 2,500 Y Y Y Y Y Y N N Cardio https://www.atheroexpress.nl/

Leiden Longievity Study 2002 2,415 N Y Y Y Y Y Y N Geriatric https://www.nature.com/articles/

5201508#Sec2

(Continued)
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TABLE 1 | Continued

Database name Recruitment

year

Sample

size

Longitudinal Genome Methylome Transcriptome Metabolome Proteome Phenome Microbiome Intended

Speciality

Link

TRAILS (Tracking Adolescents’

Individual Lives Survey)

2000 2,230 Y Y Y N N N Y N Paediatric https://www.trails.nl/en

The Orkney Complex Disease Study

(ORCADES) (EUROSPAN)

2005 2,080 Y Y Y Y N N Y N General https://www.ed.ac.uk/viking/about-

us/orcades

Helsinki Birth Cohort Study 2001 2,003 Y Y Y N Y N N N Geriatrics http://www.ktl.fi/portal/english/

research_people_programs/health_

promotion_and_chronic_disease_

prevention/units/diabetes_unit/

idefix_study/

Lothian Birth Cohort 1921 & 1936 1999 1,641 N Y Y Y Y Y Y N Cognitive

Ageing

https://www.lothianbirthcohort.ed.

ac.uk/content/scottish-mental-

survey-1947

Conditions Affecting Neurocognitive

Development andLearning in Early

Childhood Study (CANDLE)

2006 1,503 Y Y Y Y N N Y Y Neuro-

Paediatric

https://candlestudy.uthsc.edu/

InCHIANTI 1998 1,453 Y Y Y Y N Y Y N Geriatric http://inchiantistudy.net/wp/

The Study Of Colorectal Cancer in

Scotland (SOCCS)

1999 1,298 Y Y Y Y Y N Y N Oncology https://www.ed.ac.uk/usher/

molecular-epidemiology/our-

studies/the-study-colorectal-cancer

Cardiovascular Health Study

(CHARGE)

1989 1,250 N Y Y Y N N N N Cardio https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?

study_id=phs000287.v7.p1

Growing Up in Singapore Towards

healthy Outcomes (GUSTO)

2009 1,176 Y Y Y Y Y Y Y Y Paediatric

Metabolism

https://academic.oup.com/ije/

article/43/5/1401/695117

Northern Sweden Population Health

Study (EUROSPAN)

2006 1,069 Y Y Y Y Y Y Y N General http://eurospan.gen-info.hr/

partners.html

HELMi (Health and Early Life

Microbiota)

2016 1,055 Y Y N N N N N Y Microbiome

&

Paediatrics

https://bmjopen.bmj.com/content/

9/6/e028500.long

Prospective Investigation of the

Vasculature in Uppsala Seniors

(PIVUS)

2001 1,016 Y Y Y N N N Y N Cardio https://bmcmedgenomics.

biomedcentral.com/articles/10.

1186/s12920-016-0235-0

VIS (part of EUROSPAN) 2003 1,008 Y Y Y Y N N Y N General http://eurospan.gen-info.hr/

partners.html

Milieu Intérieur cohort 2012 1,000 N Y Y Y Y Y Y Y Immunology https://www.nature.com/articles/

s41590-018-0049-7

GOLDN study 968 Y Y Y Y N N N N Cardio https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2952572/

Brisbane systems genetics study

(BSGS)

962 Y Y Y Y N N Y N Complex

Disease

https://journals.plos.org/plosone/

article?id=10.1371/journal.pone.

0035430

KORCULA (Part of EUROSPAN) 1999 944 N Y Y Y Y N N N Cardio https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2657564/

Diet, Obesity, and Genes

(DIOGenes)

2005 932 N Y Y Y N Y N N Obesity https://www.nature.com/articles/

s41467-017-02182-z

Center for the Health Assessment of

Mothers and Children of Salinas

(CHAMACOS) cohort

1999 800 Y Y Y Y Y N Y Y Farm

exposure eg

pesticides

https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6444381/

(Continued)
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TABLE 1 | Continued

Database name Recruitment

year

Sample

size

Longitudinal Genome Methylome Transcriptome Metabolome Proteome Phenome Microbiome Intended

Speciality

Link

Alzheimer’s Disease Neuroimaging

Initiative (ADNI)

2004 800 Y Y Y Y Y Y N Y Alzheimer’s http://adni.loni.usc.edu/

AddNeuroMed 700 Y Y Y Y N Y N N Alzheimer’s https://consortiapedia.fastercures.

org/consortia/anm/

Emory Twin Study (ETS) 1946 614 Y Y Y N Y N Y N General https://link.springer.com/article/10.

1186/s13148-016-0189-2

Cross-sectional analyses conducted

in the Cohort on Diabetes and

Atherosclerosis Maastricht

(CODAM)

1999 574 N Y Y Y Y N N N Cardio https://www.sciencedirect.com/

science/article/pii/

S0009898103005308#aep-

section-id12

Qatar Metabolomics Study on

Diabetes (QMDiab)

2012 388 Y Y Y Y Y Y Y N Endocrine https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC5886112/

Human Microbiome Project 2008 300 Y Y N Y Y Y N Y General https://hmpdacc.org/ihmp/

overview/data-model.php

Human Adult Cerebellum Samples - 153 N Y Y Y N N N N Psychiatry https://www.sciencedirect.com/

science/article/pii/

S000292971000087X

Human Adult Brain

Samples-Cerebellum, Frontal

Cortex, Caudal Pons and Temporal

Cortex

- 150 N Y Y Y N N N N Neurology https://journals.plos.org/

plosgenetics/article?id=10.1371/

journal.pgen.1000952

Whole blood from healthy

individuals of Dutch origin

- 148 N Y Y Y N N N N General https://bmcgenomics.

biomedcentral.com/articles/10.

1186/1471-2164-13-636#Sec13

Japanese Study on CSF Proteomic

Profile

133 N Y N N N Y N N Neuro https://academic.oup.com/hmg/

article/26/1/44/2595397

Y refers to the given data type being found, and N means it was not found.

Recruitment year: The year when participants were recruited, not the year of any retrospective historical event. Sample size: Total database sample size was chosen because sub-population omic data may desirably characterize

the overall sample. Longitudinal: Longitudinal study design. Genome: Availability of whole-genome data. Methylome: Deoxyribonucleic acid (DNA) methylation data available as methylation arrays or deep sequencing. Transcriptome:

Single-base ribonucleic acid (RNA) reads or mRNA expression data obtained via cRNA microarray chips. Metabolome and Proteome: Appropriate separation and detection methods, such as gas chromatography coupled with mass

spectrometry or nuclear magnetic resonance. Broad coverage immuno-assays were also acceptable. Routine clinical blood results do not constitute metabolomics data. Phenome: Traits in individuals not recorded for clinical purposes

or clinical techniques, for example, a heart rate monitor to characterize an individual’s daily exercise rate. Microbiome: Characterization of participants’ microbiomes either with genomic sequencing or growth characterization.
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TABLE 2 | DNA testing kits available direct for consumer use and for scientific studies.

Method Technology Price

100× Whole Genome Sequencing DNA Test [Nebula Genomics, USA (23)] Whole-genome sequencing $3,500

Circle Premium [Prenetics, Hong Kong (24)]* Whole exome sequencing $629

Health + Ancestry Service [23andme, USA (25)] Illumina Global Screening Array chip $199

Ancestry and Well-being Kit [LivingDNA, UK (26)] Thermo Fisher Scientific Affymetrix chip $179

TellMeGen DNA Kit [TellmeGen, Spain (27)] Illumina Global Screening Array chip $139

AncestryDNA + Traits [Ancestry, USA (28)] Illumina Omniexpress-24 chip $119

MyHeritage DNA Kit [MyHeritage, Israel (29)] Illumina OmniExpress-24 chip $79

*Prenetics, Hong Kong has acquired circle DNA (24) and DNAfit (30).

TABLE 3 | Three DNA methylation testing kits available direct for consumer use

and for scientific studies.

Method Tissue sampled Price

Index [Elysium Health, USA (48)] Saliva $499 (49)

DNAge [Zymo Research, USA (50)] Blood or Urine $299 per consumer test

Chronomics [Chronomics, UK (51)] Saliva £900–1,499

blockchain technologies (33), may sufficiently control access and
protect consumers.

Genome-wide association studies (GWAS) found loci
associated with elevated LDL-C and incidence of coronary artery
disease (CAD) (34). This led to the generation of polygenetic
risk scores by identifying associations between traits in a training
sample, and single or combinations of genetic markers that
present little significance solely in association studies (35).
Polygenetic risk scores made from UK BioBank participants
(Table 1) identified that 8% of the population had a 3-fold risk
of developing CAD, of which most displayed healthy blood
profiles otherwise denoting undetectable risk (36). The metaGRS
risk prediction model (10) found that UK BioBank individuals
in the two top deciles had a hazard ratio of 4.17 as compared
with those in the bottom two deciles. High CAD prevalence is
increasing due to trends in developing countries (37), reflecting
that a large number of people globally are unaware of their CAD
risk and perhaps action. Additional UK BioBank data found two
loci strongly associated in diabetes patients (38), highlighting
that genomic screening could find implications from related
conditions. Genetically susceptible patients may have a 46% risk
reduction of coronary artery events, who overall have a 91%
relative risk at the top quintile compared with the lowest quintile
in one study (39).

Methylomics
Methylation is a dynamic process whereby methyl transferases
methylate CpG dinucleotides, repressing DNA transcription
without altering base pairs. Methylomics is relatively new
and measures epigenetic DNA methylation (40) for assessing
carcinogenesis, gene silencing, and aging, among others. Modern
personalized age clocks consider methylation patterns to estimate

chronological and phenotypic age corresponding to estimated
disease mortality (41) and to discern the age of developmental
tissue (42) and the time remaining before developing age-related
illnesses, such as cardiovascular diseases (43).

Adoption of methylomics into medical data collection is
slowed by a lack of cheap, reliable, and interpretable tests. Sixty-
five databases in Table 1 include, at the least, a rudimentary level
of methylomic analysis. A benefit of in-house DNA sequencing
or microarrays is that it gives total flexibility over which tissues
and cells to isolate DNA.

Illumina’s Epic DNA methylation microarray kit samples
850,000 CpG known sites (44); however, this does not account
for the total biological variability of DNA methylation. Full
sequencing using Illumina DNAseq technology or Nugen’s
TrueMethyl oxBS-Seq Module (45, 46) introduces great cost
because next-generation sequencers cannot detect methyl-
cytosines, so a whole-genome read is compared with an
additional read generated by bisulfite conversion (47), whereby
cytosines are converted into uracil and then thymine, but
methyl-cytosines remain unchanged. This is also known as
whole-genome bisulfite sequencing.

Three commercial kits are summarized in Table 3, which
sample different numbers and locations of CpG sites. The
DNAge test (Zymo Research, USA) (52) reports methylomic
age, estimates chronological age, provides summary statistics
and graphics for integration into clinical studies, and estimates
chronological ages of samples; however, it lacks more detailed
information. Details of the algorithmic methods of commercial
tests are often not publicly available.

Leukocyte DNA methylation is useful in determining links
between smoking and pathogenesis (53). A Euro-American
meta-analysis involving 11,461 participants’ leukocytes found
52 associative and two causal CpG sites for CAD development
affecting genes involved in calcium regulation and kidney
function (54). Findings, such as this may serve as a tool to
optimize risk predictions in smokers for developing CAD and
to unveil more information into the molecular and cellular
mechanisms driving pathogenicity. If repeated, this analysis may
better address cell type variability if leukocyte sub-type data
were available (55, 56) or if a single-cell analysis was used.
Additionally, the use of panomics has epigenetic regulation
and pathology. A UK Household Longitudinal Study (Table 1)
made an online searchable database of 12,689,548 methylation
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quantitative trait loci (QTLs) associated with 2,907,234 genetic
variants and 93,268 methylation sites in 1,193 individuals’ blood
samples. These were associated to 60 human traits including
pleiotropic mapping of complex traits and changes in gene
expression for 1,702 genes (57).

Transcriptome
Gene expression can be measured with transcriptomics, which
reads cRNA, processed from mRNA, and is useful for assessing
relationships between regulatory elements and phenotypes (58).
For example, PCSK9 mRNA was degraded with a single dose of
RNA interfering Inclisiran, reducing LDL-C by 57% for 240 days
in phase II trials (59, 60) which may be a cheaper alternative to
evolocumab (61).

Transcriptomics are measured with RNA sequencing or
microarrays for predetermined mRNA sequences. Conversely to
genomics, RNA isolation and amplification kits are used, and
different algorithms ensure read alignment and quality control
(58). A total of 59 databases were found to include transcriptomic
data, and most used microarrays.

Links between anomalous cardiac QRS complexes in
individuals who have higher differential expression and
methylation across 52 genetic loci have been identified (62).
Transcriptomics can also be used for assessing alternative and
differential splicing events (63). A 97-nucleotide splice insert
in the LDL-R transcript caused familial hypercholesteremia in
participants who otherwise did not carry any known LDL-R
mutations (64).

Proteomics
Forty-one databases included proteomic data. Proteomics
analyze the structure of isolated proteins and quantify expression
(65) with gas or liquid chromatography coupled with tandem
mass spectroscopy as a gold standard, or cheaper methods,
such as matrix-assisted laser desorption/ionization–time of
flight. Bioinformatics process data and model protein–protein
interactions and drug targets, among others (66). It is a specialist
technique carried out less often, and its applicability to general
clinical practice is unknown.

The downstream effects of most discovered splicing events
are unknown, and only one software (67) can predict novel
events solely using transcriptomic data. A study in pre-print
amalgamated data from existing transcriptomic and proteomic
databases and found 253 novel splice peptides in 212 genes
undocumented in existing annotations (68).

The Framingham Heart Study (Table 1) facilitated extensive
proteomic studies. Plasma proteins of 2,100 participants were
examined against the net Framingham cardiovascular disease risk
score, identifying 161 novel genetic variants that account for
66% of plasma protein concentration variation in cardiovascular
disease participants (69). A total of 6,861 participants’ plasma
were examined, finding 16,000 protein QTLs mapped against 71
cardiovascular disease proteins with functional relevance to CAD
and eight as useful predictors of new-onset cardiovascular disease
events (70). The expression of 85 protein biomarkers previously
associated with CAD in genomic studies was measured to fine-
tune hazard ratios for cardiovascular outcomes (71).

Metabolomics
Protein disturbances can alter metabolites that change one’s
metabolomic profile (72), which may be retrospectively
investigated to identify protein disturbances (73). Analyzers used
in proteomics are used with emphasis on metabolite isolation.
Targeted metabolomics focus on predetermined metabolites
expected to react with environmental changes. Untargeted
metabolomics attempt to provide full coverage of all metabolites
but are more resource intensive (74). Forty-two databases on
Table 1 have metabolomic data.

A total of 105 metabolites were significantly altered in
Chinese patients with CAD, including palmitic acid, linoleic acid,
and phosphatidylglycerol, which have variable associations with
CAD (75).

Twins UK (Table 1) facilitated advances on human
metabolomics. A total of 145 genetic loci related to levels
of 400 plasma metabolites where characterized against gene
expression and heritable loci associated with complex disease
phenotypes. Mapping loci and biochemical pathways may assist
drug and biomarker discovery (76). Combining this with other
databases including EPIC-Norfolk (Table 1), a meta-analysis in
80,003 participants discovered 22 genetic variants associated with
circulating glycine, further suggesting that glycine is protective
in CAD (77).

Phenomics
Phenomics consider phenotypes, information on observable
traits, and morphology, such as dieting, exercise, and sleep
from wearables (Figure 2). Overlaps with clinical data can be
discerned via the methods. Cardiopulmonary exercise data are
interventional and therefore clinical, whereas daily heart rate data
collected with a wearable are phenotypic (78). Smart watches
and phones enable development of mobile health platforms (79)
that conveniently collect daily physical exertion, geolocation,
and dietary data, among others. While simple and user friendly,
wearables, such as watches measuring heart rates have low
accuracy (80, 81).

Current apps have focused on health optimization, but
medical interventions are emerging; for example, the iHeart
study evaluates whether participants’ atrial fibrillation outcomes
can be improved using “behavior-altering motivational”
messages based on an iPhone-connected ECG monitor (82).

A total of 103,578 UK BioBank participants aged between
45 and 79 years had wrist-worn accelerometers that record
daily physical activities (83) and automatically categorize these
activities into groups, such as cycling or walking and record
sleep cycle stage (84). Long-term physical activity is pivotal in
cardiovascular health and recovery (85), and these data could
improve risk models. Forty-five databases in the Table 1 include
phenotypic data.

Microbiomics
The accessory genome is larger than the human genome (86).
Microbiomics use omics to characterize resident microbiota
commonly in the gut, skin, and lungs. Twenty databases included
microbiomic profiles on the Table 1.
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Some private biotechnology companies use microbiomics
to personalize diets. Zoe, UK, found differences in obesity,
diabetes, and heart disease risk in identical twins with dissimilar
microbiomes. Their trial had success in predicting more suitable
dietary guidance (87). Viome, USA, sells $129 consumer kits
and offer dietary advice via smart phones (88). Groups at the
Weizmann Institute are using post-meal glucose spikes captured
by continuous glucose-monitoring devices (89).

A study combining metabolomic and microbiomic data of
617 middle-aged women found that less diverse microbiomes
were correlated with higher arterial stiffness, greater visceral fat,
and increased insulin resistance (90). Bacterial genes associated
with development of atherosclerotic disease (91) and increased
levels of trimethylamine N-oxide were discovered (92). This
information may help to improve risk models or to modulate
bacterial communities for better health.

LifeLines (Table 1) include fecal sample banking. In 2019,
highlighted studies discovered gut bacterial species associated
with increased incidence of depression (93), and causal effects
of butyrate-producing bacteria on metabolic traits confirmed by
measuring glucose-stimulated insulin response and fecal short-
chain fatty acids (94) and using bacterial species associated with
obesity and poor lipidemia to improve cardiovascular riskmodels
(89, 95).

Analytical Methods

Analyzing omic data is computationally intensive and is often
carried out using powerful computers, known as clusters, placed
behind the owner institution’s firewall. Otherwise, institutions or
researchers granted access can download data to their own secure
clusters. Initially, bioinformatics approaches relied heavily on
experimentally validated domain expertise to make knowledge-
driven inferences on specific pathways or genes. Now, the
generation of panomic databases exists alongside a rich selection
of data-driven methods for research and discovery, each with
their own technical advantages and limitations. The selection of
the best combination of omic data integration tools is dependent
on the use case but is outside the scope of this study. Most can be
classified as multivariate, fusion, Bayesian, network, correlation,
and similarity (96).

Multivariate Mendelian randomization (97) is a technique
used to discern causality in observational studies between
modifiable lifestyle risk factors and disease while minimizing
the effects of confounders. For example, two panels of ∼350
SNPs were selected from 2,436,300 SNPs identified in GWAS
data. Using these SNPs as instrumental variables, LDL-C was
identified as a causal driver of CAD, but HDL-C was protective,
whereas risk from plasma triglycerides was dependent on LDL-C
levels (98).

Often data can bemissing for a variety of reasons; for example,
methylation microarray chips only sample a limited number of
CpG sites on the genome, as stated previously. Imputation is a
technique where statistical inferences, assuming similar patterns
are represented across samples, can be made on unobserved
data points, such as CpG sites. The mixture regression model
(99) is one imputation method that has been demonstrated to
recover methylation data, achieving a correlation rate of 80%

when up to 80% of the methylation data points have been deleted.
Combining whole-genome bisulfite sequencing data from a
subsample with microarray data of the wider sample as an input
for the algorithm increases the prediction scope, while the cost of
analysis is reduced.

Network analyses are often used to combine findings between
different sets of omic data. Simplistically, a network is a
set of nodes that represent variables, and the relationships
between them, known as edges, can be explored. Methylomic,
metabolomic, and proteomic data were combined to form a
multi-layered network whereby the omic data sources were
matched with sources of healthy and calcified aortic valves.
The novel networks in this study found associations between
amyloid deposits on aortic valves in Alzheimer’s patients and
highlighted associated genes to the valve spongiosa layer, which
has previously not been central to calcific aortic valvular
disease research (100). Networkmethods, specifically deep neural
networks, attracted the public eye after Google DeepMind’s
AlphaFold 2 model predicted protein folded structures using
only the amino-acid sequence with near-identical performance
as gold standard experimental methods, such as cryo-electron
microscopy (101, 102).

DISCUSSION

Seventy-three databases were found containing omic data across
a range of countries, specialties, and study designs. All databases
include genomic and clinical data, as this is a quintessential
reference for any health panomic analysis and most are a cohort
or retrospective-cohort design. Table 1 shows that databases with
larger sample sizes cover more omic data types, as the techniques
and expertise required for each omic technique are resource
intensive and are often best facilitated with larger databases.

Initial studies on Mendelian disease identified common
disease-causing variants within DNA coding regions (103).
Early GWAS are built on these and identified genetic variants
associated with disease, which is useful for risk prediction models
(104). Deeper and cheaper molecular investigation techniques
enable inclusion of mRNA sequencing and DNA methylation to
measure the effect of regulatory elements and their contributions
toMendelian and complex disease (105). Variants associated with
biological traits that underlie increased disease risk have been
explored less (106). Panomics addresses this by amalgamating
omics with phenotypic and clinical data to deluge interactions
between biological mechanisms and pathophysiology.

The following databases from Table 1 are recommended for
panomic health data analysis, as they have large sample sizes,
are longitudinal, and include a wide breadth of omic data.
The UK BioBank has a larger sample size and detailed clinical
and phenotypic data systematically organized that are available
for research access. It has contributed to large numbers of
epidemiological studies, risk scoring, and prediction models and
has helped characterize associative and causal factors linked
with life-threatening illnesses including cancer, cardiovascular
disease, dementia, and diabetes. The Netherlands Twin Registry
(Table 1) and TwinsUK follow suit with smaller sample size but
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are particularly useful for quantifying the effect of genetic and
environmental factors behind human traits. The LifeLines study
follows up participants across three generations for at least 30
years to study hereditary traits and aging. The 100,000 Genomes
Project is useful for rare diseases or rare disease models. The
Nord-Trøndelag Health study and FINRISK (Table 1) started in
1984 and 1972 were not originally dedicated to omics but have
clinical data available over longer follow-up periods.

Omic databases have ethnic shift toward White European
ancestries, limiting their clinical use in ethnically diverse
populations (107, 108). Of the databases identified, few were
generated in Asia, one (Table 1) was generated on Middle
Easterners (109), and none was generated in Africa, although
efforts have been made to include other ethnicities in Northern
American and European databases (110) (Table 1).

Databases using detailed public-facing websites summarizing
the types of data available were more easily identifiable. Most
websites either did not include the types of measurements

carried out or have not been updated. Databases with complex
or long names or non-unique names had search results
muddied with irrelevant results. Although in this review various
panomic studies have been identified, the availability of the
data strongly depends on local governance and privacy laws,
except for dedicated open-access or requested-access databases,
such as the UK BioBank. This review highlights the need
for a database of databases for which principal investigators
register their studies and include conclusive information for the
academic community.
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