
ORIGINAL RESEARCH
published: 19 March 2021

doi: 10.3389/fcvm.2021.616585

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 March 2021 | Volume 8 | Article 616585

Edited by:

Gary Tse,

Second Hospital of Tianjin Medical

University, China

Reviewed by:

George Bazoukis,

Evaggelismos General

Hospital, Greece

Sharen Lee,

The Chinese University of Hong

Kong, China

Jichao Zhao,

The University of Auckland,

New Zealand

*Correspondence:

Henggui Zhang

henggui.zhang@manchester.ac.uk

Specialty section:

This article was submitted to

Cardiac Rhythmology,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 12 October 2020

Accepted: 15 February 2021

Published: 19 March 2021

Citation:

Li Z and Zhang H (2021) Automatic

Detection for Multi-Labeled Cardiac

Arrhythmia Based on Frame Blocking

Preprocessing and Residual

Networks.

Front. Cardiovasc. Med. 8:616585.

doi: 10.3389/fcvm.2021.616585

Automatic Detection for
Multi-Labeled Cardiac Arrhythmia
Based on Frame Blocking
Preprocessing and Residual
Networks
Zicong Li 1 and Henggui Zhang 1,2,3*

1 Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester,

United Kingdom, 2 Peng Cheng Laboratory, Shenzhen, China, 3 Key Laboratory of Medical Electrophysiology of Ministry of

Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research,

Southwest Medical University, Luzhou, China

Introduction: Electrocardiograms (ECG) provide information about the electrical activity

of the heart, which is useful for diagnosing abnormal cardiac functions such as

arrhythmias. Recently, several algorithms based on advanced structures of neural

networks have been proposed for auto-detecting cardiac arrhythmias, but their

performance still needs to be further improved. This study aimed to develop an

auto-detection algorithm, which extracts valid features from 12-lead ECG for classifying

multiple types of cardiac states.

Method: The proposed algorithm consists of the following components: (i) a

preprocessing component that utilizes the frame blocking method to split an ECG

recording into frames with a uniform length for all considered ECG recordings; and

(ii) a binary classifier based on ResNet, which is combined with the attention-based

bidirectional long-short term memory model.

Result: The developed algorithm was trained and tested on ECG data of nine types

of cardiac states, fulfilling a task of multi-label classification. It achieved an averaged

F1-score and area under the curve at 0.908 and 0.974, respectively.

Conclusion: The frame blocking and bidirectional long-short term memory model

represented an improved algorithm compared with others in the literature for

auto-detecting and classifying multi-types of cardiac abnormalities.

Keywords: electrocardiogram, cardiac arrhythmia, residual neural network, attention-based bidirectional, long

short-term memory, frame blocking, auto-detection algorithm

INTRODUCTION

Cardiac arrhythmias refer to irregular heart rhythms, representing abnormal cardiac electrical
activities associated with abnormal initiation and conduction of excitation waves in the heart (1).
Cardiovascular diseases in association with cardiac arrhythmias can cause heart failure, stroke,
or sudden cardiac death (2). Early detection and risk stratification of cardiac arrhythmias are
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crucial for averting severe cardiac consequences. With their
ability to represent useful information regarding the electrical
activity of the heart, electrocardiograms (ECG) measured via
electrodes placed on the body surface played an important
role in diagnosing cardiac abnormalities (3). Recently, artificial
intelligence-based algorithms (4, 5) have shown promises in
screening abnormal features of ECG to achieve an automatic
diagnosis of cardiac arrhythmias with high accuracy but less
labor demand.

In previous studies, several auto-detection algorithms have
been developed (6, 7). These algorithms focus on extracting
physiological features of ECGs, such as heart rate variation
(calculated from the time interval between two consecutive
R peaks), the width of the QRS complex, and QT intervals.
However, these algorithms do have limitations for practical
application, as ECG features were merely extracted from RR
or QT intervals, providing insufficient information for multiple
types of cardiac event classification. To extract sufficient features
automatically and achieve high classification accuracy, recent
advancements in deep neural network (8) helped to develop
several improved auto-detection algorithms (5, 9, 10) for ECG
analysis and classification. These studies illustrated that the deep-
learning-based algorithms have the advantages of extracting and
processing ECG features automatically.

However, the algorithms discussed earlier are mainly focused
on processing single-lead ECG rather than the 12-lead ECG,
which is commonly used in the clinical setting for providing
more diagnostic information than a single-lead ECG on cardiac
excitations (11). Also, it is still a challenge to auto-detect multi-
types of cardiac diseases based on 12-lead ECG due to (i)
similar morphological features of ECG among different types of
diseases, such as between atrial fibrillation (AF) and premature
atrial contraction (12); (ii) imbalanced ECG data for various
heart diseases in some training datasets, which may result in
excessive bias or over-fitting of the neural network for diagnosis;
(iii) unequal recording length of clinical ECG recordings, which
may result in loss of some essential signals in the process of
preprocessing for training the neural network.

Therefore, this study aims to develop a novel method for
preprocessing raw ECGs and design an appropriate neural
network for classifying 12-lead ECG data with multi-labeling and
varied lengths.

METHODOLOGY

The proposed algorithm for classifying 12-lead ECG with multi-
labeling consists of components of data denoising, framing
blocking, and dataset balance for data preprocessing and a
neural network structure based on ResNet in combination
with attention-based bidirectional long short-term memory
(BiLSTM). The general structure of the proposed algorithm is
shown in Figure 1.

Dataset Description
China Physiological Signal Challenge in 2018
The China Physiological Signal Challenge (CPSC) 2018 dataset
consists of 6,877 (females: 3,178; males: 3,699) recordings of

12-lead ECG data collected from 11 hospitals. Each recording
is saved as a MAT file with a hea file presenting labels and
relevant information of the ECG recording at the end of the
file. The ECG recordings are sampled at 500Hz with different
recording lengths, ranging from 6 to 60 s. The dataset contains
ECG recordings for nine types of cardiac states, including AF,
intrinsic paroxysmal atrioventricular block, left bundle branch
block (LBBB), normal heartbeat (Normal), premature atrial
contraction (PAC), premature ventricular contraction (PVC),
right bundle branch block (RBBB), ST-segment depression
(STD), and ST-segment elevation (STE). To illustrate the
morphological variation of the ECG among different cardiac
states, the visualization of ECG lead II waveforms for nine types
of cardiac states and a multi-labeled ECG recording can be
found in Supplementary Figures 1, 2, respectively. Among the
6,877 recordings, 476 of them have two or three different labels.
Table 1 lists the numbers and distribution of eight-type cardiac
arrhythmias in the 476 multi-labeled recordings of the CPSC
2018 dataset.

China Physiological Signal Challenge in 2020
An independent dataset, the CPSC 2020 dataset, is also used
for testing the robustness of the proposed model. The dataset
from CPSC 2020 contains two subsets of annotated recordings,
one with 6,877 (males: 3,699; females: 3,178) recordings and
the other with 3,453 (males: 3,453, females: 1,610) recordings of
12-lead ECG data, each of which was collected by a sampling
frequency of 500Hz. Furthermore, the dataset from CPSC 2020
contains public and unused datasets from the CPSC 2018 dataset
for seven common types of cardiac states, details of which
are listed in Table 2 for the total number and distribution
of cardiac abnormality in the CPSC 2020 dataset. Except
for normal heart rhythm, the numbers and distribution of
six types of abnormalities in multi-labeled recordings of the
CPSC 2020 dataset can be found in Supplementary Table 1.
In the experimental process, the total recordings for seven
common types of cardiac states in CPSC 2020 were used for
robustness testing.

PTB XL
To demonstrate the universality and robustness of the proposed
algorithm, the cross-validation of the algorithm was processed
on the PTB XL dataset. The PTB XL dataset comprises 21,837
clinical 12-lead ECG records from 18,885 patients (males: 9,820,
females: 9,064) of 10-s length. As a multi-labeled dataset,
the ECG records were annotated by two cardiologists based
on the Standard Communication Protocol for Computer-
Assisted Electrocardiography standard (14). Table 3 illustrates
the distribution of diagnosis, where the diagnostic labels are
aggregated into superclasses.

Preprocessing
Noise Processing
Most ECG signals have a frequency range between 0.1 and
35Hz and are non-stationary in the low-frequency range (15).
Noises normally contaminate them from sources of power-line
interference, muscle movement, and baseline wander, which blur
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FIGURE 1 | Flow chart diagram of the algorithm for multi-type cardiac arrhythmia classification.

TABLE 1 | Numbers and distribution of ECG recordings with multiple labels (13) for eight different types of abnormalities in CPSC 2018.

AF I-AVB LBBB RBBB PAC PVC STD STE

AF 0 0 29 172 4 8 33 2

I-AVB 0 8 10 3 5 6 4

LBBB 0 0 10 6 3 4

RBBB 0 55 51 20 19

PAC 2 3 6 5

PVC 0 18 2

STD 0 2

STE 0

TABLE 2 | Recording numbers and distribution of seven types of abnormalities in

CPSC 2020.

Abnormalities CPCS 2020 CPCS 2020 Total

Training Training

set1 set2

AF 1,221 153 1,374

I-AVB 722 106 828

LBBB 236 38 274

Normal 918 4 922

RBBB 1,857 1 1,859

PAC 616 73 689

PVC 0 188 188

the features of the ECG signals for classification. For minimizing
possible effects of noise on model classification, raw ECG data
in the two databases were denoised by using an eight-order
Butterworth lowpass (35Hz) filter for eliminating noise and
removing baseline wander.

Frame Blocking
Clinical ECG data are normally collected with non-uniform
duration, ranging from 10 s to 24 h, causing difficulties for

TABLE 3 | Recording numbers of distribution of five types of diagnostic labels in

PTB XL.

Superclass Description Record_Num

NORM Normal ECG 9,528

MI Myocardial Infarction 5,486

STTC ST/T Change 5,250

CD Conduction Disturbance 4,907

HYP Hypertrophy 2,655

training and testing neural networks. For unifying the length of
each of the ECG recordings, a frame blocking method adapted
from speech recognition (16) is utilized in the present study. In
speech recognition, frame blocking is used to segment speech
signals into short frames with overlapping, enabling a smooth
transition between adjacent frames that maintains the continuity
of the signal. As there is a similarity between speech signals and
ECG time series (17, 18), the frame blocking method can be
implemented in ECG data for unifying their recording length.
Figure 2A illustrates the implementation of the frame blocking
method on the cardiac signal. In the figure, Fs, the frameshift,
denotes the time lag of the frame (from the starting time of the
ECG recording), and fo denotes the overlapping part between
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FIGURE 2 | Illustration of frame blocking for pre-processing ECG signal. (A) Method of frame blocking. (B) Example of 12-lead ECG data segments after frame

blocking processing.

adjacent frames. Thus, the length of each frame, Fl, can be
expressed as:

Fl = Fs + fo (1)

For a raw ECG recording with a total length of Sl, given the
number of frames Fn and frame length Fl, then the framing
equation can be represented as:

Fs = (Sl − Fl)/(Fn − 1) (2)

The length of each ECG recording in the CPSC 2018 dataset is
variable, of which 6,634 recordings have their length shorter than
40 s (i.e., ∼20,000 sampling data points). To retain the available
ECG signals for each record as much as possible, we set Fl and Fn
as a constant of 2,000 (sampling points) and 10, respectively, but
Fs variable for fitting the required length and number of frames.
Figure 2B illustrates an example of a 12-lead ECG recording
processed by the frame blocking, with each ECG recording can
be transformed into a frame-block with a uniform size [i.e., (Fn,
Fl, lead_num)]. As such, the frame blocking acted on each lead of
the signals and divided them into 10 frames with a frame length
of 2,000 sampling points.

Dataset Balance
In the present study, the multi-labeled dataset was converted into
multiple types of sub-dataset classes, each of which represented
one of the multiple types of cardiac states. The length of the
ECG data for each type of cardiac abnormalities is imbalanced,

leading to over-fitting and weak generalization of the proposed
neural network. To address this problem, a random under-
sampling method (19) is used. For training and testing each
binary-classifier, data samples are selected randomly from the
dataset until a 2:1 ratio of samples in the majority class to the
minority class is obtained.

Construction of the Model
Residual Convolution Neural Network
Residual convolutional neural network (CNN) (20) has shown
excellent performance on image recognition for addressing the
degradation problem of a deeper neural network, and it is
believed to be useful for analyzing time-series signals, such as
ECG. Here, we implemented one-dimension residual CNN with
13 layers based on the structure of ResNet. As shown in Figure 3

for the general structure of the network, both dense blocks 1
and 2 belong to the residual block, and the shortcut connection
simplifies the optimization of the deep neural network.

Attention-Based Bidirectional Long Short-Term

Memory
In the proposed model, the residual blocks primarily focus
on extracting features from ECG signals, and the attention-
based BiLSTM structure focuses on learning and analyzing the
feature map produced by the residual blocks. The bidirectional
structure provides contextual information in the forward and
backward directions for the output layer, providing more
prediction information (21); thus, in this study, a BiLSTM (17)
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FIGURE 3 | Diagram of the structure of dense block1 and dense block2. BN, batch normalization; ReLU, rectified linear units; Conv1D, one-dimension convolutional

layer.

FIGURE 4 | Structure of Attention Mechanism. Correlation between the

key-value pairs of the input time sequences and the query (a condition value) is

evaluated, based on which the weight of each value is calculated. Through the

weighted summation, the attention value for each element in the input time

sequence can be assign.

is used to catch some essential information from a long-distance
correlation of the ECG data. The proposedmodel implements the
Attention Mechanism (Figure 4) to allocate different attention
values to each input query, which assists BiLSTM to precisely
identify valid information and reduce the loss of key features.
The attention-based BiLSTM can focus on the essential part of
the input, meanwhile, it catches global, and local connection
precisely because of the weight and attention allocation for the
input time sequences.

Structure of the Proposed Network
The dense block 1 shown in Figure 3 is a standard residual block
in ResNet. It consists of two one-dimension convolutional layers

(Conv1Ds), two Batch Normalization (BN) (22), and rectified
linear units (ReLU) (23) for the activation function layers, as
well as a shortcut connection that transmits the input to output
directly before applying the second ReLU nonlinearity. As for the
structure of dense block 2, a Conv1D layer and BN are added in
a shortcut for adjusting channels or stride to fit the desired shape
of output. The overall structure of the proposed model is shown
in Figure 5.

Following the Conv1Ds are the BN and ReLU layers, which
help to simplify the parameter adjustment, improve the learning
speed, and address the vanishing gradient problem of the model.
Then a 1D max-pooling layer is used to down-sample the
feature map by computing and extracting maximums of every
three values in the feature map matrix, thus retaining the
most valuable features and avoiding unnecessary memory usage
during the training process. After the max-pooling layer, dense
block 2 is connected to dense block 1 to fulfill a complete
residual CNN. Before processing the attention-based BiLSTM for
feature analysis, the global average pooling layer (24) is used to
process the regularization of the global structure of the network,
preventing it from overfitting.

Supplementary Table 3 lists a set of optimal parameters for
each layer and the residual blocks. Among different residual
blocks in different positions (first or second), convolution kernels
have different sizes and numbers. For classification, sigmoid
activation with binary cross-entropy (25) is used to convert the
output sequence from the last LSTM layer into a probability for a
specific label, based on which classification is determined with a
given threshold.
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FIGURE 5 | Structure of the proposed neural network.

Experimentation Details and Evaluation
Matrix
The proposed model is initially trained and implemented using
the CPSC 2018 datasets and run on Tesla T4 GPU with Keras
frameworks (26). As described in the section of dataset balance,
the positive and negative samples of each cardiac abnormality
with the ratio of 1:2 are randomly selected and combined as
input datasets for the model. For each binary classifier, the input
data were divided into three subsets: 64% for training, 16% for
validation, and 20% for testing. The 5-fold cross-validation was
also implemented for training and validation. The test dataset was
used purely for evaluating the performance of the model and was
not involved in training and validation of the proposed model.

The classification performance can be comprehensively
evaluated by precision, Recall, F score, receiver operator

characteristic (ROC) curve, and area under the curve
(AUC). These evaluated measures are calculated by the
following equations:

Precisioni =
TPi

TPi + FPi

Recalli =
TPi

TPi + FNi

F1scorei =
2× (Precisioni × Recalli)

Recalli + Precisioni

In these equations, i denotes each of the types of cardiac
arrhythmias. TPi and TNi represent the number of correctly
predicted positive and negative samples, respectively. On the
other hand, FP and FN are the values of false prediction
for positive and negative samples separately. The ROC curve
measures the performance of the model via plotting the trade-
off between sensitivity and specificity, and the AUC is the value
of the area under the ROC curve. A ROC curve is closed to the
top-left corner and has the AUC close to 1 indicates the good
performance of the classification model.

RESULT

Adjustment of Hyperparameter
The process and outcome of tunning of hyperparameters can be
found in the Supplementary Material.

Comparison of Model Performance to
Different Model Structures
To compare the performance of the proposed model to others,
results obtained here were compared with those obtained
from multiple models with different network structures, which
included (i) the plain CNN with attention-based BiLSTM; (ii)
Plain CNN + LSTM; and (iii) Challenge-best deep neural
network model.

i) Plain CNN+ attention based BiLSTM

Supplementary Table 5 lists the architecture of plain CNNs and
attention-based BiLSTM. Except for the structure of shortcut,
the convolutional layers, batch normalization layers, and ReLU
layers of this model are similar to those of the proposed model.
Multiple dropout layers were added to this structure, which could
reduce the complexity of coadaptation between hidden neurons
and improve the robustness of the neural network (27).

ii) Plain CNN+ LSTM

Similar to the plain CNN + attention-based BiLSTM model,
the structure of the plain CNN + LSTM model contains
plain CNNs without shortcut. Moreover, the attention-based
BiLSTM is replaced by LSTM layers with a simpler structure for
feature analysis.

iii) Challenge-best deep neural network model

Supplementary Table 6 depicts the structure of the first prize
model (13) for the automatic diagnosis of cardiac abnormalities
in the CPSC 2018 dataset. The model consists of five CNN blocks
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FIGURE 6 | Comparison of F1 scores between different models based on the same test samples. F1 scores of the proposed model show the best performance of

the model as compared with others with values of 0.959 for AF, 0.937 for an intrinsic paroxysmal atrioventricular block (I-AVB), 0.958 for LBBB, 0.885 for Normal,

0.848 for PAC, 0.920 for PVC, 0.965 for RBBB, 0.841 for STD, and 0.868 for STE. Specific values of F1 scores of the other three models are shown in

Supplementary Table 7.

FIGURE 7 | Comparison of overall F1 scores between using the proposed

block framing and the common padding method for pre-processing ECG data

for classification.

and attention-based bidirectional GRU. Each block includes
two convolutional layers, with one pooling layer appended for
reducing the over-fitting and the amount of computation. To
achieve optimal performance of classification, the bidirectional
GRU layer followed by an attention layer is connected to the
last convolutional block. Moreover, the hyperparameters of the
challenge-best model have been modified based on our proposed
model, enabling a direct comparison.

Figure 6 plots computed F1 scores achieved by the proposed
model, which are compared with results from other comparable
models using the same dataset. As shown in the figure, the F
scores of six labels in the proposed model are notably higher
than others. The proposed model achieved the highest F score
of 0.965 for the RBBB case, followed by 0.959 and 0.958 for
AF and LBBB, respectively. The probability results illustrated by
the confusion matrix (Supplementary Figure 3) demonstrated

a low probability of misclassification by our proposed model;
especially, the probability of false positive and false negative for
AF, LBBB, PVC, and RBBB is closed to zero.

The plain CNN with attention-based BiLSTM ranks second
with an average F score of 0.846. The computed F scores from the
model for PAC, PVC, and STE are much smaller than those of
the proposed model. Thus, the replacement of residual networks
reduced the performance of the model. The performance of plain
CNNwith the LSTMmodel is not optimal for each type of cardiac
abnormalities, especially for the cases of LBBB, PAC, and STE,
for which F score is < 0.800. Although the Challenge-best model
achieved the highest F score for the AF case, its performance for
other abnormalities is relatively poor. Over-fitting occurred when
the Challenge-best model was implemented for the data input of
PAC, STD, and STE, leading to undesired F scores. Though the
architecture and hyperparameters of the Challenge-best model
are similar to the model shown in Supplementary Table 5, the
computed average F score of the challenge-best model is much
lower as compared with the presented model.

Supplementary Figure 4 shows the computed ROC curve
from different models for each type of the nine cardiac states.
Comparing with other models, the ROC curve of the proposed
model is closer to the top left corner, with an averaged AUC at
0.974, suggesting out-performance to the other models.

Performance on Different Preprocessing
To illustrate the advantage of the frame blocking for pretreatment
of the data, the performance of the proposed model was
compared with that using a common preprocessing method (28–
30), which uses direct cutting and zero-padding protocol to unify
the length of ECG signals. As for a fixed length of 40-s ECG
data (i.e., 20,000 sampling data points), the common method can
either truncate the exceeding signal samples when the length of
original records exceeds 40 s or pads zeros to the data when the
length is < 40 s.
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As shown in Figure 7, the higher median andminimum of the
common method illustrate an improved model performance of
the proposed frame blocking method. Moreover, the distribution
of F1 scores by the common method is discrete, reflecting the
instability of the performance of the classification model. To
further evaluate the significant difference of this observation, the
Wilcoxon signed-rank test is done on the two paired of F1scores.
The p-value is 0.028 (<0.05), revealing the difference between
F1scores produced by two pretreatments is significant.

Robustness Testing
Being tested on the CPSC 2020 dataset, the proposed model
shows F1 scores significantly higher than those of the
Challenge-best model (13) for all seven types of cardiac
arrhythmias (Figure 8). The computed ROC curve and AUC
(shown in Supplementary Figure 5) also demonstrate the better
performance of the proposed model (with an averaged AUC of
0.951) than the challenge-best model (13). It is interesting to note
that the Challenge-best model is much harder to converge on the
CPCS 2020 than those of CPSC 2018. Also, the performance of
the challenge-best model varies dramatically for different types
of cardiac abnormalities with the use of the CPSC 2020 dataset as
indicated by low values of F1 score for LBBB, Normal, PAC, and
PVC conditions.

Cross-Validation
Besides the CPSC datasets, the PTB XL dataset was adapted
for cross-validation of the proposed novel algorithm for
preprocessing and classification. As shown in Figure 9, the
F1 scores of four diagnosis labels are higher than 0.800,
achieving an average F1 score of 0.838 for all diagnosis
labels in that dataset. The computed ROC curve and AUC
(shown in Supplementary Figure 6) also illustrated a satisfying
performance of the proposed algorithm on an external dataset
with an average AUC of 0.950.

DISCUSSION

The novelty and major contributions of the present study
are the following: (i) we proposed a preprocessing algorithm
of frame blocking adapted from speech recognition, which
decomposes ECG signals into overlapped frames. The proposed
frame blocking method minimizes the loss of valid signals
while maintaining the continuity of ECG signals in the process
of unifying the length of variant ECG recordings; (ii) we
developed a neural network based on the residual networks (31)
with attention-based BiLSTM. As compared with the previous
algorithms mentioned earlier for ECG detection, the presented
network can extract and analyze ECG features automatically,
thereby improving the model performance. It also alleviates the
vanishing and exploding gradient problem as seen in deep neural
networks, and (iii) by training and testing the model using
three independent datasets of 12-lead ECG signals provided
in CPSC (32) and PTB XL (33), the proposed algorithm
demonstrates superiority and robustness in classifying 12-lead
ECGs with multi-labeling.

In recent years, numerous automatic detection methods for
ECG analysis and classification have been developed. These
methods are mainly based on and tested using the open-source
MIT-BIH database (34), which are mainly single lead ECGs with
single labeling. Thus, the general applicability of these algorithms
for automatic stratifying multi-leads ECG and multiple types
of arrhythmias is unclear. In this study, we developed a new
algorithm based on frame blocking and the structure of ResNet,
in combination with attention-based BiLSTM. Initially, the novel
algorithm was trained and evaluated on the datasets of CSPC for
classifying 12-lead ECG for nine types of arrhythmia labeling. By
comparing the performance of othermodel structures (Figure 6),
the superiority of the proposedmodel was confirmed. Comparing
with the common preprocessing method (Figure 7), the frame
blocking method reduces the number of zeroes padded at the
end of the signal recording, enhancing the valid part of ECGs,
as well as the autocorrelation of ECG records. Thus, the proposed
preprocessingmethod is more conducive to feature extraction for
further classification.

The proposed algorithm demonstrated its robustness and
clinical value via robustness testing and cross-validation.
Through the robustness testing, the proposed algorithm
shows a consistent performance on the two datasets and
various types of abnormalities, illustrating the robustness of
the proposed algorithm and hyperparameters. Considering
the cross-validation, both the frame blocking method and
classificationmodel are also applicable to the PTBXL dataset with
a vast number of clinical records.

Regarding the model structure, the proposed model adopts a
similar neural network structure as the Challenge-best model.
Both are based on a bidirectional recurrent neural network
with the attention mechanism, but the proposed model used
residual networks to avoid gradient explosion and vanishing.
The strength of ResNet has also been demonstrated by several
studies (31, 35). In their studies, He et al. (35) showed the
deep residual networks achieved an overall F1 score of 0.806.
Rajpurkar et al. (31) utilized a 34-layer residual neural network
to classify 65,000 multi-lead ECG records with 14 classes of
cardiac disease and achieved an average accuracy and F1 score
of 0.800 and 0.776, respectively. Due to the differences between
the original dataset and preprocessing method, the crosswise
comparison of classification models is not persuasive. The
studiesmentioned earlier processed the classification via complex
network structures and a large amount of annotated data.
Although the deeper neural networks with sufficient training
data contributed high classification accuracy, the computation
of the model also increased and required expensive hardware
support. Our model adapted a similar structure as the studies
mentioned earlier but simplified the network structure, raising
the computational efficiency of training and the probability of
clinical practice.

As for the challenge-best model proposed by Chen et al.
(13), its whole structure contains 10 plain convolutional layers
and 5 pooling layers. The use of unnecessary multiple layers
in the CNN layers may reduce the model performance on
a small and unbalanced dataset due to over-fitting, causing
difficulties in parameter tuning. Thus, the occurring of the
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FIGURE 8 | Comparison of performance between the proposed model and the Challenge-best model tested on the CPSC 2020 dataset for various types of

arrhythmias. F scores of the proposed model are 0.940 for AF, 0.856 for intrinsic paroxysmal atrioventricular block (I-AVB), 0.898 for LBBB, 0.870 for Normal, 0.743

for PAC, 0.798 for PVC, 0.922 for RBBB, 0.841 for STD, and 0.868 for STE. Comparison of the F1 score between them is listed in Supplementary Table 8.

FIGURE 9 | Performance of the proposed algorithm on PTB XL dataset for five diagnosis labels. F scores of each label are 0.853 for NORM, 0.852 for MI, 0.842 for

STTC, 0.853 for CD, and 0.791 for HYP.

internal covariate shift slows down the training process when
the input distribution changes, impairing the convergence ability
of the model. Different preprocessing methods may also affect
the performance of the model. We have looked at this issue.
Compared with the commonly used method, the frame blocking
method used in this study demonstrated its advantage in
retaining maximum valid cardiac signal, which contributed
to signal enhancement. Therefore, it proved to be a feasible
preprocessing method to help the model extract more available
features that are useful for model classification.

As for algorithms for multi-label classification (36), they
can fall into problem transformation and algorithm adaption.
With the development of neural networks, more studies (12,
31, 35, 37) designed an adaptive algorithm for multi-label
classification. However, algorithm adaption has a high demand
for sufficient training data and effective parameter adjustment
to reduce misdiagnosis for multi-labeled ECG. Additionally,

algorithm adaptation requires a complex model with proper
parameters, increasing training cost and difficulties in data
interpretation. In this study, each abnormality is considered as an
independent binary problem, improving the interpretation of the
features extracted. Although the binary relevance method cannot
provide information about label correlation and interdependence
directly, it still demonstrated some advantages for multi-label
classifying performance and efficiency.

Regarding several recent studies (38–40), the risk stratification
is in high demand to prevent sudden death or stroke caused
by cardiac diseases. Inspired by the present algorithm, the risk
prediction of cardiac diseases can be automated based on the
clinical data collected from the ECG or electronic heart records.
The shortcut connection in the residual network saved the
computing time of the model and accelerated the convergence
of the model, which is friendly to the clinical research setting.
Thus, the model has the potential to automatically identify the
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patients at a high risk of cardiac diseases, process early clinical
interventions and therapy. Furthermore, the application of a
warning system of cardiac arrhythmias can be implemented
based on the risk stratification and auto-detected algorithm. The
ECG and electronic heart records can be stored and processed
via cloud infrastructure and the internet, realizing the real-time
monitoring system for cardiac arrhythmias and improving the
early warning for the patients suffered from cardiac diseases.

RELATED WORKS

Previous works into ECG auto-detection are mainly focused
on manual feature extraction via the analysis in the time
domain, frequency domain, and ECG morphology. After feature
extraction, machine learning methods, such as Support Vector
Machine (41) and linear discrimination analysis (42), are
usually used for classifications. Compared with the algorithms
mentioned earlier, ECG auto-detection based on deep neural
networks focuses more on automatic feature extraction from
ECG signals.

Hannun et al. (10) developed a deep CNN model for auto-
detection of 12 classes of cardiac rhythms, achieving an averaged
F1 score of 0.837. Besides, models based on LSTM have also
been developed for processing ECG data with varied recording
lengths and long-term time dependence to avoid the loss of valid
features (43). For multiple label classification, the combined use
of different neural networks demonstrates a better performance
than the network structure purely based on the convolution layer.
For example, the algorithm of multi-information fusion neural
networks (44) consisting of BiLSTM and CNNhas the advantages
of simultaneously extracting the morphological features and
temporal features, yielding an accuracy of 99.56%. Moreover,
a similar BiLSTM–CNN model has been introduced to process
data with long-term correlation, which could sufficiently extract
features (45) to achieve high sensitivity and specificity of 98.98
and 96.95%, respectively.

The ECG auto-diagnosis algorithms discussed earlier
demonstrated the advantages of deep learning algorithms in
classification accuracy but were less focused on processing the
12-lead ECG with multiple diagnosis labels. Thus, it is in demand
to develop an effective and auto-diagnostic algorithm to classify
12-lead ECG data for multiple cardiac arrhythmias.

LIMITATION OF STUDY

There are a few potential limitations in this study. Firstly, random
under-sampling was used to address the imbalanced datasets of
MIT-BIH (34), PTB XL (33), and CPSCs 2018 (32) and 2020.
However, some potentially important and information-rich data
might be discarded from the majority class, causing difficulties
in fitting the decision boundary between majority and minority
samples (19). Although the proposed model demonstrated good
performance on two CPSC datasets (2018 and 2020) and PTB
XL for 9, 7, or 5 different rhythmic abnormalities, it still needs

to be further tested and improved by using other ECG datasets
with more types of rhythmic abnormalities. However, as the
types of rhythmic abnormalities increase, it would be expected
that the required training time and GPU memory usage will be
substantially increased.

In addition, the proposed neural network algorithm is heavily
dependent on a large amount of annotated training data, which is
labor expensive. For some rare types of cardiac abnormalities, it
is difficult to collect such a large ECG dataset with annotation. In
following-up works, it warrants to study further how algorithm
adaption method (46) and other neural network architectures
(47–49) help to deal with multi-labeled data directly and reduce
time-demand for training. Moreover, unsupervised and semi-
supervised learning can also be tested for addressing the lack of
enough annotations.

CONCLUSION

This study proposed a new framing preprocessing method that
can minimize the loss of ECG signals to enhance the features
of signals. The proposed algorithm can diagnose multiple types
of cardiac arrhythmias with promising accuracy, clinical value,
and robustness, which may be potentially useful in assisting risk
stratification, clinical diagnosis, and real-time ECG monitoring.
Furthermore, we have shown that the residual neural network
helps to extract deep features while saving computing time
via processing the convolutional layers in parallel. For feature
analysis, the attention-based BiLSTMdemonstrated its advantage
in addressing problems of long-distance dependency, allowing
focus on the most significant features based on the assigned
attention values.
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