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Background: Common variants may contribute to the variation of prognosis of heart

failure (HF) among individual patients, but no systematical analysis was conducted using

transcriptomic and whole exome sequencing (WES) data. We aimed to construct a

genetic risk score (GRS) and estimate its potential as a predictive tool for HF-related

mortality risk alone and in combination with traditional risk factors (TRFs).

Methods and Results: We reanalyzed the transcriptomic data of 177 failing hearts

and 136 healthy donors. Differentially expressed genes (fold change >1.5 or <0.68

and adjusted P < 0.05) were selected for prognosis analysis using our whole exome

sequencing and follow-up data with 998 HF patients. Statistically significant variants

in these genes were prepared for GRS construction. Traditional risk variables were in

combination with GRS for the construct of the composite risk score. Kaplan–Meier curves

and receiver operating characteristic (ROC) analysis were used to assess the effect of

GRS and the composite risk score on the prognosis of HF and discriminant power,

respectively. We found 157 upregulated and 173 downregulated genes. In these genes,

31 variants that were associated with the prognosis of HF were finally identified to develop

GRS. Compared with individuals with low risk score, patients with medium- and high-risk

score showed 2.78 (95%CI = 1.82–4.24, P = 2 × 10−6) and 6.54 (95%CI = 4.42–9.71,

P = 6 × 10−21) -fold mortality risk, respectively. The composite risk score combining

GRS and TRF predicted mortality risk with an HR = 5.41 (95% CI = 2.72–10.64, P = 1

× 10−6) for medium vs. low risk and HR= 22.72 (95% CI= 11.9–43.48, P= 5× 10−21)

for high vs. low risk. The discriminant power of GRS is excellent with a C statistic of 0.739,

which is comparable to that of TRF (C statistic = 0.791). The combination of GRS and

TRF could significantly increase the predictive ability (C statistic = 0.853).

Conclusions: The 31-SNP GRS could well distinguish those HF patients with poor

prognosis from those with better prognosis and provide clinician with reference for the

intensive therapy, especially when combined with TRF.

Clinical Trial Registration: https://www.clinicaltrials.gov/, identifier: NCT03461107.
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INTRODUCTION

Heart failure (HF) is the final pathway of many cardiovascular
problems with high morbidity and mortality (1, 2). Along with
growing aging population and HF-related risk factors (e.g.,
hypertension, obesity, diabetes), the incidence and prevalence
of HF have continuously increased (3–5). Despite effective drug
treatment including β-blockers and inhibitors of the renin-
angiotensin-aldosterone system, the prognosis of HF has still
remained unoptimistic (4, 6).

The clinical course and prognosis of HF patients showed
significantly variable among different subgroups of patients (5, 7).
In view of this, a substantial amount of studies were carried out
to develop the prognostic multivariable models for mortality risk
stratification of HF (5, 8–12). There have been three validated
and commonly used scores in chronic HF including the MECKI
score, the Seattle HF Risk Model, and the MAGGIC Risk score
(13–15). In these models, plenty of variables such as baseline
characteristics, medical history, demographics physical exam,
laboratory values, and biological markers were taken into account
to develop the risk score (11, 16). Importantly, they all displayed
an excellent discrimination with C statistic beyond 0.7 and could
provide an accurate prediction for survival of HF (9, 13, 17).
However, all these models only paid attention to conventional
risk factors and ignored the importance of genetic factors in
the progression of HF (1, 2). A growing body of evidence has
demonstrated that hereditary factor played a vital role in the
prognosis of HF (18–21). But these investigations just focused on
a single variant, most of which had only modest or small effect on
themortality risk prediction of HF. Thus, it is essential to evaluate
the cumulative effects of multiple loci on the mortality risk of HF
and develop an HF-related genetic risk score (GRS), which could
combine with traditional risk factors for the assessment of the
composite risk score.

Therefore, we aim to construct a GRS for the prognosis of HF
and evaluate a composite risk score comprised of both GRS and
traditional risk factors in its ability to predict the mortality risk
of HF.

METHODS

Study Subjects for Whole Exome
Sequencing
The study protocol conforms to the ethical guidelines of the 1,975
Declaration of Helsinki as reflected in the a priori approval by the
Review Board of Tongji College of Medicine. Written informed
consents were obtained from all patients before enrollment. This
study is based on data from two previous studies (22, 23). Details
about HF population, whole exome sequencing (WES), and
bioinformatics workflow, data processing, and quality control
have been described previously (22). Among our population,
there are 704 patients with an LVEF value < 40%, 160 patients

Abbreviations: HF, heart failure; WES, whole exome sequencing; GRS, genetic

risk score; TRF, traditional risk factors; ROC, receiver operating characteristics;

SNPs, single nucleotide polymorphisms; MAF, allele frequency; LD, linkage

disequilibrium.

with an LVEF value = 40–49%, and 134 patients with LVEF >

50%. The diagnosis and exclusion criteria of chronic HF have
been described previously in detail (19). The composite of heart
transplantation and cardiovascular death were defined as the
primary end points.

Transcriptomic Analysis and Gene
Selection
Cordero et al. have conducted RNA-sequencing of 177 failing
hearts and 136 healthy donor controls (23). Related data are
available in GEO (accession number GSE57338). As we all know,
differentially expressed genes are more likely to play a vital role in
the process of HF. So we used GEO2R to compare HF and control
groups to identify genes that are differentially expressed across
experimental conditions. Genes with fold change (FC)>1.5 or
<0.68 and adjusted P < 0.05 [adjusted by FDR (false discovery
rate)] were selected as candidate genes for further analysis, which
could also reduce the chance of overfitting the prediction model
compared with involving all genes.

Genetic Risk Score
Common single nucleotide polymorphisms (SNPs) with minor
allele frequency (MAF)>0.05 in the candidate genes were

TABLE 1 | Baseline characteristics of population with whole exome sequencing.

Characteristics Sequencing population (N = 1,000)

Men 743

Age, years 57.00 ± 14.19

LVEF (%) 34.55 ± 12.40

TC, mmol/L 3.91 ± 1.31

TG, mmol/L 1.40 ± 1.13

HDL, mmol/L 0.96 ± 0.31

LDL, mmol/L 2.42 ± 0.87

Cr, mmol/L 108.75 ± 79.30

Hemoglobin, g/L 134 ± 22

Potassium, mmol/L 4.16 ± 0.52

Sodium, mmol/L 139.46 ± 4.10

NT-proBNP (pg/mL) 3,750 (1,555–8,645)

SBP, mmHg 127 ± 24

DBP, mmHg 81 ± 17

Hypertensiona 392 (39.2%)

Diabetesa 175 (17.5%)

Hperlipidemiaa 50 (5%)

Current smokinga 390 (39%)

ACEIa 468 (46.8%)

ARBa 55 (5.5%)

Spironolactonea 398 (39.8%)

β-blocker usea 435 (43.5%)

Data are expressed as means ± SD or percentages.

TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein cholesterol; LDL,

low density lipoprotein cholesterol; Cr, creatinine; SBP, systolic blood pressure; DBP,

diastolic blood pressure; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin

receptor blockers.
aListed as number (%).
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extracted from our WES data. Kaplan–Meier curves were
performed to evaluate the effect of above common SNPs on
the prognosis of HF. Statistically significant variants were
further analyzed using Cox proportional hazard to assess
hazard ratios (HRs) with 95% confidence intervals (CI) for
each SNP. Variants in strong linkage disequilibrium (LD)
with each other (r2 > 0.9) were analyzed using our WES
data, and only one SNP was selected as tagged SNP for the
construction of GRS. Genotypes with higher mortality risk for
HF were given a weighted score of 1∗ hazard ratio (HR),
while the rest were given a weighted score of 1. For each
patient, the sum of the weighted scores from above SNPs
were calculated and used to predict major clinical events-
free survival.

Composite Risk Score Construction
All traditional HF mortality-related variables were entered into
multivariable Cox proportional hazards models together with the
GRS to evaluate its independent relationship to the mortality
risk of HF. The GRS was divided into thirds, and groups of
low, moderate, and high risk were created with subjects in
the low genetic risk of GRS as the reference. Similarly, all
the continuous variables were divided into thirds and into
groups of low, moderate, and high risk. The corresponding
beta coefficients for each variable were then used to create
a weighted composite score consisting of those variables
showing a significant association with the prognosis of HF.
The beta coefficients from each category were used for the
continuous variables categorized. The composite risk score was

divided into thirds and further into groups of low, moderate,
and high risk and then analyzed using Cox proportional
hazards models.

Statistical Analysis
Statistical analyses were performed with Statistical Package for
the Social Sciences (SPSS), version 13.0, and R version 3.5.0.
Data were presented as mean ± standard deviation (SD) for
continuous variables and median [interquartile range (IQR)] or
numbers (percentages) for categorical or dichotomous variables.
Linkage disequilibrium was calculated using Haploview version
4.1. Kaplan–Meier curves and the Cox proportional hazards
regression model were used to assess the association of GRS
and the composite risk score with the prognosis of HF.
Statistical significance were compared by either unpaired or
paired, two-tailed Student’s t-test or one-way ANOVA followed
by Bonferroni’s post-hoc test, where appropriate.

Traditional risk factors formortality risk of HFwere defined as
age, gender, hypertension, diabetes, smoking, LVEF, hemoglobin,
NT-proBNP (logarithmic transformation of NT-proBNP is used
in order to minimize the effect of extreme values), serum
creatinine, potassium, sodium, systolic blood pressure, and
diastolic blood pressure. Receiver operating characteristic (ROC)
curve analysis with MedCalc 11.5 (http://www.medcalc.be/) was
performed to compare the discriminant power of traditional risk
factors, GRS, and the composite risk score. All comparisons were
two-sided, and P < 0.05 was considered as significant.

FIGURE 1 | Differential gene expression between 177 failing hearts and 136 healthy donor controls. Volcano plots depicting the extent (x-axis) and significance (y-axis)

of differential gene expression between failing and healthy heart samples. Fold change represents failing vs. control hearts.
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TABLE 2 | Statistically significant variants using Cox proportional hazard analysis in dominant model.

SNPs Mapped genes Function Allele Risk allele MAF P-value HR

Minor Major

rs1715919 MNS1 Missense G T G 0.067 0.000707 1.71

rs11083543 FCGBP Missense G C G 0.216 0.001803 1.47

rs61761894 SFRP4 Synonymous T C T 0.177 0.002206 1.47

rs741164 C16orf89 Synonymous C T C 0.439 0.005191 1.51

rs420137 FNDC1 Missense C G C 0.354 0.005454 1.43

rs3738530 NID1 Synonymous A T A 0.062 0.005787 1.58

rs16946429 NUDT7 Missense G A G 0.135 0.006227 1.44

rs3169983 SERPINB8 Missense/3UTR G A G 0.176 0.007421 1.40

rs10961757 FREM1 Synonymous A G G 0.451 0.012142 1.39

rs948847 APLNR Synonymous C A A 0.288 0.014759 1.36

rs3817602 GLT8D2 Synonymous T C C 0.15 0.015021 1.43

rs423490 C3 Synonymous T C T 0.07 0.018452 1.48

rs1802074 SFRP4 Missense A G A 0.245 0.018636 1.34

rs1463725 MED12L Synonymous C T C 0.317 0.024048 1.32

rs741143 FCGBP Missense C T C 0.442 0.024293 1.38

rs1869608 MATN2 Synonymous G A A 0.138 0.026984 1.40

rs17221959 SLC11A1 Synonymous T C T 0.1 0.0318 1.37

rs9370340 FAM83B Synonymous C T T 0.064 0.03354 1.62

rs1981529 STEAP4 Missense G A G 0.114 0.033187 1.35

rs35179634 RAB15 Missense/Synonymous G T G 0.488 0.039924 1.36

rs61748727 P2RX5 Missense A G G 0.059 0.043462 1.60

rs2229682 SLC2A1 Synonymous A G A 0.088 0.04386 1.36

rs6227 FURIN 3UTR T C C 0.069 0.047261 1.51

rs1351113 KLRK1 3UTR A G A 0.119 0.046709 1.32

rs638551 FNDC1 Synonymous A G G 0.406 0.048468 1.28

rs2269287 EDIL3 Synonymous A G G 0.125 0.048747 1.36

rs35016536 LAD1 Frameshift G GC G 0.055 0.049257 1.43

SNPs, single nucleotide polymorphisms; MAF, minor allele frequency; HR, hazard ratio; UTR, untranslated region.

TABLE 3 | Statistically significant variants using Cox proportional hazard analysis in recessive model.

SNPs Mapped genes Function Allele Risk allele MAF P-value HR

Minor Major

rs2297224 TUBA3C Synonymous A G G 0.417 0.006068 1.7

rs3210140 CD163 Synonymous C T T 0.372 0.007582 1.8

rs653521 FNDC1 Synonymous T C C 0.406 0.01784 1.57

rs10733289 FREM1 Synonymous T C C 0.329 0.035378 1.72

RESULTS

Subjects Characteristics
A total of 1,000 chronic HF patients (787 patients with

dilated cardiomyopathy and 213 patients with ischemic

cardiomyopathy) were recruited, in which we completed the

follow-up with 998 patients finally. During the follow-up, 260

primary endpoint events occurred. Detailed characteristics of the
participants are listed in Table 1.

Differential Gene Expression Analysis
Through analyzing the transcriptomic data from GEO (accession
number GSE57338), we found 157 upregulated and 173
downregulated genes with adjusted P < 0.05 when the threshold
of FC was set at >1.5 and <0.68 (Supplementary Table 1). The
FDR (false discovery rate), which could reduce the false positive
rate, was used for the adjustment of the p-value. The overview of
the comparison of the differential gene expression between HF
and control groups is shown in Figure 1.
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SNP Prognosis Analysis
A total of 582 common SNPs in the above selected 330 differential
expression genes were found from our WES data. Subsequently,
we performedKaplan–Meier curve analysis for 582 variants using
our follow-up data. A total of 37 and 6 SNPs were associated with
the prognosis of HF in the dominant (Supplementary Table 2)
and recessive models (Supplementary Table 3), respectively.
Given that rs420137, rs436743, rs370434, rs420054, rs404435,

FIGURE 2 | Distribution of integer risk score for all 998 HF patients. The

distribution shows a nearly bell-shaped curve, ranging from 34.82 to 42.23

points with a median value of 38.78.

rs3003174, rs402388, rs2501176, and rs2932988 were in strong
LD (r2 > 0.9) with each other, we selected rs420137 as the
tagged SNP for further GRS development. Similarly, rs741143,
rs3210140, and rs653521 were, respectively, chosen as tagged
SNPs for their LD with other SNPs (Supplementary Figure 1).
Although rs2297224 showed statistical significance in both the
dominant and recessive models, we regarded it as a recessive
model since it has a smaller P-value and higher HR. Finally,
27 SNPs in the dominant model (Table 2) and 4 SNPs in the
recessive model (Table 3) were prepared to develop the GRS.

GRS
To evaluate the cumulative effects of above 31 SNPs, GRS for
each individual was calculated. As shown in Figure 2, the GRS
conformed to a bell-shaped distribution, ranging from 34.82 to
42.23 points with a median value of 38.78. We divided the scores
into thirds of low (34.82–38.20), medium (38.21–39.26), and high
(39.27–42.23) risk from the overall GRS. These accounted for
33.4, 33.4, and 33.2% of chronic HF patients and 11.5, 29.1,
and 59.4% of primary endpoint events, respectively. The baseline
characteristics of the participants in the low-, medium-, and
high-risk groups are listed in Table 4.

Furthermore, we conducted prognosis analysis using the
Cox proportional hazards regression model. As shown in
Figure 3A, compared with the low-risk group, medium- and
high-risk groups were associated with poorer prognosis of
HF (HR = 2.78, 95% CI = 1.82–4.24, P = 2 × 10−6 for
medium vs. low risk group; HR = 6.54, 95% CI = 4.42–
9.71, P = 6 × 10−21 for high vs. low risk group) (Table 5).
The statistical significance in multivariate analysis remained
after adjusting for traditional risk factors including age, gender,
hypertension, diabetes, hyperlipidemia, smoking status, and
β-blocker use (HR = 2.38, 95% CI = 1.55–3.66, P = 7
× 10−5 for medium vs. low risk group; HR = 5.43, 95%

TABLE 4 | Baseline clinical characteristics of the study cohort with different risk score.

Characteristics GRS P-value

Low risk score (N = 333) Medium risk score (N = 333) High risk score (N = 332)

Age (years) 55.59 ± 14.92 56.51 ± 14.46 58.89 ± 12.98 0.008

Male, % 75 74 74 0.931

HBP, % 44 36 38 0.082

Diabetes, % 17 17 19 0.769

Current smoker, % 37 41 27 <0.001

β-blocker use 48 45 35 0.002

Ejection fraction, % 35.97 ± 13.57 33.60 ± 11.65 33.93 ± 11.56 0.029

Systolic blood pressure (mmHg) 132.39 ± 61.15 128.01 ± 24.70 125.01 ± 23.99 0.062

Diastolic blood pressure (mmHg) 82.48 ± 18.58 80.58 ± 16.09 78.87 ± 16.66 0.026

Hemoglobin (g/L) 117.26 ± 41.09 122.55 ± 38.19 120.30 ± 36.75 0.374

Creatinine (mmol/L) 97.49 ± 41.22 94.98 ± 33.16 97.10 ± 39.62 0.294

Sodium (mmol/L) 139.18 ± 4.33 139.53 ± 3.85 139.47 ± 3.66 0.584

NT-proBNP (pg/mL) 2,670 (938–6,521) 2,985 (1,479–8,634) 3,866 (1,260–9,000) 0.007

All continuous variables are expressed as mean ± SD, or median (25th−75th percentile) for right-skewed data.

HBP, high blood pressure.
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FIGURE 3 | Prognostic analysis for GRS and composite risk score (A,B). Cox proportional hazards regression model was used for prognosis analysis. (A) Compared

with the low-risk group (N = 333), medium (N = 333), and high-risk groups (N = 332) showed increased HF-related mortality risk (HR = 2.78, 95% CI = 1.82–4.24,

P = 2 × 10−6 for medium- vs. low-risk group; HR = 6.54, 95% CI = 4.42–9.71, P = 6 × 10−21 for high- vs. low-risk group). The statistical significance remains after

adjustment for age, gender, hypertension, diabetes, hyperlipidemia, smoking status, and β-blocker use. (B) Composite risk score with medium and high risk showed

significantly increased mortality risk of HF (HR = 5.41, 95% CI = 2.72–10.64, P = 1 × 10−6 for medium vs. low risk; HR = 22.72, 95% CI = 11.90–43.48, P = 5 ×

10−21 for high vs. low risk).

TABLE 5 | Prognosis analysis for groups with different risk score using Cox proportional hazards regression model.

Groups Unadjusted Adjusted

P HR 95% CI P HR 95% CI

Low-risk score Reference Reference Reference Reference Reference Reference

Medium-risk score 2 × 10−6 2.78 1.82–4.24 7 × 10−5 2.38 1.55–3.66

High-risk score 6 × 10−21 6.54 4.42–9.71 6 × 10−17 5.43 3.65–8.06

The p-value was adjusted with traditional risk factors including age, gender, hypertension, diabetes, hyperlipidemia, smoking status, and β-blocker use.

CI = 3.65–8.06, P = 6 × 10−17 for high vs. low risk
group) (Table 5).

Composite Risk Score
Traditional risk variables were in combination with GRS for
the evaluation of the composite effect. After multivariable Cox
proportional hazards analysis with all HF mortality-related
traditional risk factors and GRS, there remained 10 variables
that showed significant association with the prognosis of HF
(Table 6). As shown in Table 6, all continuous and categorical
variables have respective beta coefficients, which were weighted
for composite risk score construction. The low, medium, and

high risk of the composite risk score accounted for 5.1, 23.9, and
71.0% of primary endpoint events, respectively.

Prognostic analysis using the Cox proportional hazards
regression model showed that the composite risk scores with
medium and high risk were significantly associated with
increased mortality risk of HF when compared with low risk
(HR = 5.41, 95% CI = 2.72–10.64, P = 1 × 10−6 for medium
vs. low risk; HR = 22.72, 95% CI = 11.90–43.48, P = 5 × 10−21

for high vs. low risk) (Table 7, Figure 3B).

Discriminative Power Analysis
We assessed the discriminative power of the three models: model
1, nine traditional risk factors (TRFs) only; model 2, GRS; model
3, composite risk score. The average AUCs for models 1, 2, and
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TABLE 6 | Cox regression analysis of association between HF-related mortality risk and continuous variables categorized into groups of low, medium, and high.

Variable HR CI (95%) Beta coefficient P

Male sexa 1.35 1.03–1.76 0.301 0.026

Diabetes mellitusa 1.56 1.06–2.30 0.443 0.025

LVEFb (%)

Low (39–76) 1.0(Ref) NA NA NA

Medium (29–38) 1.74 1.24–2.42 0.552 0.001

High (10–28) 2.06 1.49–2.85 0.722 <0.001

Potassiumb (mmol/L)

Low (2.57–3.93) 1.0(Ref) NA NA NA

Medium (3.94–4.30) 1.13 0.80–1.59 0.122 0.48

High (4.31–6.91) 1.60 1.17–2.20 0.472 0.004

Sodiumb (mmol/L)

Low (141.2–198.3) 1.0(Ref) NA NA NA

Medium (138.6–141.1) 1.41 0.97–2.05 0.345 0.069

High (114.3–138.5) 2.59 1.85–3.63 0.953 <0.001

NT-proBNPb (pg/mL)

Low (3.69–1,920) 1.0(Ref) NA NA NA

Medium (1,921–5,757) 3.33 2.09–5.32 1.205 <0.001

High (5,758–79,000) 7.09 4.57–10.99 1.957 <0.001

Ageb (years)

Low (13–52) 1.0(Ref) NA NA NA

Medium (53–65) 1.45 1.04–2.02 0.373 0.03

High (66–94) 2.30 1.68–3.15 0.834 <0.001

DBPb (mmHg)

Low (86–198) 1.0(Ref) NA NA NA

Medium (73–85) 1.14 0.82–1.59 0.133 0.433

High (40–72) 2.11 1.56–2.86 0.747 <0.001

Crb (mmol/L)

Low (32–79) 1.0(Ref) NA NA NA

Medium (80–102) 1.02 0.74–1.41 0.019 0.91

High (103–677) 1.49 1.11–2.01 0.4 0.009

GRSb

Low (34.82–38.20) 1.0(Ref) NA NA NA

Medium (38.21–39.26) 2.78 1.82–4.24 1.022 <0.001

High (39.27–42.23) 6.54 4.42–9.71 1.877 <0.001

GRS, genetic risk score.
aYes/no.
bDivided into groups of low, medium, and high.

TABLE 7 | Prognostic analysis for composite risk score using Cox proportional

hazards regression model.

Group P HR 95% CI

Low risk Reference Reference Reference

Medium risk 1 × 10−6 5.41 2.72–10.64

High risk 5 × 10−21 22.72 11.9–43.48

3 were 0.791 (95% CI = 0.761–0.819), 0.739 (95% CI = 0.707–
0.770), and 0.853 (95% CI = 0.826–0.877), respectively. Their
true prediction rates reached up to 79.3, 75.4, and 83.5%,

respectively. The ROC curves for the three models are shown
in Figure 4A. There was no statistically significant difference
between models 1 and 2 (P = 0.06). However, the composite risk
score could significantly improve the discriminative power when
compared with TRF or GRS alone (P < 0.0001 for model 3 vs.
model 1; and P < 0.0001 for model 3 vs. model 2) (Figure 4B). In

order to avoid overfitting, we conducted cross-validations. The

population was randomly divided into two groups, including the
training set (449 patients) and the validation set (449 patients).
As shown in Table 8, the composite risk score was superior to
both TRF and GRS in discriminative power in the training and
validation sets (training set: P < 0.0001 for model 3 vs. model 1,
and P < 0.0001 for model 3 vs. model 2; validation set: P= 0.022
for model 3 vs. model 1, and P < 0.0001 for model 3 vs. model 2),
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FIGURE 4 | Receiver-operating characteristic curves for HF-related mortality risk. (A,B) Model 1, only age, gender, diabetes, LVEF, log-transformed NT-proBNP,

serum creatinine, sodium, potassium, diastolic blood pressure; model 2, only GRS; model 3, composite risk score. AUC, area under the curve.

TABLE 8 | Discrimination power analysis of three models using cross-validations.

Groups Training set Validation set

C-Index 95% CI P-value C-Index 95% CI P-value

Model 1 0.764 0.719–0.80 Reference 0.793 0.749–0.832 Reference

Model 2 0.749 0.703–0.791 0.678 0.727 0.679–0.771 0.124

Model 3 0.841 0.801–0.875 <0.0001 0.842 0.802–0.877 0.022

P-values were calculated with reference to model 1.

which is consistent with the results from the total population.
Besides, the discriminative power showed no difference between
models 1 and 2 (Table 8).

DISCUSSION

Our results indicated that medium- and high-risk score groups
were associated with 2.78- and 6.54-fold higher mortality risk
when compared with the low-risk score group (HR = 2.78, 95%
CI = 1.82–4.24, P = 2 × 10−6 for medium- vs. low-risk group;
HR= 6.54, 95% CI= 4.42–9.71, P= 6× 10−21 for high- vs. low-
risk group). Furthermore, we combined GRS and traditional risk
factors to construct the composite risk score, which could more
significantly distinguish individuals with different mortality risk
(HR = 5.41, 95% CI = 2.72–10.64, P = 1 × 10−6 for medium
vs. low risk; HR = 22.72, 95% CI = 11.90–43.48, P = 5 × 10−21

for high vs. low risk). Besides, we compared the discriminative
power of traditional risk factors, GRS, and combined models for
HF using ROC curve analysis. The data showed that GRS and
TRF were comparable in the discriminative power (P = 0.06),
both with a high c statistic beyond 0.7. The combination of TRF

and GRS could significantly increase the ability of prediction for
survival of HF with c statistic reaching up to 0.853.

Heart failure has been a serious social problem with high
mortality (9, 14, 24). Despite advanced drug and device therapies,
5-year mortality rates remained < 40% (25, 26). Up to now, a
series of HF-related traditional risk factors have been used to
construct the prognostic multivariable models for mortality risk
stratification (6, 14, 27–31). They all had a well discrimination
power with C statistic beyond 0.7 (9, 13, 17). Besides, the
prognostic value of circulating microRNAs on the mortality risk
of HF has also been investigated recently (32, 33). Importantly,
plenty of studies on the association between genetic variants and
the prognosis of HF have shed light on the variable mortality risk
of individual patients. Based on these, our study was carried out
to comprehensively construct a GRS and composite risk score for
HF prognosis.

First, our investigation was based on the data from
transcriptomic analysis of 313 human heart samples and WES of
998 HF patients, which could comprehensively assess the SNPs
associated with HF-related mortality risk.

Second, our GRS was constructed with a total of 31 SNPs,
which represented the largest GRS study for the prognosis
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of HF (18, 22). Furthermore, our GRS achieved greater risk
discrimination than the previously published genomic risk score
(22). For example, the medium- and high-risk score groups have
2.78- and 6.54-fold HR, respectively, for the prognosis of HF
in comparison with the low-risk score group. Importantly, the
prediction ability was independent of traditional risk factors.
Notably, the composite risk score could dramatically improve
the discrimination ability with the mortality risk of high and
medium risk reaching up to 22.72- and 5.41-fold, respectively,
when compared with the low-risk group. The risk stratification
for HF patients could help identify those patients in need of more
intensive treatment and also help target appropriate populations
for trials of new therapies.

Third, the discriminative power of GRS was displayed
excellently, which was comparable to the traditional prediction
models with nine known risk factors at present. And the GRS
added substantial prognostic power to the traditional risk model
with a c-index of 0.853. These suggested that the combination
of genetic and traditional risk factors could well discriminate
the risk mortality for individual patients, which represented a
promising direction in the future.

The main limitation of our study was the single-center
study with only one cohort. Although the results were
statistically significant, additional larger studies would help
confirm our findings.

CONCLUSIONS

In conclusion, we found a total of 31 SNPs associated with HF-
related mortality risk by using large-scale prognosis analysis.
GRS, derived from the 31 SNPs, was significantly associated
with the prognosis of HF and displayed excellent discrimination
ability for mortality risk of HF. Moreover, the combination of
GRS and conventional risk factors could substantially improve
the discrimination power. The results indicated that our GRS
could identify individuals with increased HF-related mortality
risk and provide clinician with reference for the intensive
therapy, especially when combined with traditional risk factors.
Future strategies for prognostic assessment of HF should include
an individualized assessment in which traditional risk factors are
combined with an evaluation of GRS as well.
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