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Background: The etiology of cerebral small vessel disease (SVD) remains elusive, though

evidence is accumulating that inflammation contributes to its pathophysiology. We

recently showed retrospectively that pro-inflammatory monocytes are associated with

the long-term progression of white matter hyperintensities (WMHs). In this prospective

high-frequency imaging study, we hypothesize that the incidence of SVD progression

coincides with a pro-inflammatory monocyte phenotype.

Methods: Individuals with SVD underwent monthly magnetic resonance imaging

(MRI) for 10 consecutive months to detect SVD progression, defined as acute

diffusion-weighted imaging-positive (DWI+) lesions, incident microbleeds, incident

lacunes, and WMH progression. Circulating inflammatory markers were measured,

cytokine production capacity of monocytes was assessed after ex vivo stimulation, and

RNA sequencing was performed on isolated monocytes in a subset of participants.

Results: 13 out of 35 individuals developed SVD progression (70 ± 6 years, 54%

men) based on incident lesions (n = 7) and/or upper quartile WMH progression (n =

9). Circulating E-selectin concentration (p < 0.05) and the cytokine production capacity

of interleukin (IL)-1β and IL-6 (p < 0.01) were higher in individuals with SVD progression.

Moreover, RNA sequencing revealed a pro-inflammatory monocyte signature including

genes involved in myelination, blood–brain barrier, and endothelial–leukocyte interaction.

Conclusions: Circulating monocytes of individuals with progressive SVD have an

inflammatory phenotype, characterized by an increased cytokine production capacity

and a pro-inflammatory transcriptional signature.
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INTRODUCTION

Cerebral small vessel disease (SVD) is a common condition
in elderly individuals and is the most important vascular
contributor to dementia, lacunar infarcts, Parkinsonism, and
ultimately loss of independence (1–3). SVD affects the structure
and function of the smallest cerebral blood vessels, including
the arterioles, capillaries, and venules of the brain, resulting in
brain parenchymal tissue changes (4). Tissue alterations thought
to arise from SVD are mainly detected with magnetic resonance
imaging (MRI) and include diffusion-weighted imaging-positive
(DWI+) lesions suggestive of acute (micro)infarcts, microbleeds,
lacunes, and white matter hyperintensities (WMHs), among
others (5). Imaging of small cerebral vessels is difficult, and the
inability to visualize the initiation of arteriolar pathology has
arguably contributed to the fact that the etiology of SVD has
remained elusive. In the past few years, evidence is compiling on
the role of inflammation in SVD pathophysiology.

Inflammation is increasingly acknowledged as a risk factor
for SVD (6). Meta-analyses reported elevated circulating markers
of inflammation, e.g. interleukin 6 (IL-6) and C-reactive protein
(CRP), and markers of endothelial dysfunction, e.g. E-selectin,
in individuals with SVD (7–9). In addition, longitudinal studies
demonstrated that systemic inflammatory markers at baseline
predicted subsequent SVD severity (10, 11). Inflammation and
endothelial dysfunction contribute to chronic disruption of the
blood–brain barrier, which is thought to aggravate SVD (12, 13).
Blood–brain barrier disruption enhances leakage of signaling
mediators and facilitates the communication between circulating
and tissue-resident immune cells.

Circulating innate immune cells, capable to produce
circulating inflammatory markers, might have a significant
influence on the development of SVD. We recently showed
in a retrospective analysis that a pro-inflammatory phenotype
of circulating monocytes was associated with the progression
and severity of SVD (14). In detail, the cytokine production
capacity of monocytes strongly correlated with the progression
of WMH over a 9-year course (14). The systemic inflammation
marker IL-6 (high-sensitive (hs)IL-6) and the pro-inflammatory
(CD14++CD16+) intermediate monocyte subset correlated with
the WMH progression rate in individuals with SVD. However,
the retrospective approach of this study precludes the assessment
of a direct relation between pro-inflammatory monocytes and
inflammatory markers with the development of SVD.

In this study, we aimed to further elucidate the role of
innate immune activation in SVD by investigating whether

Abbreviations: SVD, cerebral small vessel disease; WMH, white matter

hyperintensity; MRI, magnetic resonance imaging; IL-6, interleukin-6; CRP, C-

reactive protein; RUN DMC–InTENse, Radboud University Nijmegen Diffusion

tensor and Magnetic resonance imaging Cohort–Investigating The origin and

EvolutioN of cerebral small vessel disease; DWI, diffusion-weighted imaging;

BMI, body mass index; IMT, intima media thickness; Tchol, total cholesterol;

HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; LDL-C, low-

density lipoprotein cholesterol; RPMI, Roswell Park Memorial Institute; LPS,

lipopolysaccharide, toll-like receptor 4 agonist; P3C, Pam3CysK4, toll-like receptor

2 agonist; TNFα, tumor necrosis factor alpha; EGR2, endothelial growth response

2; RUNX3, Runt-related transcription factor 3; TGF-β, tumor growth factor beta;

SPP1, osteopontin-1.

the occurrence of SVD progression is linked to the circulating
monocyte phenotype. Therefore, high-frequency serial imaging
with MRI was performed monthly for 10 consecutive months
to detect multiple imaging markers of SVD, including the
incidence of acute (micro)infarcts (defined as DWI+ lesions),
microbleeds, lacunes, and WMH. In addition, we aimed to
provide a deeper understanding of the inflammatory phenotype
of circulating monocytes by performing RNA sequencing of
monocytes from individuals with SVD progression compared to
individuals without signs of SVD progression.

MATERIALS AND METHODS

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Study Design and Participants
Individuals were enrolled in the RUN DMC–InTENse study
(Radboud University Nijmegen Diffusion tensor and Magnetic
resonance imaging Cohort–Investigating The origin and
EvolutioN of cerebral small vessel disease), a longitudinal
observational study, comprising a pre-visit, 10 MRI visits over
a period of 10 months, and a follow-up visit 1 year after the
pre-visit (15).

The major inclusion criterion was progression of WMH
between 2006 and 2015, as demonstrated on MRI collected
within the previous RUN DMC study (16). To rule out
causes of cerebral ischemia other than SVD, exclusion criteria
for the RUN DMC–InTENse study were the presence of
large artery disease defined as carotid artery stenosis (>50%
assessed by carotid ultrasound), atrial fibrillation or the use
of oral anticoagulants, previous cortical ischemic stroke or
transient ischemic attack, intracranial hemorrhage (other than
a microbleed), and large artery vasculitis. Participants with
dementia or Parkinson’s disease [according to Diagnostic and
Statistical Manual of Mental Disorders (DSM)-IV criteria] were
also excluded from participation. Furthermore, in the current
study, we excluded participants with autoimmune/inflammatory
diseases including diabetes mellitus, or daily immunomodulatory
drug use, because these conditions interfere with the immune
response. All individuals gave written informed consent. The
study protocol was approved by the Institutional Review Board
Arnhem/Nijmegen, Netherlands (NL53939.091.15).

MRI Acquisition and Image Processing
A detailed description of the MRI protocol and image analysis
was recently published (17, 18). Briefly, individuals were scanned
using a single 3 T MRI system (MAGNETOM Prisma, Siemens
Healthineers, Erlangen, Germany) and a 32-channel head coil.
To detect DWI+ lesions, we obtained multi-shell DWI scans (90
diffusion-weighted directions including 30 × b = 1,000, and 60
× b = 3,000 s/mm2, 10 b = 0 images, and voxel size 1.7 × 1.7
× 1.7mm). Trace images were created for the b = 1,000 and b
= 3,000 shells, and a mean diffusivity map was calculated for the
b = 1,000 shell. We acquired 3D multi-echo fast low angle shot
images (6 echoes, voxel size 0.8 × 0.8 × 2.0mm), which were
used to create susceptibility-weighted images to identify cerebral
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microbleeds. Finally, to assess WMH and lacunes, we acquired
3D fluid-attenuated inversion recovery images (voxel size 0.85×
0.85 × 0.85mm) and 3D T1-weighted images (voxel size 0.85 ×
0.85× 0.85 mm).

Incident Small Vessel Disease Lesion Detection

Detection of SVD imaging markers was done according to
previously established criteria (5). Briefly, DWI+ lesions were
manually detected and defined as hyperintense lesions on
diffusion-weighted trace images (both b = 1,000 and b =

3,000), accompanied by a hypointense or isointense signal
on the mean diffusivity map. Microbleeds were detected
semiautomatically as hypointense lesions on the FLASH images.
Incident lacunes (including cavities < 3mm) were manually
detected using difference FLAIR and T1-weighted images,
generated by subtracting registered baseline FLAIR and T1
scans from the last available follow-up scans. WMHs were
automatically segmented based on a deep-learning algorithm
utilizing FLAIR and registered T1-weighted images as input
images. For each case, the WMH volumes extracted from the
monthly scans were corrected for white matter volume extracted
from the corresponding visit. Next, in a simple linear regression
model on WMH volume over time, we calculated the predicted
individual WMH volume at each time point and progression of
WMH (i.e., the slope of the regression model).

Individuals with any incident lesion during the study period
(DWI+ lesion, microbleed, or lacune) and individuals belonging
to the first quartile of WMH progression were classified as
participants with SVD progression.

Cardiovascular Risk Assessment
At study inclusion, medical history, medication use, and
cardiovascular risk assessment, including measurement of the
blood pressure three times [according to American Heart
Association (AHA) guidelines (19)], smoking status, body mass
index (BMI), and capillary non-fasting glucose was obtained.

Blood Sampling
Parallel to the third MRI appointment [median of 16 [12–23]
weeks after pre-visit], overnight fasted blood was obtained in
EDTA vacutainers between August 2016 and February 2017.
Plasma and serum were stored in −80◦C. Total cholesterol
(Tchol), high-density lipoprotein cholesterol (HDL-C), and
triglycerides (TGs) were measured using standardized methods.
Low-density lipoprotein cholesterol (LDL-C) was calculated with
the Friedewald formula. Total blood counts were measured with
an automated cell counter using Sysmex-XN 450 hematology
analyzer (Sysmex, Hamburg, Germany).

Monocyte Isolation and Stimulation
Monocytes were isolated using Ficoll-Paque density gradient
centrifugation (GE Healthcare, Chicago, USA) followed by
magnetic activated cell sorting using the Pan Monocyte
Isolation kit according to manufacturer’s instructions (Miltenyi
Biotec, Bergisch Gladbach, Germany). Cell purity of the
monocyte fraction [median 92% (88–95%) monocytes-of-
leukocytes] was evaluated with flow cytometry. Monocytes were

concentrated in RPMI 1640 Dutch-modified culture medium
(Life Technologies/Invitrogen, Waltham, USA) supplemented
with 2 mmol/L glutamine (Invitrogen), 10 mg/ml gentamicin
(Centrafarm, Etten-Leur, Netherlands), and 1 mmol/L pyruvate
(Invitrogen). 1 × 105 monocytes were seeded on flat-bottom
96-well plates (Corning, New York, USA) and stimulated
in triplicate for 24 h with RPMI (control), toll-like receptor
4 agonist lipopolysaccharide (LPS) from E. coli (10 ng/ml,
serotype 055:B5; Sigma-Aldrich, St. Louis, USA), and toll-
like receptor 2 agonist Pam3CysK4 (P3C) (10µg/ml, L2000;
EMCMicrocollections, Tübingen, Germany). Supernatants were
collected after plate centrifugation and stored in −80◦C freezer
until cytokine assessment.

Cytokine Assessment
Cytokine and chemokine concentrations were measured in
plasma and in supernatants after stimulation with enzyme-linked
immunosorbent assay (Supplementary Table 1).

Flow Cytometry
Monocyte subpopulations, consisting of CD14++CD16−

classical monocytes, CD14++CD16+ intermediate monocytes,
and CD14+CD16+ non-classical monocytes, were identified
with the FC500 flow cytometry (Beckman Coulter, Brea,
USA) using the lysis-no-wash strategy (BD Pharm Lyse lysing
buffer, Becton Dickinson) with 100 µl fresh EDTA blood. Cells
were stained by monoclonal antibodies (CD16 FITC Leu11a,
Becton&Dickinson; CD14 ECD RM052, Beckman-Coulter;
CD45 PC5 J.33, Beckman-Coulter) and subsequently analyzed
with Kaluza software version 1.5a (Beckman Coulter).

The full gating strategy is displayed in
Supplementary Figure 1. In short, monocytes were gated
in SSC/CD45+ plot, identifying monocytes as CD45+ cells with
monocyte scatter properties. Exclusion of lymphocytes and
natural killer cells was performed by excluding CD14/CD16
negative cells. Percentages ofmonocyte subsets (CD14++CD16−,
CD14++CD16+, and CD14+CD16+) were identified in
the CD14/CD16 plot. For determination of the gates
setting, the fluorescence minus one method was applied.
Identification of monocyte subsets follows current international
recommendations (20, 21).

RNA Isolation and Quantseq 3′ mRNA
Sequencing
RNA sequencing was completed for four participants with SVD
progression [composing of DWI+ lesions (n = 4), two of
which with microbleeds] and four matched control participants
(Table 3). Of the individuals with SVD progression, all subjects
with DWI+ lesions and monocyte purity >90% were selected
to create a homogeneous subgroup. Participants with SVD
progression were matched to those without SVD progression
based on age, hypertension, and BMI.

Monocytes, with >90% purity in the isolated fraction, were
stored in RNAprotect (Qiagen, Venlo, Netherlands) before
processing for RNA sequencing using a standard RNA isolation
protocol. In short, per 1ml of RNAprotect, 200 µl of chloroform
was added, mixed, incubated at room temperature for 5min, and
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spun down for 15min at 12,000 g at 4◦C. The upper aqueous
phase was transferred to an RNase-free Eppendorf tube, and
an equal volume of 70% ethanol was added. After thorough
mixing, the sample was loaded onto RNeasy mini columns
(Qiagen), after which the manufacturer’s protocol was followed.
After the last manufacturer’s step, 15 µl of RNase-free water
was added to the columns, incubated for 5min, and spun
down. The RNA concentration was determined using the Qubit
RNA HS assay (Qiagen), and the quality was determined using
Nanodrop technology.

Library preparation was performed using the QuantSeq 3′

mRNA-Seq Library Prep Kit-FWD from Lexogen (Cat #015.96;
Lexogen) according to the manufacturer’s protocol. RNA input
for all samples was normalized to 200 ng. All samples were
processed in a single library preparation. The optimal cycle
number for the endpoint PCR was determined on a 1:10 aliquot
of the double-stranded cDNA libraries. Subsequent quality
assessment, i.e. measuring the cDNA concentration using the
Qubit dsDNA HS assay (Cat #Q32854; Thermo Fisher Scientific)
and the average fragment size with the Agilent 2200 TapeStation
(HS-D1000 ScreenTape, Cat #5067-5582; Agilent), enabled the
determination of the molar concentration of individual libraries.
Equimolar pooling of the libraries was set to 100 fmol, and after
final dilution to 4 nM, libraries were sequenced on a NextSeq 500
instrument (Illumina; 1.4 pM loading concentration).

Bioinformatics, Differential Gene
Expression, and Pathway Analysis
Low-quality filtering and adapter trimming were performed
using TrimGalore! V0.4.5 (BabrahamBioinformatics), a wrapper
tool around the tools Cutadapt v1.18 and FastQC v0.11.5
(Babraham Bioinformatics). Reads were mapped to a human
reference genome (GRCh38.95, Ensembl) with Star v2.6.0a (22),
resulting in BAM files. BAM files were counted (number of reads
mapped to a feature, e.g. a gene) with HTSeq [HTSeq-count tool
v0.11.0 (23)] with default parameters using a complementary.gtf
file, containing annotation for GRCh38.95 (Ensembl). MultiQC
(quality control) was used to combine results and quality checks
of all the samples (24). Total reads were between 8 and 11
million, of which 6–8.5 million were uniquely assigned reads;
mean aligned reads was 80%.

Differential gene expression analysis was carried out with
DESeq2 v1.22.0 in R v3.5.3 (25), with internal statistical
and normalization method (i.e. correction for multiple testing
with Benjamini–Hochberg) using a cutoff value of at least
5 counts (RPKM) per sample per gene. The average mRNA
expression between two groups was analyzed: participants with
incident DWI+ lesions were matched to controls without
SVD progression while correcting for sex. Pathway analysis
was performed with Reactome v.75 (26), selecting differentially
regulated genes with an unadjusted P-value < 0.05 as input. A
P-adjusted value < 0.05 with log2 fold change of > ±2 was
considered significant. For pathway analysis, a false discovery rate
(FDR)-corrected P-value < 0.05 was considered significant.

The data discussed in this publication have been deposited
in NCBI’s Gene Expression Omnibus (27) and are accessible
through GEO.

Statistics
Normal distribution of the data was checked with the Shapiro–
Wilk test. When the P-value reached <0.05, this assumption
was violated, and non-parametric tests were used. In normally
distributed data, the P-value of the independent samples T-test
was used according to Levene’s test for equality of variances.
Normally distributed data are reported as mean ± SD and
tested with independent samples T-test; categorical data are
reported as mean with (number of participants) and tested
with X2 test, and not normally distributed data are reported as
median with interquartile ranges (IQRs) and tested with Mann–
Whitney U-test.

Individuals with SVD progression were compared to subjects
without incident lesions or WMH progression. In a separate
analysis, subjects with incident lesions were compared to
subjects without SVD progression. Circulating cell counts,
inflammatory markers, and cytokine production capacity were
log10-transformed and thereafter corrected with analysis of
covariance (ANCOVA) for confounding demographics such as
age, sex, and hypertension. A two-sided P-value < 0.05 was
considered statistically significant.

RESULTS

Participants Characteristics
Thirty-five participants met the inclusion and exclusion criteria
for this study [70 ± 6 years, 54% men, median follow-up time
39.3 (37.8–40.1) weeks] (see flow diagram in Figure 1). Over
10 months, the median WMH progression was 0.023 (0.002–
0.078) ml per month (n = 35). In total, 13/35 individuals had
SVD progression based on either incident lesions (n = 7) and/or
the upper quartile of WMH progression (n = 9). Out of the
seven individuals who developed incident lesions, five individuals
had a total of 13 incident DWI+ lesions, three individuals
had six incident microbleeds, and two individuals had five
incident lacunes or small incident cavities. Two individuals had
both DWI+ lesions and microbleeds and/or lacunes. Twenty-
two individuals revealed neither incident lesions nor WMH
progression in the highest quartile during 10months of follow-up
imaging (Figure 1).

Individuals with SVD progression were older (p < 0.01)
and had a higher systolic (p < 0.01) as well as diastolic
blood pressure (p < 0.05) compared to participants without
SVD progression (Table 1). Similar results were obtained when
analyses were restricted to participants with incident lesions.
Therefore, all outcomes were corrected for the demographics
age, hypertension, and sex, which are known modulators of the
immune function (28).

Higher Circulating E-Selectin in
Participants With Small Vessel Disease
Progression
Circulating E-selectin, a marker for endothelial dysfunction,
was higher in participants with SVD progression (p < 0.05)
(Table 2). Similar results were found when analyses were limited
to participants with incident lesions. Cell counts in peripheral
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FIGURE 1 | Flow diagram of included participants of the RUN DMC–InTENse cohort. Drop-out indicates premature stop before blood sampling. DM2, diabetes

mellitus type 2; AID, autoimmune disease; drug use, chronic immunomodulatory drug use; 4Q WMH, highest quartile of WMH; WMH, white matter hyperintensity.

blood and subsets were comparable in participants with SVD
progression to those without progression (Table 2).

Increased Cytokine Production Capacity in
Participants With Small Vessel Disease
Progression
The cytokine production capacity of isolated monocytes was
significantly higher for IL-1β and IL-6 in individuals with
SVD progression and was highly consistent for all incident
lesions (Figures 2A,B). Individuals with SVD progression had
higher IL-6 production after P3C stimulation compared to
participants without SVD progression [median 11.4 (9.53–15.7)
vs. 8.59 (7.61–11.4) ng/ml, P < 0.01] (Figure 2A). Likewise, in
participants with incident lesions, IL-6 production after P3C
stimulation was higher [15.2 (10.4–18.3) vs. 8.59 (7.61–11.4)
ng/ml, P = 0.001] (Figure 2B). In addition, IL-1β production
after LPS stimulation was higher in participants with incident
lesions [7.76 (5.75–8.23) vs. 6.02 (3.35–7.66) ng/ml, P < 0.01].
Of note, in participants with DWI+ lesions and participants
with microbleeds, similar results were obtained. No differences
were observed in the production of the anti-inflammatory
cytokine IL-10.

Monocyte Transcriptome Analyses
In a subset of participants with SVD progression due to incident
DWI+ lesions (n = 4) and matched participants without SVD

progression (n = 4), we performed monocyte transcriptome
analyses. The demographic and clinical characteristics of the two
subgroups were comparable, except for sex (Table 3). Since the
principal component analysis (PCA) plot also revealed sex-based
clustering (Supplementary Figure 2), we controlled for sex in
further differential gene expression analysis. This revealed a pro-
inflammatory gene expression profile in participants with SVD
progression due to incident DWI+ lesions.

In the differential gene expression analysis, the two groups
were compared in an explorative way using genes with a log fold
change > ±2 and a liberate cutoff P-adjusted < 0.25. In this
preliminary analysis, four genes were differentially upregulated
and three were differentially downregulated (Figure 3A; Volcano
plot): FABP4, SPP1, EGR2, FN1 were upregulated, and ISG15,
MX1, PTGES were downregulated. For a more detailed overview
of the individual expression levels of the upregulated and
downregulated genes with a P-adj < 0.25, we constructed
heatmaps (Figures 3B,C).

Subsequently, we performed pathway analysis using all
differentially regulated genes with an unadjusted P-value
< 0.05 as input (supplementary Table 2). This revealed
enrichment of several inflammation-related pathways and
neuronal development and signaling pathways. These include
the “Nerve Growth Factor-stimulated transcription” (FDR <

0.001), the “Nuclear events” (FDR < 0.001) pathway that is
activated by neurotrophins, “Signaling by Neurotrophic Receptor
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TABLE 1 | Participant characteristics.

Demographics Without SVD progression SVD progression Incident lesions

Age, years 68 ± 4 73 ± 7** 77 ± 7**

Sex, % men 50 (11) 62 (8) 71 (5)

BMI, kg/m2 25.0 ± 3.7 26.3 ± 4.2 28.6 ± 3.9*

SBP, mmHg 136 ± 15 155 ± 23** 162 ± 23**

DBP, mmHg 79 ± 9 86 ± 8* 89 ± 10*

Hypertension, % 82 (18) 92 (12) 100 (7)

Smoking, % active 5 (1) 8 (1) 0 (0)

Smoking, #packs/year 7.8 ± 10.8 11.1 ± 14.9 15.4 ± 17.9

Statin use, % 41 (9) 46 (6) 43 (3)

Acetylsalicylic acid use, % 32 (7) 62 (8) 71 (5)

Tchol, mmol/L 5.1 ± 1.1 4.9 ± 1.3 4.8 ± 1.6

HDL-C, mmol/L 1.6 ± 0.6 1.4 ± 0.4 1.1 ± 0.2*

LDL-C, mmol/L 2.9 ± 1.0 2.9 ± 1.2 3.1 ± 1.4

TG, mmol/L 1.4 ± 0.7 1.2 ± 0.4 1.3 ± 0.3

nHDL-C, mmol/L 3.6 ± 1.0 3.5 ± 1.3 3.7 ± 1.5

Non-fasting glucose, mmol/L 6.2 ± 1.4 6.0 ± 0.8 6.1 ± 0.9

Baseline WMH volume, ml 2.25 (1.47–4.12) 9.82 (5.54–22.2)** 6.88 (5.11–10.5)*

Baseline WMH, % of WM 0.52 (0.373–1.03) 2.20 (1.39–5.84)** 1.56 (1.31–3.19)**

WMH progression, ml/month 0.02 (0.00–0.04) 0.11 (0.01–0.20)* 0.01 (-0.04–0.20)

WMH progression, ‰ of WM 0.13 (0.03–0.27) 0.62 (0.07–1.12)* 0.13 (-0.33–1.01)

Participants without SVD progression (n = 22), SVD progression (n = 13), incident lesions (n = 7). Mean ± SD, mean (number), and median [IQR]. * indicates P < 0.05, **P <

0.01. BMI, body mass index; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol; nHDL-C,

non high-density lipoprotein cholesterol; SBP, systolic blood pressure; SVD, small vessel disease; TG, triglyceride; WMH, white matter hyperintensity. The bold values are statistically

significant.

Tyrosine Kinase 1” (FDR = 0.02) leading to proliferation
of cell types and neuronal differentiation, and “Signaling by
Neurotrophic Tyrosine Kinase” (FDR = 0.05) consisting of the
receptor ligands for neurotrophins (Figure 3D). Downregulated
pathways involved adaptive immune interferon (IFN) signaling,
including IFN α, β, and γ signaling (FDR < 0.01), the “ISG15
antiviral mechanism” pathway (FDR < 0.01), and “Immune
system” pathway (FDR = 0.04) (Figure 3D). Similar results
were obtained when the analyses were repeated without sex
stratification (data not shown).

DISCUSSION

Our main finding is that a pro-inflammatory monocyte
phenotype, characterized by an augmented cytokine production
capacity, is associated with progression of SVD, as detected
by serial high-frequency MRI scanning. In participants with
SVD progression, circulating monocytes had a pro-inflammatory
transcriptional signature, with significant upregulation of several
inflammation-related pathways. These findings underscore
our hypothesis that pro-inflammatory monocytes are closely
involved in the development of SVD, uncovering innate
immunity as novel potential pharmacological targets to prevent
disease progression.

Given the overlap in pathophysiology and risk factors between
atherosclerosis and SVD, we hypothesized that activation of
circulating monocytes also contributes to SVD progression. The
pathophysiology of SVD involves arteriolosclerosis, leading to
arterial pathology of the smallest brain vessels, a process that

is to a great extent comparable to large artery atherosclerotic
disease. In addition, SVD shares cardiovascular risk factors with
atherosclerotic disease, such as hypertension, dyslipidemia, and
smoking. In atherosclerosis, we and others have shown that a pro-
inflammatory phenotype of circulating monocytes, characterized
by an augmented cytokine production capacity, is involved in the
pathophysiology (29, 30).

Using serial MRI, we investigated the acute progression
of SVD using imaging markers of SVD. We evaluated SVD
progression in multiple ways: first by combining all SVD imaging
markers (DWI+ lesions, microbleeds, lacunes, and WMH),
then limited to incident lesions (DWI+ lesions, microbleeds,
and lacunes), and finally each incident SVD imaging marker
individually. We observed a higher cytokine production capacity
of IL-6 and IL-1β in isolated monocytes after ex vivo stimulation
in the individuals with SVD progression, which was consistent
across subgroups of individuals with each incident SVD
imaging marker evaluated separately. Previously, we described
that the 9-year WMH progression preceding blood sampling
correlated with the cytokine production capacity of monocytes,
circulating inflammatory marker hsIL-6, and pro-inflammatory
CD14++CD16+ monocytes in a retrospective cohort study of
elderly individuals (14). The current high sequential imaging
study enabled to increase the resolution with monthly imaging
and to assess multiple imaging markers of SVD during acute
progression of SVD.

To provide a deeper understanding of the pro-inflammatory
monocyte phenotype, we explored the monocyte transcriptome
with RNA sequencing in a small number of participants with
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TABLE 2 | Circulating cells and inflammatory markers.

Cell counts Without SVD progression SVD progression Incident lesions

WBC, 106/ml 5.2 (4.7–6.7) 6.2 (5.1–7.3) 7.0 (4.8–7.7)

Neutrophils, 106/ml 2.9 (2.3–3.6) 3.2 (2.5–4.5) 4.2 (2.6–5.0)

Lymphocytes, 106/ml 1.8 (1.3–2.2) 2.0 (1.5–2.3) 1.9 (1.6–2.1)

Monocytes, 106/ml 0.5 (0.4–0.7) 0.6 (0.4–0.7) 0.6 (0.3–0.7)

Monocytes, % 8.8 (7.5–11.0) 8.8 (7.4–10.5) 7.8 (6.7–9.8)

Classical monocytes, % gated 82.5 (78.0–88.0)a 80.2 (75.1–88.2) 79.6 (73.7–87.1)

Intermediate monocytes, % gated 7.9 (4.8–14.1)a 8.3 (4.5–11.9) 5.6 (2.5–11.7)

Nonclassical monocytes, % gated 7.0 (5.0–10.0)a 5.8 (4.5–12.5) 11.7 (5.4–13.2)

Circulating inflammatory markers

hsCRP, pg/ml 1.4 (0.5–4.1) 1.1 (0.8–5.3) 1.3 (0.9–12.3)

hsIL-6, pg/ml 5.7 (3.3–9.6) 6.6 (4.0–11.4)a 5.1 (3.2–9.2)a

E-selectin, pg/ml 13.9 (10.7–17.5) 19.4 (16.8–24.3)* 20.0 (19.3–27.2)*

VCAM-1, pg/ml 392 (333–458) 410 (344–471) 424 (345–527)

MMP-2, pg/ml 898 (817–959)a 954 (863–1058) 968 (823–1,082)

CCL2, pg/mlb 31.2 (31.2–74.1) 36.8 (31.2–238) 43.5 (31.2–370)

Participants without SVD progression (n = 22), SVD progression (n = 13), incident lesions (n = 7). Median (IQR). P-values are corrected for age, sex, and hypertension with ANCOVA.

*P < 0.05.
aData are missing for one participant.
bConcentrations of CCL2 were often below the limit of detection of 31.2 pg/ml.

CRP, C-reactive protein; IL, interleukin; IQR, interquartile range; MMP, matrix metalloproteinase; SVD, small vessel disease; VCAM, vascular cell adhesion molecule; WBC, white blood cell.

The bold values are statistically significant.

and without SVD progression based on incident DWI+ lesions.
We included participants with DWI+ lesions to create a
homogeneous subgroup matched to subjects without SVD
progression. The characteristics were comparable between
subgroups, except for age, after which a sex-stratified
analysis was performed. This explorative analysis revealed
a pro-inflammatory gene expression profile with significant
upregulation of several inflammation-related pathways together
with a downregulation of adaptive immune IFN signaling
pathways. Specifically, EGR2 was upregulated, which encodes
for a transcription factor that is essential for myelination of the
nervous system, and defects result in peripheral neuropathies
(31). Also, EGR2 and EGR3 are important for maintaining
immune homeostasis (32). In innate immune cells, EGR2
expression is essential for naive or M2-like macrophages to
respond to inflammatory stimuli (33). In amyloid-β plaque-
associated microglia, a pro-inflammatory phenotype was found
with upregulated EGR2 and SPP1 in a disease model for
Alzheimer (34).

Another interesting observation is that two genes in
the upregulated inflammation-related pathways encode for
extracellular matrix components. Fibronectin (FN) and
osteopontin-1 (SPP1) are principal components in cell matrix
interactions, including within the blood–brain barrier. SPP1
also functions as an integrin, which mediates cellular adhesion,
interaction, and is important in maintaining endothelial
function. Additionally relevant in this context are two
upregulated genes (FDR <0.25) involved in endothelial–
leukocyte interaction. Both dual-specificity phosphatase 6
(DUSP6) and serum- and glucocorticoid-inducible kinase
1 (SGK1) orchestrate endothelial inflammation, increased

expression of adhesion molecules in vascular tissue, and
enhanced endothelial–leukocyte interaction mediating
leukocyte recruitment (35, 36). More specifically, damage
to the extracellular matrix is perpetuated by activated microglia
or monocytes in response to hypoxia, eventually contributing to
disruption of the blood–brain barrier (37). Chronic blood–brain
barrier disruption enhances leakage of signaling mediators
and facilitates the communication between circulating and
tissue-resident immune cells and is thought to aggravate SVD
(12). The fourth upregulated gene, fatty acid-binding protein
4 (FABP4) has been shown to be important in macrophage
cholesterol trafficking, inducing foam cell formation and the
development of atherosclerosis (38).

Remarkably, in conjunction with the upregulation of several
inflammation-related pathways, we observed a downregulation
of adaptive immune IFN signaling pathways in the monocyte
transcriptome. Two out of three downregulated genes are
involved in the interferon pathway. Ubiquitin-like protein
(ISG15) and IFN-induced GTP-binding protein (MX1) are
IFN-induced proteins that play central roles in the host
antiviral response (39). Moreover, the third downregulated
gene glutathione-dependent prostaglandin E synthase (PTGES)
is also a major modulator of immune activation. This
finding fits with the previously observed negative association
between the ex vivo IFN-gamma production capacity and SVD
progression (14). We previously described that this might
point to a counter-regulatory mechanism between innate and
adaptive immunity.

Pathway analysis revealed several pathways involved in
neuronal development and differentiation and signaling by
neurotrophins, which are pivotal proteins in neuronal survival,
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FIGURE 2 | Cytokine production capacity. Cytokine responses of participants without SVD progression (white, n = 22), (A) participants with SVD progression (gray, n

= 13) and (B) incident lesions (gray, n = 7) are reported as individual points with mean on log-transformed data. P-values are corrected for age, sex, and hypertension

with ANCOVA. **P < 0.01, ***P = 0.001. SVD, small vessel disease.

growth, differentiation and during development. There are
several lines of evidence indicating that neurotrophins play
important roles in the pathophysiology of neurodegenerative
and psychiatric disorders (40). It is intriguing that circulating
monocytes of individuals with SVD show a higher expression
of genes in pathways involved in neuronal development. It is
relevant to gain a better insight in the influence of circulating
monocytes through neurotrophins on neurons in the brain.

To our knowledge, we are the first to study the monocyte
transcriptome in individuals with SVD. Previously, whole-
blood gene expression in the Framingham Heart cohort
(n = 3,248) showed that WMH was associated with genes
of inflammation-related pathways (41). The heightened
expression of inflammatory genes and pathways of monocytes
in our studied cohort fits with their increased immunologic
activity. Moreover, it reveals possible underlying mechanisms,
with the EGR2 gene required in myelination, extracellular
matrix components that mediate blood–brain barrier
integrity, DUSP6 and SGK1 that trigger endothelial leukocyte
recruitment, and neurotrophins that are essential for neurons—
all processes involved in the complex pathophysiology
of SVD.

TABLE 3 | Participant characteristics of monocyte transcriptome analysis.

Demographics Without SVD progression Incident lesions

Age, years 71 ± 2 79 ± 9

Sex, % men 1 (25) 3 (75)

BMI, kg/m2 27.0 ± 4.2 28.2 ± 4.4

Hypertension 4 (100) 4 (100)

Smoking, % active 1 (25) 0 (0)

Baseline WMH volume, ml 6.23 (1.41–10.54) 10.15 (6.28–23.27)

Baseline WMH, % of WM 1.54 (0.34–3.46) 2.69 (1.65–5.96)

WMH progression, ml/month 0.01 (0.00–0.05) 0.08 (0.00–0.20)

Participants with incident DWI+ lesions (n = 4) were matched to subjects without SVD

progression (n = 4) for RNA sequencing. Mean ± SD, mean (number), and median (IQR).

BMI, body mass index; DWI+, diffusion-weighted imaging-positive; IQR, interquartile

range; SVD, small vessel disease; WMH, white matter hyperintensity. The bold values

are statistically significant.

With the current findings, it is tempting to speculate
about the mechanisms responsible for this pro-inflammatory
monocyte phenotype. Monocyte activation can be due to
genetic variation that predisposes to hyperresponsive monocytes

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 May 2021 | Volume 8 | Article 639361

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Noz et al. Monocyte Activation in SVD

A

D

C

Upregulated pathways p-value FDR Gene  Entities 

NGF-stimulated transcription 60-E10.1   0.0005 EGR1, EGR2, SGK1, TRIB1, FOS 

Nuclear Events (kinase and transcription factor activation) 1.49E-06 0.0005 DUSP6, EGR1, EGR2, SGK1, TRIB1, FOS

RUNX1 regulates transcription of genes involved in differentiat 1.59E-05 0.003  CTSL, SOCS3

120.040-E73.1)AKRT( 1KRTN yb gnillangiS DUSP6, EGR1, EGR2, SGK1, TRIB1, FOS

Downregulated pathways    

61-E11.1gnilangiS norefretnI  3.71E-14 ISG15, MX1, MX2, STAT1, IFI30, IFI35, IFIT1, IFIT3, IFI6, IFITM3, IFITM2, BST2, EIF4A1, OAS2, OAS3, 

OASL, PML, DDX58, GBP3, IRF7, IRF9, RNASEH2B, UBE2L6, EIF2AK2, HERC5, RSAD2

Interferon  alpha/beta signaling

ISG15 antiviral mechanism 200.050-E94.1 DDX58, EIF2AK2, EIK4A1, HERC5, IFIT1, ISG15, MX1, MX2, STAT1, UBE2L6

40-E92.3esnopser larivitna SAO . 0.031  DDX58, OAS2, OAS3, OASL

SOF ,1BIRT ,1KGS ,2RGE ,1RGE ,6PSUD050.040-E50.4sKRTN yb gnillangiS

70-E02.101-E24.5metsys enummI ni gnilangiS enikotyC BST2, CCL3L1, CUL1, DDX58, EIF2AK2, EIF4A1, GBP3, HERC5, IFI30, IFI35, IFI6, IFIT1, IFIT3, IFITM2, 

IFITM3, IL11RA, IL18BP, IRF7, IRF9, ISG15, JUN, LGALS9, MX1, MX2, OAS2, OAS3, OASL, PML, STAT1

Antiviral mechanisms by IFN-stimulated genes 1.72E-07 2.87E-05 DDX58, EIF2AK2, EIF4A1, HERC5, IFIT1, ISG15, MX1, MX2, OAS2, OAS3, OASL, STAT1, UBE2L6

1TATS ,B2HESANR ,LMP ,LSAO ,3SAO ,2SAO ,9FRI ,7FRI ,03IFI ,3PBG200.050-E32.1gnilangis ammag norefretnI

1.11E-16 3.71E-14 ISG15, MX1, MX2, STAT1, IFI35, IFIT1, IFIT3, IFI6, IFITM3, IFITM2, OAS2, OAS3, OASL, IRF7, IRF9, 

RSAD2, BST2

B
ISG15

MX1

SPP1

PTGES

FABP4

EGR2

FN1

CO CO

FIGURE 3 | Monocyte transcriptome analysis. Differentially regulated gene expression between participants with SVD progression (n = 4) and without (n = 4). (A)

Volcano plot of differentially expressed genes after sex stratification. Green dots indicate adjusted P-value < 0.25 and log Fold Change > ±2; Dark red dots, genes

with P-adj < 0.25; light red dots, genes with logFC > ±2. (B) Heatmap of upregulated genes with P-adj < 0.25 corrected for sex. (C) Heatmap of downregulated

genes with P-adj < 0.25 corrected for sex. Color coding is based on gene expression in raw counts, ranging from red (high expression value) to blue (low expression

value). (D) Pathway analyses of significantly differentially expressed pathways after correction for sex, FDR < 0.05. Gene entities in each pathway were noted. FDR,

false discovery rate; SVD, small vessel disease.

(42) or due to stimulation of monocytes by circulating
stimuli, such as elevated levels of lipoproteins. Finally,
trained immunity might contribute to persistent monocyte
hyperresponsiveness (43). Dyslipidemia, either caused by a
Western-type diet or due to familial hypercholesterolemia,
induces hyperresponsiveness of circulating monocytes, which
persists despite normalization of plasma cholesterol levels
(44, 45). This is, at least in part, mediated by metabolic
and epigenetic reprogramming of these monocytes. Trained
immunity has recently been suggested in the context of
Alzheimer’s disease; brain-resident microglia can develop
immunological memory after repeated administration of
LPS in the circulation in animal models (46), inducing a
persistent elevated cytokine production mediated by epigenetic
reprogramming. The pro-inflammatory responses by the
trained microglia accelerated disease progression in an
Alzheimer’s disease model. Currently, it remains a question
for future investigations whether the pro-inflammatory
monocyte phenotype is due to differences in the genetic code,

due to persistent stimulation of monocytes with circulating
factors, or due to epigenetic reprogramming in the context of
trained immunity.

A potential limitation of this study is the small sample
size due to its complex and intensive design. Although in
the current study design the monocyte phenotyping preceded
the progression of SVD, we cannot draw conclusions on
causality, since it is likely that SVD progression was also
present in participants with incident lesions before inclusion in
the study.

In conclusion, the pro-inflammatory monocyte phenotype
and transcriptome, characterized by an increased cytokine
production capacity and augmentation of inflammatory
pathways, are related to the progression of SVD in elderly
individuals. Future studies are needed to evaluate the
mechanisms responsible for monocyte activation, including
the potential role for trained immunity, and to provide
the causality whether these activated monocytes initiate
SVD progression.
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