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The relevance of PCSK9 in atherosclerosis progression is demonstrated by the benefits

observed in patients that have followed PCSK9-targeted therapies. The impact of these

therapies is attributed to the plasma lipid-lowering effect induced when LDLR hepatic

expression levels are recovered after the suppression of soluble PCSK9. Different studies

show that PCSK9 is involved in other mechanisms that take place at different stages

during atherosclerosis development. Indeed, PCSK9 regulates the expression of key

receptors expressed in macrophages that contribute to lipid-loading, foam cell formation

and atherosclerotic plaque formation. PCSK9 is also a regulator of vascular inflammation

and its expression correlates with pro-inflammatory cytokines release, inflammatory

cell recruitment and plaque destabilization. Furthermore, anti-PCSK9 approaches have

demonstrated that by inhibiting PCSK9 activity, the progression of atherosclerotic

disease is diminished. PCSK9 also modulates thrombosis by modifying platelets steady-

state, leukocyte recruitment and clot formation. In this review we evaluate recent

findings on PCSK9 functions in cardiovascular diseases beyond LDL-cholesterol plasma

levels regulation.

Keywords: atherosclerosis, PCSK9 (proprotein convertase subtilisin kexin type 9), lipoprotein receptors,

inflammation, lipid loading, LDL—cholesterol

INTRODUCTION

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a soluble protein synthesized as a
zymogen that undergoes autocatalytic cleavage in the endoplasmic reticulum (1). In 2007, PCSK9
was found to be a ligand for Low Density Lipoprotein Receptor (LDLR) a key cell membrane
receptor in cholesterol homeostasis regulation (2). LDLRs bind and internalize low density
lipoproteins (LDL) from the bloodstream, clearing the blood from highly-enriched cholesterol
lipoproteins. The LDL-LDLR complex is guided to the lysosome where LDLs are digested and
LDLRs are recycled to the cell surface to keep clearing LDL particles from the circulation. PCSK9
inhibits LDLR recircularization by promoting its degradation in the lysosomes along with LDLs (3).
This effect highly reduces the presence of LDLR at the hepatocyte’s cell surface and consequently,
there is an increase in LDL particles in the bloodstream.
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Although PCSK9 is known since 2003 (4) and was almost
immediately associated with hypercholesterolemia (5), the
knowledge of its potential role on LDL metabolism regulation
and its associated diseases is increasing over the years (6, 7). It
was first described that mutations on PCSK9 that lead to gain-
of-function variants of the protein were responsible for different
cases of human familial hypercholesterolemia [FH; (8, 9)]. FH is
an inherited disease where patients have LDL plasma levels above
190 mg/dL, contributing to an elevated risk of atherosclerotic
plaque formation and coronary adverse events. Contrarily,
PCSK9 loss-of-function mutations are associated with very low
levels of LDL in blood reducing the cardiovascular associated
risk (10, 11). These data encouraged studies to test if PCSK9
was a good target for clinical trials to treat hypercholesterolemia.
Hypercholesterolemia is commonly treated with statins, which
are drugs that inhibit HMG-CoA reductase, a key enzyme for
cholesterol biosynthesis that reduces cholesterol production and
lowers LDL concentration in plasma. However, some patients
present statin intolerance which hampers the treatment (12).
Both PCSK9 and LDLR gene expression are regulated by
SREBP2 [Sterol Regulatory Element-Binding Protein 2; (13–15)].
When intracellular levels of cholesterol are low (as after statin
treatments), there is activation of SREBP2 that promotes PCSK9
and LDLR transcription. Therefore, both LDLR and LDLR’s
inhibitor protein levels increase resulting in an intrinsic loop that
limits statin therapy efficacy (16–18). SREBP2 transcriptional
activity is regulated upstream by AMPK (AMP-activated protein
Kinase). Activation of AMPK leads to SREBP2 phosphorylation
and its inability to promote transcription of target genes (19, 20).

Anti-PCSK9 drugs started to be developed as a
secondary approach to reduce LDL cholesterol levels in
hypercholesterolemic patients. To date, only two monoclonal
antibodies targeting PCSK9 are available for treating
hypercholesterolemia: evolocumab and alirocumab. They
were tested in the OSLER trial (21) and in the ODYSSEY LONG
TERM trial (22), respectively (Table 1). Both studies showed
a ∼60% decrease of LDL particles in blood and a decrease in
cardiovascular events including myocardial infarction, unstable
angina or stroke (2.18% in placebo and 0.95% in evolocumab-
treated patients in the OSLER trial and 5.1% in placebo and
4.6% in alirocumab-treated patients in the ODYSSEY LONG
TERM study). However, the cardiovascular events reported
during these studies were too low to demonstrate clinical
relevance in this area. The FOURIER trial enrolled patients
with previous atherosclerotic cardiovascular disease that were
on statin therapy (23). Results showed a 59% reduction of LDL
content in bloodstream and decreased cardiovascular events
including cardiovascularmortality, myocardial infarction, stroke,
hospitalization for unstable angina or coronary revascularization
bymore than 15% in evolocumab treated patients after 26months
follow-up. The ODYSSEY OUTCOMES study in patients with
recent acute coronary syndrome at maximum tolerated dose of
statins showed that alirocumab administration was associated
with a reduced risk of recurrent ischemic cardiovascular events
and also with a reduced mortality (24). Finally, the SPIRE
1 and SPIRE 2 trials were randomized trials that compared
the efficacy of bococizumab, another anti-PCSK9 antibody,

with placebo in patients that suffered previous cardiovascular
events. These studies did not show benefits from bococizumab
treatment despite showing significant improvements for patients
with a high cardiovascular risk. There was reduced clinical
efficacy because half of patients receiving bococizumab therapy
developed antidrug antibodies probably because bococizumab is
a murine humanized antibody containing approximately a 3%
of murine sequence. Contrarily, alirocumab and evolocumab
are antibodies with full human sequence. The negative results
concluded in a premature stop of the trial by the sponsor (25).

Besides monoclonal antibodies, other approaches that target
PCSK9 have been developed. Inclisiran (a small interference
RNA) and statin administration in patients with atherosclerotic
cardiovascular disease or heterozygous hypercholesterolemia
patients reduced PCSK9 levels in blood and LDL-cholesterol
levels in ORION-9 and ORION-10/ORION-11 phase 3 clinical
trials (26, 27).

Regulation of cholesterol-rich LDL blood levels is not the
only role that PCSK9 drives in atherosclerosis pathogenesis.
There is a strong background suggesting alternative roles for
PCSK9 in the development of atherosclerosis (28, 29). Indeed,
a prospective cohort of 4.232 sixty-year-old men and women
living in Stockholm County showed that independently of LDL
plasma levels, PCSK9 levels correlate with elevated probability of
future cardiovascular events (30). In another study that included
643 participants, high plasma PCSK9 levels correlated with
enhanced atherosclerosis progression independently of LDL, as
measured by carotid plaque formation and total plaque area
(31). However, prospective studies have failed to demonstrate
a relationship between PCSK9 expression levels and future risk
of cardiovascular events despite revealing correlations between
PCSK9 plasma levels and atherosclerotic markers including LDL-
cholesterol, blood triglycerides or insulin (32, 33).

This review will discuss the role of PCSK9 in modulating
the activity of different cell lineages involved in atherosclerosis
progression including macrophages, vascular smooth muscle
cells (VSMC), endothelial cells (EC), lymphocytes and platelets
and its associated cardiovascular risk. We will comment on
PCSK9 effector roles showing that they extend far beyond
the regulation of LDL particles and reveal new insights
by which PCSK9 inhibitors may lower the incidence of
atherosclerosis progression.

PCSK9 MODULATES MACROPHAGE’S
LIPID-UPTAKE RECEPTORS

Atherosclerosis is commonly described as a chronic
inflammatory disease that starts with an excess of cholesterol
accumulation in the vascular wall triggering inflammation
(34). Macrophages are inflammatory cells that play a key role
in lipid uptake and atherosclerosis progression. In 2012, it
was shown that LDLR expressed in the surface of human
macrophages were downregulated by PCSK9 produced by
VSMC, reducing the ability of macrophages to internalize
native LDL molecules and avoiding the formation of foam
cells, indicating that PCSK9-stimulated macrophages reduce
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TABLE 1 | Study characteristics and outcomes of clinical trials with monoclonal antibodies against PCSK9.

Dosing Patients/

Treatment ratio

Inclusion criteria Results Study limitations

OSLER TRIAL

• OSLER-1: open-label,

randomized and controlled

study of patients from Phase II

Evolocumab trials

• OSLER-2: open-label,

randomized and controlled

study of patients from Phase III

Evolocumab trials

420mg/month

or

140

mg/2 weeks

2:1

2,976 patients

on Evolocumab

:

1,489 patients

on previous

treatment

(± statins)

• No adverse events in previous

evolocumab studies.

• Not having unstable medical

condition.

• Not expected to need

adjustments of background

lipid-regulating therapy.

• 61% reduction in

LDL levels

• 56% reduction in

adverse CVE

• Open-label design

• Low number of adverse

CVE

• Only patients who did not

suffer CVE during previous

Evolocumab therapy were

accepted

• High variability in patients’

cardiovascular risk and

use of statins

ODYSSEY LONG TERM

A Phase III, randomized,

double-blind, placebo-controlled,

parallel-group and multinational

study

150 mg/2

weeks

2: 1

1,553 patients

on Alirocumab

:

788 patients on

placebo

• Heterozygous FH, coronary

heart disease or equivalent risk

• LDL-cholesterol levels above 70

mg/dL at screening

• Patients under high-dose statin

therapy or

maximum-tolerated dose

• 62% reduction in

LDL levels

• 48% reduction

adverse CVE

• Short follow-up period

for a chronic disease

evaluation (20 months).

• Low number of CVE,

limiting the robustness of

the data.

FOURIER TRIAL

Randomized, double-blinded,

placebo-controlled, multicenter

trial

140

mg/2 weeks

or

420

mg/month

1: 1

13,784 patients

on Evolocumab

:

13,780 patients

on placebo

• ≥40 and ≤ 85 years-old

• Clinical evidence of

atherosclerotic cardiovascular

disease

• LDL cholesterol ≥ 70 mg/dL,

non-HDL cholesterol ≥ 100

mg/dL while on lipid

lowering therapy

• 59% reduction in

LDL cholesterol after

42 weeks

• 15% reduction in

CVE after 26 months

Median of 2,2 years

ODYSSEY OUTCOMES

Randomized, double-blinded,

placebo-controlled, multicenter

trial

75 mg/2

weeks

1: 1

9,462 Patients

on Alirocumab

:

9,462 patients

on placebo

• ≥40 years old

• Hospitalization 1 ≤ and ≥ 12

months with acute coronary

syndrome

• LDL cholesterol ≥ 70 mg/dL,

non-HDL cholesterol ≥ 100

mg/dL and apoB ≥ 80 mg/dL

• 54,7% reduction in

LDL cholesterol after

48 months

• 15% reduction of

CVE and 15%

reduction of death

Median of 2,8 years

SPIRE-1 and SPIRE-2

• Spire-1 patients were eligible

with at least 70 mg/dL of LDL

cholesterol at screening

• Spire-2 patients were eligible

with at least 100 mg/dL of LDL

cholesterol at screening

150 mg/2

weeks

1: 1

13,720 Patients

on Bococizumab

:

13,718 patients

on placebo

• Men ≥ 50/Women ≥ 60, in case

of FH Men ≥35/Women ≥ 45

• Previous CVE or a history of

diabetes, chronic kidney disease

or peripheral vascular disease

with cardiovascular risk or

familial hypercholesterolemia

• Additional risk factors

• On statin-therapy unless

completely intolerance to statins

is presented.

• 59% reduction in

LDL cholesterol after

14 weeks

• 12% reduction of

CVE incidence

Median of 10 months (the

study was not finished)

LDL, low density lipoprotein; HDL, high density lipoprotein; FH, familial hypercholesterolaemia; apoB, apolipoprotein B; CVE, cardiovascular event.

foam cells formation and hence, reduce atherosclerosis
progression (35). However, native LDL molecules are not the
major source of cholesterol accumulation in macrophages.
Upon vascular extravasation, LDL molecules undergo several
modifications including aggregation and oxidation. LDL
aggregation and oxidation occur after extracellular matrix
components such as glycosaminoglycans (36) or chondroitin
sulfate proteoglycans (37) retain native LDL particles and

facilitate their modification by several secreted enzymes
including secretory phospholipase A2, sphingomyelinase,
lipoxygenase or myeloperoxidase (38–40). Modified LDL
particles generate aggregated (agLDL) and oxidized (oxLDL)
LDLs, which are the major source of cholesterol ester
accumulation in macrophages and VSMCs [Figure 1; (41–
44)]. Macrophages do not internalize agLDL or oxLDL
through LDLR but through a different group of receptors
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FIGURE 1 | PCSK9 in atherosclerosis progression. Schematic showing the role of PCSK9 in different stages of atherosclerosis progression.

called scavenger receptors (45) and LDLR related proteins
[LRPs; (46–48)].

Scavenger receptors including scavenger receptor A (SRA),
cluster of differentiation 36 (CD36) and lectin-like oxidized low-
density lipoprotein receptor 1 (LOX-1) promote the endocytosis
of oxLDL particles in monocytes and macrophages and their
expression is highly increased under different inflammatory
stimulus including lipopolysaccharide (LPS) or tumor necrosis
factor-α [TNFα; Figure 1; (49, 50)]. Main features of scavenger
receptors are summarized in Table 2. LPS are major components
of the outer membrane of Gram-negative bacteria that are
recognized by Toll-Like Receptor 4 (TLR4) expressed in
macrophage’s cell surface. Binding of LPS to TLR4 triggers
an intracellular response that activates both MAPK and NFκB
pathways triggering inflammation. PCSK9 expression levels
are increased in mouse macrophages after LPS stimulation
as a result of the activation of the NLRP3 (NOD-Like
Receptor Protein 3) inflammasome. Indeed, NLRP3 and its
downstream signals IL-1β, IL-18, and caspase 1 all participate
in PCSK9 secretion as confirmed by specific gene deletion
experiments (51).

PCSK9 expression in macrophages after TNFα stimulation
relies on the generation of reactive oxygen species (ROS).
ROS inhibitors diphenyleneiodonium (DPI) and apocynin

reduce PCSK9 expression while ROS inducers pyocyanin and
antimycin A increase PCSK9 release showing that PCSK9 is
expressed during macrophage proinflammatory procedures
(50). ROS production is dependent on NADPH oxidase.
Upon TNFα-stimulation lack of different NADPH oxidase
complex subunits reduces the amount of scavenger receptors
in the surface of macrophages (50). Recombinant PCSK9
administration increases SRA, CD36, and LOX-1 both at
gene and protein levels in cultured mouse macrophages.
Concomitantly, oxLDL uptake is increased (Figure 1). This
increased lipid uptake is abolished in macrophages that lack
SRA, CD36, or LOX-1 suggesting that all three receptors
are involved in oxLDL uptake and consequently, in the
generation of foam cells in atherosclerosis (50). Table 2

summarizes the involvement and regulation of scavenger
receptors and LDLR in different processes associated
with atherosclerosis.

Other cell surface receptors expressed in macrophages
modulated by PCSK9 are LRP1, LRP5, and LRP8. These
receptors belong to the LRP subfamily of the LDLR superfamily
of receptors and conserve the characteristic EGF domain that
allows PCSK9 binding (52). LRP1 surface levels, together with
LDLR, are downregulated by human PCSK9 in atherosclerotic
mouse macrophages inducing increased gene expression of
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TABLE 2 | Scavenger Receptors and LDLR main features.

LOX-1 SRA CD36 LDLR

Cell expression • VSMCs, endothelial cells,

macrophages,

platelets, fibroblasts

• Macrophages, VSMCs,

endothelial cells

• Macrophages, monocytes,

platelets, endothelial

cells, erythrocytes

• Particularly elevated

in hepatocytes

• Ubiquitous

expression

Upon PCSK9

stimulation

↑ expression ↑ expression ↑ expression ↓ expression

Deficiency • Reduced oxLDL uptake in

macrophages

• Atheroprotective

and anti-inflammatory

• Reduced oxLDL uptake in

macrophages

• Reduced inflammatory response

• Macrophage apoptosis

• Reduced oxLDL uptake in

macrophages

• Atheroprotective

• Responsible for FH

Functions • Pro-atherogenic

• Pro-inflammatory

• Pro-thrombotic

• Induces PCSK9 expression in

VSMCs

• Endocytosis of oxLDL

• Endothelial dysfunction

• Foam cell formation

• Macrophages, VSMC, endothelial

cell apoptosis

• Pro-atherogenic

• Pro-inflammatory

• Endocytosis of oxLDL

• In antigen presenting cells,

mediates pathogen phagocytosis

• Pro-atherogenic

• Pro-inflammatory

• Pro-thrombotic

• Endocytosis of oxLDL

• Inhibits macrophage migration

• Promotes

platelet activation/aggregation

• Atheroprotective

• Endocytosis of nLDL

Other

regulations

Upregulated in VSMCs,

macrophages and monocytes

during oxidative stress and

inflammation

Upregulated in VSMCs and

endothelial cells during oxidative

stress

Upregulated in macrophages and

monocytes during inflammation

Upregulated in macrophages by

fat-rich diets, inflammation and

oxidative stress

nLDL, native low density lipoproteins; oxLDL, oxidized low density lipoproteins; VSMCs, vascular smooth muscle cells; FH, familial hypercholesterolemia.

the proinflammatory markers TNFα and IL-1β and decreased
gene expression of the anti-inflammatory markers IL-10 and
arginase-1 indicating enhanced macrophage polarization
toward a pro-inflammatory phenotype (53). LRP8 (aka
apoER2) a receptor known for recognizing ApoE protein
is also downregulated upon recombinant PCSK9 binding
in different cell lines including HEK293, 3T3 fibroblasts,
CHO, NeuroA2 and HuH7 (54). We have recently described
that LRP5 is required for lipid internalization in human
macrophages as in the absence of PCSK9 and/or LRP5,
macrophages show reduced cholesterol ester accumulation
(55). Both proteins form a complex at the perinuclear area
of human macrophages that immunoprecipitate together.
Their interaction is stronger in lipid loaded macrophages (55).
In addition, macrophages silenced for LRP5 show reduced
release of PCSK9, indicating that LRP5 is involved in soluble
PCSK9 release, probably by participating in the intracellular
transport of PCSK9 to the plasma membrane (55). Furthermore,
we also show that the complex LRP5-PCSK9 up-regulates
TLR4/NFκB signaling to favor macrophage inflammation.
Interestingly, LRP5 surface levels remain unaltered by secreted
PCSK9 (55).

Finally, VLDLR, a receptor that also belongs to the LDLR
superfamily and displays a similar structure to that of LDLR
is also downregulated by PCSK9 binding. Indeed, treatment of
HEK293 cells or 3T3 fibroblasts cells with human recombinant
PCSK9 shows a downregulation of VLDLR expression levels (54).
Both VLDLR and LRP8 are known to generate anti-inflammatory
signaling in macrophages (56).

PCSK9 MODULATES VASCULAR
INFLAMMATION

PCSK9 is mainly produced in liver, kidney and small intestine
(4). However, it is also expressed in vascular cells including
endothelial cells (ECs) and vascular smoothmuscle cells [VSMCs;
(35, 57, 58)]. Vascular cells are affected by hemodynamic factors
like blood flow that, by inducing wall shear stress, play a
critical role in atherosclerosis development and progression (59).
Human ECs and VSMCs under low-blood flow have higher
PCSK9 protein expression than cells under high blood flow,
an effect conserved even after LPS stimulation. Indeed, aortas
from Wt mice showed significantly higher PCSK9 expression
in high shear stress regions, an effect further potentiated by
LPS administration (60). Also, in rabbits fed at high-fat diet,
low-flow aortic regions had higher PCSK9 expression while
regions with high flow such the aortic arch showed lower
vascular PCSK9 expression [Figure 1; (61)]. Therefore, there is
a negative correlation between PCSK9 vascular expression levels
and blood flow.

PCSK9 has been shown to promote vascular inflammation.
Binding of PCSK9 to the inflammatory receptor TLR4 was
first hypothesized by the structural homology of the C-
terminal domain of PCSK9 and the TLR4 ligand resistin in in
silico simulations (62). TLRs are cell receptors that recognize
pathogens and regulate the expression of pro-inflammatory
cytokines and also the early immune responses to infection (63).
Among TLRs, TLR4 acts as a receptor for LPS and activates
NF-κB to promote an inflammatory response (64). PCSK9
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expression in ECs and VSMCs is dependent on the TLR4/NFκB
signaling pathway as inhibition of different components of the
activation cascade show that PCSK9 expression relies on the
TLR4-MyD88-NFkB axis and is independent of the TLR4/TRIF
signaling, postulating the MyD88 pathway as a possible target
for future therapies to prevent excessive PCSK9 production
in the vasculature (61). Hence, PCSK9 synthesis is regulated
by the TLR4 receptor signaling pathway through MyD88 and
NFκB activation, and soluble PCSK9 can act as an inflammatory
mediator by TLR4 binding and recognition as demonstrated in
ApoE knockout mice (65).

Vascular stability depends on cellular apoptosis. PCSK9
modulates the expression of the apoptosis inducer Bax and
the apoptosis inhibitor Bcl-2. The balance between these two
proteins is key to prevent or trigger apoptosis (66, 67).
Lipid loaded endothelial cells show increased Bax protein
levels and decreased Bcl-2 levels that lead to caspase 3
and caspase 9 activation inducing cell apoptosis (68). PCSK9
silencing by siRNA, inhibits apoptosis as silenced PCSK9 cannot
phosphorylate p38 and JNK (both members of the MAPK
signaling pathway) allowing the activation of the apoptosis
inhibitor Bcl-2 (69–72). Interestingly, p38 and JNK are also
responsible of Bax and Bad phosphorylation that activate
programmed cell death (73, 74). Hence, PCSK9 may be
promoting MAPK signaling cascade activation and endothelial
cell apoptosis [Figure 1], a mechanism that has already been
described in cancer cells (75).

PCSK9 PARTICIPATES IN PLAQUE
FORMATION

Plaque formation is a complex process that includes lipoprotein
retention, inflammatory cells recruitment, VSMC proliferation,
matrix synthesis, apoptosis, and necrosis (76). Several lines of
evidence sustain that PCSK9 promotes plaque formation in mice
and human (29, 67, 77). Indeed, PCSK9 increases LDL uptake
by macrophages scavenger receptors contributing to cell foam
formation (50); it favors inflammation at the atherosclerotic
vascular wall by inducing the expression of adhesion molecules,
chemoattractants and inflammatory cytokines (78) and it induces
ECs apoptosis reducing vessel stability (69). Furthermore,
increased PCSK9 expression levels are associated to low shear
stress (60, 61). Therefore, PCSK9 is an efficient target for the
development therapies toward the prevention and treatment of
atherosclerotic plaque formation.

Anti-PCSK9 therapy in mice reduced by half the plaque
area in the aortic root, and the infiltration of pro-inflammatory
macrophages in the atherosclerotic plaque was decreased
(79). Serum levels of CXCL1, CXCL3, and CXCL10 (known
chemoattractants for leukocytes), mainly produced by ECs and
VSMCs, were reduced (79). Also, Pcsk9 knockout mice show
reduced expression of vascular cell adhesion molecule 1 (VCAM-
1), a protein needed for immune cell adhesion to the vascular
wall (57).

Anti-PCSK9 vaccination is an alternative to monoclonal
antibody therapy. Vaccination involves the conjugation of a

peptide (8–13 amino acids) that mimics the N-terminal domain
of mature PCSK9 to a carrier protein that confers immunogenic
properties to activate the immune system. Syntheses of
host specific antibodies against PCSK9 generating long-term
inhibition are obtained. Vaccination therapy aims to overcome
monoclonal antibody therapy disadvantages including short in
vivo half-lives, frequent dosage administration and high costs
(80). In atherosclerosis mice models, inhibition of PCSK9 activity
through vaccination decreased the expression of intercellular
adhesion molecule 1 (ICAM-1) in the diseased aortic root and
consequently there was a reduction in monocyte adhesion and
migration to the endothelium that contributed to a reduction
in atherosclerotic lesions (81). The anti-PCSK9 vaccine AT04A,
which generates persistent humoral immune response against
PCSK9 for 1 year in mice, reduced LDL content by more than
50% (81). It also reduced NLRP3 inflammasome expression in
macrophages (81), a powerful inducer for PCSK9 expression
and secretion in macrophages needed for the formation and
progression of atherosclerotic plaques (51).

In humans, PCSK9 inhibitors therapy added to statin therapy
is capable of increasing fibrous cap thickening in acute coronary
syndrome patients, reducing plaque vulnerability (82). However,
the LDL-cholesterol lowering capacities of both PCSK9 inhibitors
and statin treatment cannot solely explain the increased fibrous
cap thickness suggesting that an unknown pleiotropic effect such
as an anti-inflammatory effect independent of lowering LDL-
cholesterol may be involved (82). PCSK9 inhibitor treatment in
an atherogenic mouse model increased the number of circulating
endothelial progenitor cells and circulating angiogenic cells,
markers of endothelial and vascular health associated with
positive outcomes as reduced occurrence of cardiovascular events
and death associated to cardiovascular causes (83).

ROLE OF PCSK9 IN INFLAMMATION IN
THE ADAPTIVE IMMUNE SYSTEM

The role of PCSK9 during atherosclerosis progression in the
adaptive immune system has been studied. Dendritic cells (DCs)
and T lymphocytes are localized in the atherosclerotic plaque,
usually at sites prone to rupture (84). DCs mainly work as
antigen presenting cells to T lymphocytes. They phagocyte
antigens and present them to T lymphocytes in a process
that involves MHC and TCR complexes (in DCs and T
lymphocytes, respectively). In atheroma plaques, DCs present
oxLDL fragments to T-lymphocytes that are then activated
(85). The importance of T cell activation in atherosclerosis
was demonstrated because ApoE knockout and immunodeficient
(severe combined immunodeficiency mice without functional B
and T lymphocytes) mice had less atherosclerotic lesions than
ApoE knockout mice alone. Furthermore, CD4T lymphocytes
from ApoE knockout mice transferred to immunodeficient ApoE
knockout mice induce the generation of atherosclerotic lesions
(86). PCSK9 is induced by oxLDL in DCs and enhances the
expression of proteins involved in T cell activation including
CD80, CD83, CD86, and HLA-DR and the production of
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pro-inflammatory cytokines including TNFα, IL-1β, and IL-
6. The expression of all these proteins was reduced when
PCSK9 was silenced, and TGFβ and IL-10 expression levels
were increased (87). T cells activated by oxLDL-stimulated DCs
produced mainly IFNγ and IL-17, indicating a polarization
toward an anti-inflammatory Th1/Th17 phenotype. These anti-
inflammatory T regulatory cells inhibit foam cell formation
and reverse the pro-inflammatory phenotype of macrophages
reducing atherosclerosis progression (88). PCSK9 is a key
molecule in Th17 response as atherosclerotic Pcsk9/Ldlr/Apobec
(apolipoprotein B mRNA-editing catalytic polypeptide-1) triple
knockout mice had significant lower Th17 production in
comparison with atherosclerotic Ldlr/Apobec double knockout
mice. This was associated with changes in the different cellular
sources of Th17 (Th17 lymphocytes or γδTCR+ T cells). Indeed,
mice lacking PCSK9 had a reduced number of Th17 lymphocytes
as well as a reduced expression of RORγT, the transcription factor
needed for Th17 lymphocyte differentiation (89).

A very recent work shows that PCSK9 downregulates the
expression of MHC class I proteins in tumor cells by promoting
its internalization and degradation in lysosomes (in a similar
manner to that of PCSK9 with LDLR). Therefore, PCSK9
decreases the cytotoxic T lymphocyte response against the
tumor (90). In an atherosclerotic context it seems plausible
that modified LDLs could stimulate antigen presenting cells
such as DCs or B cells to produce a variety of cytokines that
would guide T lymphocytes differentiation toward a particular
inflammatory subtype.

PCSK9’S ROLE IN FAMILIAL
HYPERCHOLESTEROLEMIA

In 2003, after the discovery of PCSK9 gain-of-functionmutations
in FH patients the first monoclonal antibodies against PCSK9
were tested in preclinical and clinical studies (including
ODYSSEY LONG TERM, ODYSSEY OUTCOMES, and
FOURIER) demonstrating efficacy in reducing LDL cholesterol
plasma levels in patients (91). In 2020 a recent sub analysis
of the FOURIER and ODYSSEY OUTCOMES trials revealed
that PCSK9 inhibition in patients with stable atherosclerosis
and hyperlipidemia on statin therapy significantly reduces
the risk of venous thromboembolism supporting a protective
role for antiPCSK9 antibodies in human cardiovascular
diseases (92). Monoclonal antibodies against PCSK9 are
also capable of reversing the pro-inflammatory phenotype
of atherogenic macrophages in patients with FH. PCSK9
inhibitors reduced CCR2, CX3CR1, and integrins CD11b and
CD18 expression in circulating monocytes suggesting a lower
infiltrating and chemoattractant capacity. PCSK9 antibody
treatment reduced the production of TNFα by monocytes
while the production of anti-inflammatory cytokine IL-10
was enhanced (93). In fact, circulating monocytes from FH
patients were enriched with lipid droplets despite non-detectable
LDLR expression but increased expression of CD36 and SRA
[Figure 1; (93)]. Also, ABCA1 protein, a protein responsible
for cholesterol efflux in macrophages, was inhibited upon

PCSK9 expression (94). Taken together, these results suggest
that circulating monocytes are pre-conditioned in FH patients
due to PCSK9 activity, which enhances their infiltrating
capacity, lipid accumulation and pro-inflammatory activity.
Indeed, a prospective study with heterozygous FH patients
under standard statin therapy revealed a positive correlation
between circulating levels of PCSK9 and adverse cardiovascular
events (95).

PCSK9 AND PLATELET THROMBOSIS

Several risk factors associated with cardiovascular disease,
including hyperlipidaemia, induce endothelial dysfunction and
lead to arterial or venous thrombosis (96). In arteries with
ongoing atherosclerosis progression, atherosclerotic plaque
rupture is the main cause for thrombosis (97).

Pcsk9 knockout mice show reduced carotid artery thrombosis
induced by FeCl3 (a technique to rapidly and accurately induce
thrombi formation) in different sized arteries and veins (98).
Upon FeCl3 stimulation, 70% of Pcsk9 knockout mice developed
non-occlusive non-stable thrombi after 30min while 57% of
Wt mice showed total artery occlusion before 15min after
FeCl3 administration suggesting a role for PCSK9 in platelet
reactivity (98). Furthermore, platelets from Pcsk9 knockout mice
show a significant reduction in glycoprotein IIB/IIIA expression
levels, P-selectin expression levels and in circulating platelet-
leukocyte aggregates in comparison with Wt mice indicating
lower platelet activation in Pcsk9 knockout mice (98). Similarly,
Pcsk9 knockout mice also show reduced thrombi formation
after inferior vena cava ligation in comparison to Wt mice
(99). Thrombi generated by inferior vena cava ligation in Pcsk9
knockout mice have less leukocyte attachment as leukocyte
recruitment is dependent on P-selectin and CXCL1, which
are downregulated in Pcsk9 knockout mice (100). However,
it is unknown whether this inflammatory cell recruitment is
downregulated because of PCSK9’s role in lipid uptake or because
PCSK9 has lipid-independent functions on platelet’s steady-state
(Figure 2 illustrates some of the mechanisms by which PCSK9
induces thrombosis).

NETosis is the process by which neutrophils release their
nuclei content composed of DNA and antimicrobial proteins
including neutrophil elastases and histones, creating networks
of extracellular fibers that trap and facilitate the killing of
pathogens (101). NETosis is linked to thrombosis because it
causes platelet activation, aggregation and adhesion (102) and
promotes the initiation of the coagulation cascade (100). In Pcsk9
knockout mice NETosis is significantly reduced, despite that the
total number of blood neutrophils and leukocytes are increased
suggesting that PCSK9 can induce thrombosis by stimulating
NETosis [Figure 2; (99)].

The PCSK9-REACT study is an observational, prospective
study where patients with recent acute coronary syndromes
underwent coronary intervention and received P2Y12 inhibitors
(103). P2Y12 is a chemoreceptor for adenosine diphosphate
(ADP) involved in platelet aggregation (104) and a target for
thromboembolism treatments using antagonists as ticagrelor or
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FIGURE 2 | PCSK9 aggravates thrombosis. Schematic showing the involvement of PCSK9 in different thrombotic processes.

prasugrel (105). The study revealed a strong correlation between
PCSK9 blood levels and platelet reactivity (103). It also showed
that elevated PCSK9 plasma levels are associated with future
coronary events as 22% of patients with the highest PCSK9
plasma levels suffered coronary events while only 2% of the
patients in the lower tertile experienced coronary events. In
line with these results, human recombinant PCSK9 added to
healthy human plasma was capable of significantly increasing
platelet aggregation and reducing aggregation lag time when
platelets were stimulated with epinephrine (98). The platelet
enhancing capacity is because addition of PCSK9 increased the
total number of platelets that express the activation marker
glycoprotein IIB/IIIA by 36% [Figure 2; (98)].

A relationship between PCSK9 plasma levels and total
number of circulating platelets has also been shown in patients
with stable coronary artery disease (106). Similarly, atrial
fibrillation patients show a strong correlation between
PCSK9 plasma levels and platelet reactivity as elevated
PCSK9 levels positively correlate with elevated risk for this
cardiovascular event (107). These patients also have higher
rate of platelet aggregation and recruitment coincidentally
with higher expression levels of thromboxane B2 (TxB2,
a platelet activation marker), higher release of P-selectin
and enhanced ROS formation (108). Correlation between
elevated PCSK9 plasma levels and elevated urine excretion
of TxB2 was also found (108). Taken together, these
results show that not only platelet number but also platelet
reactivity is enhanced when PCSK9 plasma levels are elevated
(Figure 2).

Cholesterol incorporation into platelet membranes induces
platelet reactivity while cholesterol depletion from membranes is
associated with platelet stability (109). Thus, PCSK9 inhibition
would decrease plasma LDL levels reducing platelet reactivity.
As a matter of fact, statins treatment in hypercholesterolemic
patients, is able to reduce platelet membrane cholesterol (110).
It remains a matter of discussion whether PCSK9 exerts a direct
effect on platelets or the effects depend on the dyslipidaemia
generated by PCSK9 binding to LDLR. Dyslipidaemia induces the
generation of oxLDL and agLDL, which in turn, facilitate platelet
activation by binding scavenger receptors on platelet’s surface
including LOX-1 and CD36 (111–113). Once activated, platelets
are capable of oxidizing LDLs, generating a positive feedback of
platelet activation (114). PCSK9 inhibition also downregulates
lipoprotein (a) [Lp(a)] serum levels in patients with inherited
dyslipidemias (115). Since Lp(a) enhances platelet activation
and thrombosis (116–119), PCSK9 may prevent thrombosis by
lowering Lp(a) levels. A direct effect of PCSK9 on platelets
independent of its effects on dyslipidaemia has been recently
shown as PCSK9 inhibitors can enhance oxidative stress (as a
result of the activation of the Nox2 and cPLA2 signaling cascades)
and block platelet activation inWt human platelets (108).

PCSK9 inhibitors are being tested to modulate
platelet activation in humans. Patients with primary
hypercholesterolemia with previous statin treatment were
treated for 12 months with alirocumab or evolocumab and
after only 2 months treatment a significant decrease in the
platelet activation marker CD62P was found (120). Soluble
CD40, soluble P-selectin and platelet factor 4 plasma levels were
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also reduced after 12 months of statin and PCSK9 inhibitor
treatment. The study also shows that hypercholesterolemic
patients with additional acetylsalicylic acid administration to
statins and PCSK9 inhibitors have decreased platelet aggregation
(120). A trend in the reduction of platelet aggregation in patients
without acetylsalicylic acid administration was observed but
there were no significant differences because of the low number
of patients that followed this treatment (120).

PCSK9 is also involved in blood clotting. Clotting formation
is a complex chemical process were circulating blood clotting
factors will sequentially induce protein cleavages to generate
thrombin and fibrin (121). A correlation between elevated blood
clotting Factor VIII (FVIII) plasma levels and arterial thrombosis
has been shown in both animal and human studies (122–124).
FVIII synthesis and clearance (and therefore FVIII plasma levels)
are regulated by the liver. Indeed, LDLR and LRP1 expressed in
hepatocytes promote FVIII endocytosis and degradation (125–
128). Although not demonstrated yet, a connection between
PCSK9 and FVIII seems plausible. Indeed, downregulation of
LDLR expression in hepatocytes cell surface regulated by PCSK9
induces an increase in FVIII plasma levels and therefore an
increased risk of thrombosis and cardiovascular events (127).
PCSK9 can also reduce LRP1 cell surface expression further
increasing FVIII plasma levels (53, 129). Finally, in patients
that produce anti-phospholipidic antibodies, polymorphisms
in PCSK9 and LDLR genes are associated with thrombosis
progression supporting a role in clotting formation for the
PCSK9-LDLR axis [Figure 2; (130)].

CONCLUDING REMARKS

Since PCSK9 was first described as the inducer of some
FH pathologies, a lot of interest has been placed in the
achievement of an effective inhibitory treatment. PCSK9
inhibitors administered to patients revealed a key role of PCSK9
in atherosclerotic disease as its inhibition reduced plasma LDL-
cholesterol levels with improved clinical cardiovascular outcomes
demonstrating a multifactorial and pathophysiological role for
PCSK9 in atherosclerosis progression. Interestingly, PCSK9
functions are far from only regulating LDL-cholesterol plasma
levels by reducing hepatic LDLR expression. Indeed, recent
findings demonstrate that PCSK9 is also actively modulating

inflammation, plaque formation and thrombosis. Hence, the
benefits observed from PCSK9 inhibitory therapies may not
only be induced by its plasma lipid-lowering capacities but also
by reducing the impact of several other mechanisms in which
PCSK9 is involved that are actively promoting atherosclerosis.
Unfortunately, the information on PCSK9 interactome is still
limited and further investigations on the role of PCSK9’s activity
on different signaling pathways are still needed to generate a clear
vision of PCSK9 full potential during atherosclerosis progression.
Despite PCSK9 has been studied mostly in cardiovascular
diseases, it also participates in general mechanisms shared by
many other diseases, and hence it is conceivable that PCSK9 is
involved in the initiation and progression of other pathologies
with powerful inflammatory or thrombotic components.
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