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Background: Development of advanced heart failure (HF) symptoms is the most

common adverse pathway in hypertrophic cardiomyopathy (HCM) patients. Currently,

there is a limited ability to identify HCM patients at risk of HF.

Objectives: In this study, we present a machine learning (ML)-based model to identify

individual HCM patients who are at high risk of developing advanced HF symptoms.

Methods: From a consecutive cohort of HCM patients evaluated at the Tufts HCM

Institute from 2001 to 2018, we extracted a set of 64 potential risk factors measured

at baseline. Only patients with New York Heart Association (NYHA) functional class I/II

and LV ejection fraction (LVEF) by echocardiography >35% were included. The study

cohort (n = 1,427 patients) was split into three disjoint subsets: development (50%),

model selection (10%), and independent validation (40%). The least absolute shrinkage

and selection operator was used to select the most influential clinical variables. An

ensemble of ML classifiers, including logistic regression, was used to identify patients

with high risk of developing a HF outcome. Study outcomes were defined as progression

to NYHA class III/IV, drop in LVEF below 35%, septal reduction procedure, and/or

heart transplantation.

Results: During a mean follow-up of 4.7 ± 3.7 years, advanced HF occurred in 283

(20% out of 1,427) patients. The model features included patients’ sex, NYHA class

(I or II), HCM type (i.e., obstructive or not), LV wall thickness, LVEF, presence of HF

symptoms (e.g., dyspnea, presyncope), comorbidities (atrial fibrillation, hypertension,

mitral regurgitation, and systolic anterior motion), and type of cardiac medications.

The developed risk stratification model showed strong differentiation power to identify

patients at advanced HF risk in the testing dataset (c-statistics = 0.81; 95% confidence

interval [CI]: 0.76, 0.86). The model allowed correct identification of high-risk patients

with accuracy 74% (CI: 0.70, 0.78), sensitivity 80% (CI: 0.77, 0.83), and specificity

72% (CI: 0.68, 0.76). The model performance was comparable among different sex and

age groups.
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Conclusions: A 5-year risk prediction of progressive HF in HCM patients can be

accurately estimated using ML analysis of patients’ clinical and imaging parameters. A

set of 17 clinical and imaging variables were identified as the most important predictors

of progressive HF in HCM.

Keywords: heart failure, hypertrophic cardiomyopathy, machine learning, risk factors, risk stratification

SUMMARY

Heart failure (HF) progression is the most common adverse
disease consequence in hypertrophic cardiomyopathy. However,
identification of at-risk patients is currently limited and
predominantly relies on identifying dynamic left ventricular
outflow tract obstruction, which has limited specificity and does
not allow for tailored treatment planning. A few recent studies
investigated the prognostic value of individual HF risk factors
(e.g., left ventricular function or longitudinal strain), each with
limited sensitivity and specificity. To our knowledge, no study has
reported a risk stratification model for progressive HF in HCM.
In this study, we present a predictionmodel to identify individual
HCM patients who are at high risk of developing advanced
HF symptoms. Our model allows personalization of individual
patients’ clinical course and enables the potential development of
future studies investigating earlier treatment in high-risk patients
to determine if this can improve patient outcomes.

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is the most common
genetic heart disease with sudden cardiac death as the most
visible and devastating consequence (1–4). Much attention has
been placed on the identification of HCM patients at risk
for sudden death, allowing for a mature sudden death risk
stratification strategy that identifies the vast majority of at-
risk individuals (3, 5). However, the most common adverse
consequence of HCM is the development of advanced heart
failure (HF) symptoms, occurring in 35–50% of patients and
leading to substantial function disability and reduced quality of
life (6–8).

The mechanism of exertional disability in HCM is
predominantly secondary to dynamic left ventricular (LV)
outflow tract (LVOT) obstruction occurring either at rest
or with provocation, with these patients at higher risk for
progressive symptoms (9–11), while nonobstructive patients are
at substantially lower risk for symptom progression. However,
risk stratification of patients based on the LVOT obstruction
falls short of specificity needed for accurate disease management
and treatment planning. For example, there is limited ability to

Abbreviations: ADB, Adaptive boosted decision trees classifier; AUC, Area under

curve of the receiving operator characteristics; CI, 95% Confidence interval; CMR,

Cardiovascular magnetic resonance imaging; GBC, Gradient boosted decision

trees classifier; HCM, Hypertrophic cardiomyopathy; HF, Heart failure; LA, Left

atrium; LG, Logistic regression classifier; LV, Left ventricle; LVOT, Left ventricle

outflow tract; ML, Machine learning; NYHA, New York Heart Association; NN,

Neural networks; RF, Random forests; SVM, Support-vector machine.

stratify patients with LVOT obstruction who are at high risk for
development of HF, as compared to those who survive to advance
ages with no or mild symptoms. In contrast, nonobstructive
HCM patients are considered at lower risk for development
of advanced HF. However, medical therapy for patients with
symptomatic nonobstructive HCM is limited and patients who
develop advanced HF symptoms may ultimately require cardiac
transplant as the only definitive treatment option (5, 9).

Few recent studies investigated the potential prognostic
value of individual imaging and clinical parameters such
as LV structural and functional parameters, cardiopulmonary
exercise testing parameters, serum biomarkers, and global
longitudinal strain (12–14). However, there is still a limited
ability to predict HF progression in HCM and there is
a need for a HF risk prediction model that allows more
comprehensive evaluation of the patients’ clinical parameters.
Machine learning (ML) algorithms provide a powerful tool for
learning complex relationships between the risk predictors and
outcomes from a representative sample of the patients. ML-based
models have been used to predict cardiovascular events with
improved accuracy and generalizability compared to traditional
risk predictors (15–19). Several studies showed that further
improvement can be achieved by combining a number of ML
models in an ensemble utilizing their versatile characteristics
(15, 20, 21). In this study, we present an ML-based HF risk
prediction model in HCM patients. To avoid arbitrarily selecting
a specific ML model, we followed a systematic approach to build
an ensemble of models that can learn the association between
HF risk and clinical and imaging risk markers. We report the
performance metrics of each individual model in the ensemble
to illustrate the designing steps rather than providing a rigorous
comparison of the different models.

MATERIALS AND METHODS

Study Population and Outcome
The database of the HCM Institute at Tufts Medical Center
(Boston, MA) containing data from 2,732 consecutive patients
with HCM from June 2001 to Dec 2018 was interrogated. Data
records for 880 patients (32%) with advanced HF symptoms
at baseline (defined by New York Heart Association (NYHA)
functional class III or IV) (n = 863), heart transplantation (n =

1), or septal reduction procedure (n = 11) or with LV ejection
fraction by echocardiography <35% (n= 5) were excluded. Data
on the most recent status of HF were obtained up to December
30, 2019, in 1,427 (77% of 1,852) patients by hospital visit or
telephone contact with patients, family members, and referring
physicians. Study outcomes were defined as progression in HF
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symptoms from NYHA functional classes I/II to classes III/IV,
drop in LV ejection fraction to <35%, having underwent septal
reduction procedure, or having had (or added to the waiting
list of) heart transplantation during follow-up. The mean ±

SD follow-up duration from initial clinical evaluation at the
Tufts Medical Center to the earliest of progression to class
III/IV date or most recent contact was 4.7 ± 3.7 years. The
average time to advanced HF symptoms in our cohort was
2.7 ± 2.6 years. The clinical diagnosis of HCM was based on
two-dimensional transthoracic echocardiographic identification
of otherwise unexplained hypertrophied non-dilated LV (wall
thickness ≥13mm) (3, 22). Patients had been referred for
targeted subspecialty evaluations, including diagnosis, risk
stratification, and treatment. Patients with phenocopies of HCM
(e.g., Fabry disease, LAMP2 cardiomyopathy, PRKAG2, or
amyloidosis) were excluded. This study was approved by the
institutional review board at Tufts Medical Center, allowing a
retrospective review of medical records and granting a waiver of
informed consent in accordance with 45 CFR 46.116(d).

Potential Risk Predictors
The model was built using potential clinical, demographic,
and imaging risk markers (n = 64; Supplementary Table 1)
measured at the time of initial patient evaluation including (1)
baseline demographics (e.g., age and sex); (2) HF risk factors
(e.g., symptoms of fatigue, dyspnea, and syncope); (3) imaging
data (e.g., echocardiography LV ejection fraction, LA size, and
maximum wall thickness); (4) cardiac medications (e.g., beta
blocker and calcium channel blocker); and (5) comorbidities
(e.g., hypertension, atrial fibrillation, stroke, and implantable
cardiac device). A risk factor representing obstructive (or non-
obstructive) HCM was defined by a LV outflow tract (LVOT)
gradient ≥30 mmHg at rest or with provocation (i.e., exercise
or Valsalva maneuver). Nonobstructive HCM was identified by
a LVOT gradient <30 mmHg both at rest and with provocation.
Categorical variables were replaced by an integer ranging from
0 to the maximum number of categories (as indicated in
Supplementary Table 1). Variables with >5% missing data were
not included. Missing measurements of the included variables
were imputed using the k-nearest neighbor method, with k set
to 1 to preserve the original variability in data distribution (23).

For the purpose of developing the HF risk model, the patients
were split into three subsets (Figure 1): (1) development subset
(713 patients (50%); (2) model-selection subset (142 patients
(10%); and (3) independent-validation subset (572 patients
(40%). Stratified random sampling was used to split the data such
that the ratio of positive to negative HF outcomes was the same
in all subsets.

Risk Predictor Selection
The set of most important clinical variables was selected using
the least absolute shrinkage and selection operator (LASSO) (24).
To determine the optimal number of features, LASSO feature
selection was repeated to select the best k features (with k ranging
from 1 to 40). For each value of k, a logistic regression model was
developed and evaluated using a 10-fold cross-validation scheme.
In this scheme, the development dataset is split into 10 disjoint

subsets, where nine subsets were used for training the model and
one subset is used for model evaluation. The process was repeated
10 times to try all possible 10 different selections of training-
evaluation subsets. The average model performance [measured
by the area under the curve (AUC) of the receiving operating
characteristics (ROC), or c-statistics] over the 10 repetitions was
used to determine the optimal number, k, and specify the most
important clinical variables.

Model Selection
The development subset was used to train and optimize six
different state-of-the-art ML classifiers: logistic regression (LG),
random forests (RF), support-vector machines (SVM), gradient
boosted decision trees (GBC), adaptive boosted decision trees
(ADB), and neural networks (NN). Ten-fold cross-validation
was used to determine the optimal model parameters. Each
resulting model was then evaluated using the model-selection
subset (142 patients) to determine the best model. An ensemble
of the three best-performing models was used as the final HF
risk stratification model. The outputs of models comprising
the ensemble were merged using logistic regression. The final
ensemble output was a normalized probability value (i.e., from
0 to 1) representing the patient’s risk to develop HF outcome.

Model Testing and Performance Evaluation
The final optimal models were used to predict the HF risk for
the patients in the independent validation dataset. The models
output a value representing the probability that a patient develops
advanced HF symptoms within a 5-year follow up interval. We
used AUC (or c-statistics) to estimate the discriminatory power
of the model to identify patients at risk of progressive HF. An
arbitrary operating point represented by a probability of 50%
was used to identify patients at high risk of HF and used to
compute the F1 score, sensitivity, specificity, and accuracy of
each model. The contribution of each input variable to the model
output for each patient (i.e., probability of developing progressive
HF) was assessed by the Shapley values (25). Shapley values
approximate the impact of removing the variable on the model
prediction while taking into account the interactions among
all variables. Model development was done using Python-V3.7
(Python Software Foundation, Fredericksburg, VA) and Scikit-
learn Ver-0.23.2 (scikit-learn.org) on a PC with Quadro K620
graphics processing unit (Nvidia, Santa Clara, CA). For Shapley
value computations, we used the SHapley Additive exPlanations
(SHAP) analysis library (26). The final model is available
at https://doi.org/10.7910/dvn/ffnlpe for external validation by
other researchers.

Statistical Data Analyses
Data are displayed as mean± SD for continuous variables and as
proportions for categorical variables. The Student (two-sample)
t-test was used to assess statistical significance for continuous
variables and z-test for comparing population proportions. AUC,
sensitivity, specificity, and average F1 score were used to evaluate
the model performance. Parametric estimation for the variance
was used to compute the 95% confidence interval (CI), and a
p ≤ 0.05 was considered significant (reported as two-sided).
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FIGURE 1 | Workflow of developing a machine learning-based model for predicting risk of heart failure (HF) in hypertrophic cardiomyopathy (HCM) patients. Datasets

are imputed and split into development (50%), model-selection (10%), and independent-validation (40%) subsets. The development subset is used to select the most

important features, and the validation subset is used for model optimization. The final HF stratification model is then used to predict HF risk in the testing subset.

Statistical calculations were performed with the Matlab statistical
toolbox (version R2018b, Mathworks, Natick, MA).

RESULTS

The mean age of the patients included in this study (n = 1,427;
69% men) was 52 ± 17 years with a mean follow-up time of 4.7
± 3.6 years (median 3.7 years). The baseline characteristics of the
patient cohort are shown in Table 1. Twenty-three features (of
64) showed a non-zero importance score using LASSO feature
selection analysis (Figure 2). The optimal number of important
features that maximized HF risk stratification performance (c-
statistics) in the development subset was 17 features (Table 1).
Four classifiers yielded the highest three AUC scores: LG (0.79),
GBC (0.79), NN (0.78), and SVM (0.78) (Table 2). An ensemble
of LG-GBC-SVM was used as the final prediction model. The
final model showed strong power to differentiate low- from high-
risk patients in the testing subset (572 patients) with AUC =

0.81 [95% CI: 0.76–0.86] (Figure 3). The model showed accuracy
of 74% [95% CI: 0.70–0.78], sensitivity of 80% [95% CI: 0.77–
0.83], and specificity of 72% [95% CI: 0.68–0.76] (Table 3).
The model performance metrics for the different age and sex
subgroups was comparable and showed overlapped 95% CI, as
indicated in Table 3. SHAP analysis showed that obstructive
HCM and NYHA functional class II were associated with higher
risk compared to non-obstructive HCM and NYHA functional
class I (Figure 4). Also, presence of HF symptoms (dyspnea,
fatigue, syncope, and presyncope) or abnormal heart function
or structure (e.g., reduced LV ejection fraction, increased wall
thickness, septal anterior motion, and mitral regurgitation)
increased the risk of developing progressive HF. Also, three
cardiac medications (Coumadin, beta blockers, and calcium
channel blockers) showed an association with increased HF risk
while the angiotensin-converting enzyme inhibitor (ACEi) or
angiotensin-receptor blocker (ARB) was associated with low HF
risk. Additionally, risk of progressive HF was higher in males
and patients with history of atrial fibrillation and/or without
hypertension (Figure 4).

DISCUSSION

We present an ML-based study to develop and test a prediction
model for progressive HF in HCM. There has previously been
limited ability to predict HF risk in HCM as a number of disease
features appear to impact symptomprogression limiting accuracy
of traditional prediction models. In our study, an ensemble
of machine learning classifiers, including logistic regression,
is used to accurately predict the risk of progressive HF over
an average of a 5-year follow-up period. The most significant
variables in our models included clinical and imaging variables
that have previously been individually linked to progressive HF
inHCM, but with limited accuracy. Thereby, the ability to predict
progressive HF symptoms appears to be related to an interaction
of these variables. We initially included all 64 measured risk
factors to determine if specific symptoms (e.g., dyspnea, fatigue,
or chest pain) were predictive of the development of advanced
HF over time. This allowed the final model to include risk factors
that are not completely independent. For example, both dyspnea
and NYHA class were significant factors in the model. While
dyspnea is included as part of NYHA class evaluation, notably a
number of other factors ultimately play into the determination of
NYHA class (e.g., degree of effort leading to dyspnea and degree
of fatigue with exertion). In our cohort, 68 patients with dyspnea
were in NYHA class I while 56 patients without dyspnea were
in NYHA class II. All machine learning techniques studied in
this work, except random forests, showed comparable accuracy
(77–79%) for predicting the endpoints. An ensemble of the three
best models showed a slightly higher accuracy (80%). Although
the study endpoints included LV ejection fraction depression
and cardiac transplantation, the small number of events during
our follow-up period (n = 3 and 1, respectively) does not allow
separate prediction of these events. Prediction of these events
separate from progression of the NYHA class requires longer
follow-up periods and a larger patient cohort to account for the
low incidence rate of these events.

Our results demonstrate that the model performance is
comparable in male and female patients. Also, there was no
statistical significance in performance among the different age
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TABLE 1 | Baseline clinical characteristics for the hypertrophic cardiomyopathy (HCM) patients at initial clinical assessment.

Model input ALL (n = 1,427) HF– (n = 1,144) HF+ (n = 283) p-value

Male, n (%) Yes 985 (69) 818 (72) 167 (59) <0.001

Age at HCM diagnosis (years), mean ± SD (median) No 45 ± 18 (48) 45 ± 18 (48) 46 ± 18 (48) 0.55

NYHA functional class Yes

I, n (%) 794 (56) 733 (64) 61 (22) <0.001

II, n (%) 633 (44) 411 (36) 222 (78) <0.001

Family history of HCM, n (%) No 369 (26) 296 (26) 73 (26) 0.98

Family history of sudden death secondary to HCM, n (%) No 154 (11) 41 (4) 28 (10) 0.58

Family history of end-stage HCM, n (%) No 41 (3) 31 (3) 10 (4) 0.49

Obstructive HCM, n (%) Yes 747 (52) 525 (45) 229 (81) <0.001

LV outflow tract gradient (mmHg), mean ± SD (median) No 19 ± 5 (17) 15 ± 32 (0) 34 ± 41 (0) <0.001

Mid-cavity LV obstruction gradient (mmHg), mean ± SD (median) No 3 ± 12 (0) 3 ± 12 (0) 2 ± 12 (0) 0.52

Maximum LV wall thickness (mm), mean ± SD (median) Yes 19 ± 5 (17) 18 ± 4 (17) 20 ± 5 (19) <0.001

LV ejection fraction (%), mean ± SD (median) Yes 64 ± 5 (65) 63 ± 5 (65) 64 ± 6 (65) 0.29

LV EDD (mm), mean ± SD (median) No 42 ± 7 (42) 42 ± 7 (42) 41 ± 7 (41) <0.001

LV ESD (mm), mean ± SD (median) No 27 ± 6 (26) 27 ± 6 (26) 26 ± 5 (25) 0.002

LV apical aneurysm, n (%) No 42 (3) 40 (4) 2 (1) <0.001

LA diameter (mm), mean ± SD (median) No 40 ± 7 (40) 40 ± 7 (40) 42 ± 7 (41) 0.001

Systolic anterior motion, n (%) Yes 927 (68) 681 (63) 246 (89) <0.001

Mitral regurgitation, n (%) Yes 562 (39) 410 (36) 152 (54) <0.001

NSVT seen on ambulatory monitor, n (%) No 137 (10) 120 (26) 17 (6) 0.008

Syncope, n (%) Yes 139 (10) 100 (9) 37 (13) 0.046

Fatigue, n (%) Yes 198 (14) 125 (11) 73 (26) <0.001

Presyncope, n (%) Yes 71 (5) 47 (4) 24 (8) 0.014

Dyspnea, n (%) Yes 645 (45) 417 (39) 226 (80) <0.001

Hypertension, n (%) Yes 461 (32) 379 (33) 82 (29) 0.17

Atrial fibrillation, n (%) Yes 203 (14) 158 (14) 51 (18) 0.24

Patients with ICD placed prior to initial visit, n (%) No 159 (11) 117 (10) 42 (15) 0.045

Appropriate ICD therapy prior to initial visit, n (%) No 17 (1) 11 (1) 6 (2) 0.20

Resuscitated cardiac arrest prior to initial visit, n (%) No 24 (2) 19 (2) 5 (2) 0.91

Medications—beta blocker, n (%) Yes 807 (57) 610 (53) 197 (70) <0.001

Medications—calcium channel blocker, n (%) Yes 290 (20) 212 (19) 78 (28) 0.002

Medications—ACEi/ARB, n (%) Yes 309 (22) 266 (23) 43 (15) 0.001

Medications—coumadin, n (%) Yes 80 (6) 56 (5) 24 (8) 0.044

Data represents n (%) or mean ± SD (median). HF+, patients developed heart failure during follow-up (i.e., positive HF outcome); HF–, patients without HF outcome; ACEi, angiotensin-

converting enzyme inhibitor; ARB, angiotensin-receptor blockers; ICD, implantable intracardiac defibrillator; LA, left atrium; LV, left ventricle; EDD, end diastolic diameter; ESD, end

systolic diameter; LVOT, left ventricular out flow tract; NSVT, non-sustained ventricular tachycardia; NYHA, New York Heart Association; SD, standard deviation.

groups. However, the model average discriminating power,
measured by AUC, was relatively high (≥0.81) in patients within
the 20–60-year-old groups compared to the other two groups.
This may be explained by the generally high representation of
patients in this age range in our dataset (62%). We also note that
the limited number of positive events in the youngest age group
does not allow reliable prediction of HF, which was indicated by
the wide 95% CI.

Progressive and advanced HF development is the most
common adverse pathway in HCM. With the availability of
mature strategy for identification of patients at risk for sudden
death and utilization of ICDs for sudden death prevention, HF
has become the most common cause of HCM death. While
most HCM patients will have a benign clinical course without

HF progression, there has been an inability to identify at-risk
patients, leading to uncertainty from treating clinicians as to
which patients are in need for more aggressive therapy and
closer clinical follow-up. Similarly, there has been uncertainty
for patients regarding their disease-related natural history and
individual risk. The present model allows for clarification of an
individual risk and allows for a more personalized treatment
approach regarding both need for closer clinical follow-up
and more aggressive treatment. For example, the model can
identify individual patients who may develop advanced HF with
relatively high sensitivity (80%) and specificity (72%). This can
open the opportunity for adopting more aggressive treatment to
improve clinical outcomes in higher-risk individuals and closer
follow-up. Meanwhile, it can offer a substantial reassurance that
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FIGURE 2 | Relative importance scores for the risk factors included in the study (only factors with nonzero scores are displayed).

TABLE 2 | Performance evaluation of the different machine learning models using the model-selection dataset (143 patients; 28 positive heart failure outcomes).

Classifier type AUC ACC Sn Sp F1 score

Neural networks (NN) 0.78 0.68 0.82 0.65 0.64

Support vector machines (SVM) 0.78 0.69 0.75 0.68 0.63

Random forests 0.67 0.70 0.21 0.93 0.59

Gradient boosted DT (GBC) 0.79 0.69 0.64 0.70 0.62

Adaptive boosted DT 0.77 0.79 0.14 0.95 0.54

Logistic regression (LG) 0.79 0.71 0.71 0. 71 0.65

LG + GBC + NN 0.79 0.71 0.71 0.71 0.65

LG + GBC + SVM 0.80 0.71 0.71 0.71 0.65

DT, decision trees; AUC, area under the receiver operating characteristic curve; ACC, accuracy; Sn, sensitivity; Sp, specificity.

low-risk patients are unlikely to need interventional procedures
over a 5-year period. However, we note that the presented
model is developed based on a 5-year follow-up period and
may not be accurate to predict HF beyond 5 years. The
lack of established HF stratification models in HCM does not
allow benchmarking of our model. However, we note that the
stratification power and accuracy of our model are comparable
to those reported for established sudden cardiac death risk
stratification models (27–29).

While the impact of medical therapy to change the natural
history of HCM remains controversial without data to routinely
support implementation (9, 30), a more targeted approach to
initiation of medical therapy specifically in patients identified at
higher risk is deserving of a further study. This is particularly
relevant given the ongoing research into novel therapeutic
interventions in HCM, including myosin modulators which may
prove more powerful treatments to alter HCM phenotype and
prevent disease progression (31).

Our study has a number of limitations. First, our HF
prediction model is designed to accommodate a typical clinical
protocol implemented by a single medical center and is not
tested using data acquired using different protocols. Also, given
the longitudinal nature of our cohort with patients seen and
evaluated over a 15-year period, more novel potential risk
markers, such as serum biomarkers or mechanical deformation
parameters such as global longitudinal strain (12), are not
available but may offer additional dimensions to the model.
Additionally, not every patient in this study was followed for the
full 5-year term and patients who did not develop HF symptoms
during the follow-up period were treated as not having the
outcome of interest, which could bias the model.

In conclusion, our machine learning model allowed for
accurate identification of HCM patients at risk for HF
progression within a 5-year follow-up period. The model
is based on 17 significant risk factors including imaging
parameters (e.g., LVOT obstruction, septal anterior motion,
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FIGURE 3 | Receiver operating characteristic (ROC) curve (A) and recall-precision curve (B) for the machine learning-based heart failure (HF) risk stratification in

hypertrophic cardiomyopathy patients (n = 572). Dashed line represents pure-chance stratification AUC = 0.5 in (A) or precision = ratio of HF outcomes in the

dataset (=20%) (B). AUC = area under the curve. AP, average precision; SD, standard deviation.

FIGURE 4 | Relative contribution (SHAP-values) of the model variables (n = 17) to heart failure (HF) prediction. Each point in the graph indicates the contribution of the

corresponding clinical variable to the HF prediction of one patient. Ca, calcium; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blockers.

HCM, hypertrophic cardiomyopathy; LV, left ventricle; NYHA, New York Heart Association.

TABLE 3 | Performance evaluation of the ensemble model using the independent-validation dataset.

AUC ACC Sn Sp F1 score

All patients (n* = 572; 114 HF+) 0.81 [CI: 0.76–0.86] 0.74 [CI: 0.70–0.78] 0.80 [CI: 0.77–0.83] 0.72 [CI: 0.68–0.76] 0.68 [CI: 0.64–0.72]

Female (n = 188; 55 HF+) 0.76 [CI: 0.68–0.84] 0.69 [CI: 0.62–0.76] 0.80 [CI: 0.74–0.86] 0.64 [CI: 0.57–0.71] 0.67 [CI: 0.60–0.74]

Male (n = 384; 59 HF+) 0.81 [CI: 0.74–0.88] 0.76 [CI: 0.72–0.80] 0.75 [CI: 0.71–0.79] 0.76 [CI: 0.72–0.80] 0.66 [CI: 0.61–0.71]

Age#: < 20 years (n = 76; 14 HF+) 0.78 [CI: 0.63–0.93] 0.82 [CI: 0.73–0.91] 0.71 [CI: 0.61–0.81] 0.84 [CI: 0.76–0.92] 0.73 [CI: 0.63–0.83]

Age: 20–40 years (n = 139; 26 HF+) 0.84 [CI: 0.74–0. 94] 0.74 [CI: 0.67–0.81] 0.85 [CI: 0.79–0.91] 0.72 [CI: 0.65–0.79] 0.68 [CI: 0.60–0.76]

Age: 40–60 years (n = 229; 46 HF+) 0.81 [CI: 0.73–0.89] 0.72 [CI: 0.66–0.78] 0.85 [CI: 0.80–0.90] 0.69 [CI: 0.63–0.75] 0.68 [CI: 0.62–0.74]

Age: ≥ 60 years (n = 128; 27 HF+) 0.77 [CI: 0.66–0.88] 0.65 [CI: 0.57–0.73] 0.78 [CI: 0.71–0.85] 0.61 [CI: 0.53–0.69] 0.61 [CI: 0.53–0.69]

*n represents number of patients (of 572 patients in the testing subset). #Age at diagnosis of hypertrophic cardiomyopathy. HF+, positive heart failure outcomes; CI: 95% confidence

interval; AUC, area under receiver operating characteristic curve; ACC, accuracy; Sn, sensitivity; Sp, specificity.
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and LV ejection fraction), cardiac medications (e.g., beta-
blockers and coumadin), and physical symptoms of heart failure
(e.g., dyspnea and fatigue). This may allow personalization of
individual patients’ clinical course into clinical practice and
closer clinical follow-up in high-risk individuals. In addition, the
developed models allow the opportunity for future research on
implementation of earlier disease-specific treatment in high-risk
patients to determine if this can prevent symptom progression
and improve outcomes.
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